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VARIATIONAL APPROACH TO SHAPE DERIVATIVES ∗

Kazufumi Ito1, Karl Kunisch2 and Gunther H. Peichl2

Abstract. A general framework for calculating shape derivatives for optimization problems with
partial differential equations as constraints is presented. The proposed technique allows to obtain the
shape derivative of the cost without the necessity to involve the shape derivative of the state variable.
In fact, the state variable is only required to be Lipschitz continuous with respect to the geometry
perturbations. Applications to inverse interface problems, and shape optimization for elliptic systems
and the Navier-Stokes equations are given.
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1. Introduction

We propose a framework for characterizing the shape derivative for optimization problems of the form{
min J(u,Ω,Γ)

subject to E(u,Ω) = 0,
(1.1)

where E denotes a partial differential equation depending on a state variable u and a reference domain Ω,
and J stands for a cost functional depending, besides u and Ω, on a codimension one manifold Γ, which may
constitute part of the boundary of Ω or lie inside of Ω. This topic has been widely analyzed in the past and is
covered in the well-know lecture notes [12] and in the monographs [6,9,10,13,16], for example.

The method for computing the shape derivative that we propose is quite elementary and more direct
than most common techniques. A widely used approach relies on differentiating the reduced functional Ĵ =
J(u(Ω,Γ),Ω,Γ), which is treated as a composite mapping consisting of (Ω,Γ) → u(Ω,Γ) and (u,Ω,Γ) →
J(u,Ω,Γ). As a consequence shape differentiability of the state variable is essential in this method. In an al-
ternative approach the partial differential equation is realized in a Lagrangian formulation, see [6], for example.

In short, our approach can be described as follows. We pass to the limit with respect to the class of
admissible perturbations in an efficiently arranged version of the difference quotient of the cost J with respect
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to the geometry perturbation. The constraint E(u,Ω) = 0 is observed by introducing an appropriately defined
adjoint equation. In this process, differentiability of the state with respect to the geometric quantities is not
used. In fact, we only require Hölder continuity with exponent greater 1

2 of u with respect to the geometric data.
On a technical level we utilize well-known results from the method of mapping and on the differentiation of
functionals with respect to geometric quantities.

For comparison we briefly discuss an example using the “chain rule” approach. Consider the cost functional

min
Γ
J(u,Ω,Γ) ≡ min

Γ

1
2

∫
Γ

u2 dΓ (1.2)

subject to the constraint E(u,Ω) = 0 which is given by the mixed boundary value problem

−Δu = f, in Ω, (1.3)

u = 0, on Γ0, (1.4)
∂u

∂n
= g, on Γ. (1.5)

Here the boundary ∂Ω of the domain Ω is the disjoint union of a fixed part Γ0 and the unknown part Γ. A
formal differentiation leads to the shape derivative of the cost functional

dJ(u,Ω,Γ)h =
∫

Γ

uu′Ω dΓ +
1
2

∫
Γ

(
∂u2

∂n
+ κu2

)
h · n dΓ (1.6)

where u′Ω denotes the shape derivative of the solution u of (1.3) at Ω with respect to a deformation field h
which realizes the feasible perturbations of the reference domain Ω and κ stands for the curvature of Γ. For a
thorough discussion of the details we refer to [6,13]. Differentiating formally the constraint E(u,Ω) = 0 with
respect to the domain one obtains that u′Ω satisfies

−Δu′Ω = 0, in Ω,

u′Ω = 0, on Γ0, (1.7)

∂u′Ω
∂n

= divΓ(h · n∇Γu) +
(
f +

∂g

∂n
+ κg

)
h · n, on Γ,

where divΓ, ∇Γ stand for the tangential divergence, respectively the tangential gradient. Introducing a suitably
defined adjoint variable and using (1.7) the first term on the right hand side of (1.6) can be manipulated in such
a way that dJ(u,Ω,Γ)h can be represented in the form required by the Zolesio-Hadamard structure theorem [6]

dJ(u,Ω,Γ)h =
∫

Γ

Gh · n dΓ. (1.8)

We emphasize that the kernel G does not involve the shape derivative u′Ω any more. Although u′Ω is only an
intermediate quantity a rigorous analysis requires to justify the formal steps in the preceding discussion. In
addition one has to verify that the solution of (1.7) actually is the shape derivative of u in the sense of the
definition in [13]. These in itself are nontrivial tasks. Furthermore, u ∈ H2(Ω) is not sufficient to justify the
formal calculations rendering (1.6) into (1.8). In our approach, however, we utilize only u ∈ H2(Ω) for the
characterization of the shape derivative of J(u,Ω,Γ). We return to this example in Section 3.3.

In Section 3.5 we provide an example for the situation where the standard chain rule approach is not applicable
due to lack of shape differentiability of the state variable, but our approach allows a rigorous computation of
the cost with respect to perturbations of the domain.

In summary, the method that we develop enables us to directly calculate the shape derivative of the cost
functional without utilizing the shape derivative of the state u with respect to the geometric variable. Its main
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ingredients include the weak formulation of the state-equation constraint, the method of mappings and the
shape derivatives of the cost functionals. As we shall demonstrate in Section 3 it can readily be applied to a
general class of shape optimization problems.

In Section 2 we present the proposed general framework to compute the shape derivative for (1.1). Section 3
contains applications to shape optimization constrained by linear elliptic systems, inverse interface problems,
the Bernoulli problem, and shape optimization for the Navier Stokes equations.

2. Shape derivative

Consider the shape optimization problem

min J(u,Ω,Γ) ≡
∫

Ω

j1(u) dx+
∫

Γ

j2(u) ds+
∫

∂Ω\Γ
j3(u) ds (2.1)

subject to the constraint

E(u,Ω) = 0 (2.2)

which represents a partial differential equation posed on a domain Ω with boundary ∂Ω. Further Γ is a closed
co-dimension one manifold which represents part of ∂Ω or is strictly inside Ω. We focus on sensitivity analysis
of (2.1)–(2.2) with respect to Ω and Γ. The perturbations of Ω will be such that ∂Ω \ Γ remains fixed.

To describe the admissible class of geometries, let U ⊂ R
d be a fixed bounded domain with C1,1-boundary ∂U ,

or convex and Lipschitzean boundary, and let D be a domain with C1,1-boundary Γ := ∂D, satisfying D̄ ⊂ U .
For the reference domain Ω we admit either of three cases

(i) Ω = D
(ii) Ω = U
(iii) Ω = U \ D̄.

Note that

∂Ω = (∂Ω ∩ Γ) ∪̇ (∂Ω \ Γ) ⊂ U ∪̇ ∂U. (2.3)

Thus the boundary ∂Ω for cases (i)–(iii) is given by

(i)’ ∂Ω = Γ ∪ ∅ = Γ
(ii)’ ∂Ω = ∅ ∪ ∂U = ∂U
(iii)’ ∂Ω = Γ ∪ ∂U.
To introduce the admissible class of perturbations let h ∈ C1,1(Ū ,Rd) with h|∂U = 0 and define for, t ∈ R,

the mappings Ft : U → R
d by the perturbation of identity

Ft = id+ th. (2.4)

Then there exists τ > 0 such that Ft(U) = U and Ft is a diffeomorphism for |t| < τ . Defining the perturbed
domains

Ωt = Ft(Ω)

and the perturbed manifolds as

Γt = Ft(Γ),

it follows that Γt is of class C1,1 and Ω̄t ⊂ U for |t| < τ . Note that since h|∂U = 0 the boundary of U remains
fixed as t varies, and hence by (2.3)

(∂Ω)t \ Γt = ∂Ω \ Γ, for |t| < τ.
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Alternatively to (2.4) the perturbations could be described as the flow determined by the initial value problem

ξ̇(t) = h(ξ(t))

ξ(0) = x,

with Ft(x) = ξ(t; 0, x), i.e. by the velocity method.
The Eulerian derivative of J at Ω in the direction of the deformation field h is defined as

dJ(u,Ω,Γ)h = lim
t→0

1
t

(
J(ut,Ωt,Γt) − J(u,Ω,Γ)

)
where ut satisfies the constraint

E(ut,Ωt) = 0. (2.5)
The functional J is called shape differentiable at Ω if dJ(u,Ω,Γ)h exists for all h ∈ C1,1(Ū ,Rd) and defines a
continuous linear functional on C1,1(Ū ,Rd). Using the method of mappings one transforms the perturbed state
constraint (2.5) to the fixed domain Ω. For this purpose define

ut = ut ◦ Ft.

Then ut : Ω → R
l satisfies an equation on the reference domain Ω which we express as

Ẽ(ut, t) = 0, |t| < τ. (2.6)

We suppress the dependence of Ẽ on h, because h will denote a fixed vector field throughout. Because of F0 = id
one obtains u0 = u and

Ẽ(u0, 0) = E(u,Ω). (2.7)
We axiomatize the above description and impose the following assumptions on Ẽ, respectively E.

(H1) There is a Hilbert spaceX and a C1-function Ẽ : X×(−τ, τ) → X∗ such that E(ut,Ωt) = 0 is equivalent
to

Ẽ(ut, t) = 0 in X∗,
with Ẽ(u, 0) = E(u,Ω) for all u ∈ X .

(H2) There exists 0 < τ0 ≤ τ such that for |t| < τ0 there exists a unique solution ut ∈ X to Ẽ(ut, t) = 0 and

lim
t→0

|ut − u0|X
|t|1/2

= 0.

(H3) Eu(u,Ω) ∈ L(X,X∗) satisfies

〈E(v,Ω) − E(u,Ω) − Eu(u,Ω)(v − u), ψ〉X∗×X = O(|v − u|2X)

for every ψ ∈ X , where u, v ∈ X .
(H4) Ẽ and E satisfy

lim
t→0

1
t
〈Ẽ(ut, t) − Ẽ(u, t) − E(ut,Ω) + E(u,Ω), ψ〉X∗×X = 0

for every ψ ∈ X , where ut and u are the solutions of (2.6), respectively (2.2).
In applications (H4) typically results in an assumption on the regularity of the coefficients in the partial differ-
ential equation and on the vector-field h. We assume throughout that X ↪→ L2(Ω,Rl) and, in the case that j2,
j3 are non-trivial, that the elements of X admit traces in L2(Γ,Rl), respectively L2(∂Ω \ Γ,Rl). Typically X
will be a subspace of H1(Ω,Rl) for some l ∈ N.
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With regards to the cost functional J we require:
(H5) ji ∈ C1,1(Rl,R), i = 1, 2, 3.

As a consequence of (H1)–(H2) we infer that equation (2.5) has a unique solution ut which is given by ut =
ut ◦ F−1

t . Condition (H5) implies that j1(u) ∈ L2(Ω), j′1(u) ∈ L2(Ω)l, j2(u) ∈ L2(Γ), j′2(u) ∈ L2(Γ)l and
j3(u) ∈ L2(∂Ω\Γ), j′3(u) ∈ L2(∂Ω\Γ)l for u ∈ X . Hence the cost functional J(u,Ω,Γ) is well defined for every
u ∈ X .

Lemma 2.1. There is a constant c > 0, such that

|ji(v) − ji(u) − j′i(u)(v − u)|L1 ≤ c|v − u|2X
hold for all v, u ∈ X, i = 1, 2, 3.

Proof. For j1 the claim follows from

∫
Ω

|j1(v) − j1(u) − j′1(u)(v − u)| dx ≤
∫

Ω

∫ 1

0

|j′1
(
u(x) + s(v(x) − u(x))

) − j′1(u(x))| ds|v(x) − u(x)| dx

≤ L

2
|v − u|2L2 ≤ c|v − u|2X ,

where L > 0 is the Lipschitz constant for j′1. The same argument is valid also for j2 and j3. �
Subsequently we use the following notation

It = detDFt, At = (DFt)−T ,

wt = It|Atn|,

where DFt is the Jacobian of Ft and n denotes the outer normal unit vector to Ω. We require additional
regularity properties of the transformation Ft. Let I = [−τ0, τ0] with τ0 sufficiently small.

F0 = id t→ Ft ∈ C(I, C1,1(Ū ,Rd))

t→ Ft ∈ C1(I, C1(Ū ,Rd)) t→ F−1
t ∈ C(I, C1(Ū ,Rd))

t→ It ∈ C1(I, C(Ū)) t→ At ∈ C(I, C(Ū ,Rd×d))

t→ wt ∈ C(I, C(Γ)) (2.8)

d
dt
Ft|t=0 = h

d
dt
F−1

t |t=0 = −h
d
dt
DFt|t=0 = Dh

d
dt
DF−1

t |t=0 =
d
dt

(At)T |t=0 = −Dh
d
dt
It|t=0 = div h

d
dt
wt|t=0 = divΓ h.

The limits defining the derivatives at t = 0 exist uniformly in x ∈ Ū . The surface divergence divΓ is defined for
ϕ ∈ C1(Ū ,Rd) by

divΓ ϕ = divϕ|Γ − (Dϕn) · n.
The properties (2.8) are easily verified if Ft is specified by perturbing the identity. As a consequence of (2.8)
there exists α > 0 such that

It(x) ≥ α, x ∈ Ū . (2.9)
We furthermore recall the following transformation theorem where we already utilize (2.9).
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Lemma 2.2. (1) Let ϕt ∈ L1(Ωt), then ϕt◦Ft ∈ L1(Ω) and

∫
Ωt

ϕt dxt =
∫

Ω

ϕt◦Ft detDFt dx.

(2) Let ht ∈ L1(Γt), then ht◦Ft ∈ L1(Γ) and

∫
Γt

ht dΓt =
∫

Γ

ht◦Ft detDFt |(DFt)−Tn| dΓ.

As the main result of this paper we now formulate the representation of the Eulerian derivative of J .

Theorem 2.1. Assume that (H1)–(H5) hold, that F satisfies (2.8) and that the adjoint equation

〈Eu(u,Ω)ψ, p〉X∗×X − (j′1(u), ψ)Ω − (j′2(u), ψ)Γ − (j′3(u), ψ)∂Ω\Γ = 0, ψ ∈ X, (2.10)

admits a unique solution p ∈ X, where u is the solution to (2.2). Then the Eulerian derivative of J at Ω in the
direction h ∈ C1,1(Ū ,Rd) exists and is given by

dJ(u,Ω,Γ)h = − d
dt

〈Ẽ(u, t), p〉X∗×X |t=0 +
∫

Ω

j1(u) div h dx+
∫

Γ

j2(u) divΓ h ds. (2.11)

Proof. Referring to (H2) let ut, u ∈ X satisfy

Ẽ(ut, t) = E(u,Ω) = 0 (2.12)

for |t| < τ0. Then ut = ut ◦ Ft is the solution of (2.5). Utilizing Lemma 2.2 one therefore obtains

1
t
(J(ut,Ωt,Γt) − J(u,Ω,Γ)) =

1
t

∫
Ω

(
Itj1(ut) − j1(u)

)
dx+

1
t

∫
Γ

(
wtj2(ut) − j2(u)

)
ds

+
1
t

∫
∂Ω\Γ

(j3(ut) − j3(u))ds

=
1
t

∫
Ω

(
It(j1(ut) − j1(u) − j′1(u)(ut − u)) + (It − 1)j′1(u)(ut − u)

+ j′1(u)(ut − u) + (It − 1)j1(u)
)
dx

+
1
t

∫
Γ

(
wt(j2(ut) − j2(u) − j′2(u)(ut − u)) + (wt − 1)j′2(u)(ut − u)

+ j′2(u)(ut − u) + (wt − 1)j2(u)
)
ds

+
1
t

∫
∂Ω\Γ

(j3(ut) − j3(u) − j′3(u)(ut − u))ds

+
1
t

∫
∂Ω\Γ

j′3(u)(ut − u)ds. (2.13)
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Lemma 2.1 and (2.8) result in the estimates∣∣∣∣
∫

Ω

It(j1(ut) − j1(u) − j′1(u)(ut − u)) dx
∣∣∣∣ ≤ c|ut − u|2X∣∣∣∣

∫
Γ

wt(j2(ut) − j2(u) − j′2(u)(ut − u)) ds
∣∣∣∣ ≤ c|ut − u|2X ,∣∣∣∣∣

∫
∂Ω\Γ

(j3(ut) − j3(u) − j′3(u)(ut − u))ds

∣∣∣∣∣ ≤ c|ut − u|2X (2.14)

where c > 0 does not depend on t. Employing the adjoint state p one obtains

(j′1(u), ut − u)Ω + (j′2(u), ut − u)Γ + (j′3(u), ut − u)∂Ω\Γ = 〈Eu(u,Ω)(ut − u), p〉X∗×X

= −〈E(ut,Ω) − E(u,Ω) − Eu(u,Ω)(ut − u), p〉X∗×X

− 〈Ẽ(ut, t) − Ẽ(u, t) − E(ut,Ω) + E(u,Ω), p〉X∗×X

− 〈Ẽ(u, t) − Ẽ(u, 0), p〉X∗×X , (2.15)

where we used (2.12). We estimate the ten additive terms on the right hand side of (2.13). Terms one, five and
nine converge to zero by (2.14) and (H2). Terms two and six converge to 0 by (2.8) and (H2). For terms four
and eight ones uses (2.8). The claim (2.11) now follows by passing to the limit in terms three, seven and ten
using (2.15), (H3), (H2), (H4) and (H1). �
Remark 2.1. The proof of Theorem 2.1 reveals that the assumption (H1) can be considerably weakened. In
fact all that is needed is the following.

(H1’) There is a Hilbert space X and a function Ẽ : X × (−τ, τ) → X∗ such that
(a) E(ut,Ωt) = 0 is equivalent to

Ẽ(ut, t) = 0 in X∗,

with Ẽ(u, 0) = E(u,Ω) for all u ∈ X .
(b) The mapping v → 〈Ẽ(v, 0), p〉X∗×X is differentiable at v = u and t→ 〈Ẽ(u, t), p〉X∗×X is differen-

tiable at t = 0, where u is the solution of E(u,Ω) = 0 and p satisfies the adjoint equation (2.10).

To check (H2) in specific applications the following result will be useful. It relies on

(H6)

⎧⎪⎨
⎪⎩

the linearized equation

〈Eu(u,Ω)δu, ψ〉X∗×X = 〈f, ψ〉X∗×X , ψ ∈ X

admits a unique solution δu ∈ X for every f ∈ X∗.

Note that this condition is more stringent than the assumption of solvability of the adjoint equation in
Theorem 2.1 which requires solvability only for a specific right hand side.

Proposition 2.1. Assume that (2.2) admits a unique solution u and that (H6) is satisfied. Then (H2) holds.

Proof. Let u ∈ X be the unique solution of (2.2). In view of

Ẽu(u, 0) = Eu(u,Ω)

(H6) implies that Ẽu(u, 0) is bijective. The claim follows from the implicit function theorem. �
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Computing the derivative d
dt 〈Ẽ(u, t), p〉X∗×X |t=0 in (2.11) can be facilitated by transforming the expressions

Ẽ(u, t) and p back to E(u ◦ F−1
t ,Ωt) and p ◦ F−1

t , and utilizing the following well known differentiation rules:

Lemma 2.3 [6]. (1) Let f ∈ C(I,W 1,1(U)) and assume that ft(0) exists in L1(U), then

d
dt

∫
Ωt

f(t, x) dx|t=0 =
∫

Ω

ft(0, x) dx +
∫

Γ

f(0, x)h · n ds.

(2) Let f ∈ C(I,W 2,1(U)) and assume that ft(0) exists in W 1,1(U). Then

d
dt

∫
Γt

f(t, x) ds|t=0 =
∫

Γ

ft(0, x) ds+
∫

Γ

(
∂

∂n
f(0, s) + κf(0, s)

)
h · n ds,

where κ stands for the additive curvature of Γ.

The first part of the theorem is valid also for domains Ω with Lipschitz continuous boundary. The addi-
tional C1,1 regularity is used as sufficient condition in [6] for (2).

In the examples below f(t, ·) will be typically given by expressions of the form

μv ◦ F−1
t , μ∂i(v ◦ F−1

t )∂j(w ◦ F−1
t ), v ◦ F−1

t w ◦ F−1
t ∂i(z ◦ F−1

t )

where μ ∈ H1(U) and v, z and w ∈ H2(U) are extensions of elements in H2(Ω). The assumptions of Lemma 2.3
can be verified using the following result.

Lemma 2.4 [13]. (1) Let u ∈ Lp(U) then t→ u ◦ F−1
t ∈ C(I, Lp(U)), 1 ≤ p <∞.

(2) Let u ∈ H2(U) then t→ u ◦ F−1
t ∈ C(I, H2(U)).

(3) Let u ∈ H2(U) then d
dt(u ◦ F−1

t )|t=0 exists in H1(U) and is given by

d
dt

(u ◦ F−1
t )|t=0 = −(Du)h.

As a consequence we note that d
dt∂i

(
(u ◦ F−1

t )
)|t=0 exists in L2(U) and is given by

d
dt
∂i

(
(u ◦ F−1

t )
)|t=0 = −∂i(Duh), i = 1, . . . , d.

In the next section ∇u stands for (Du)T where u is either a scalar or vector valued function. To enhance
readability we use two symbols for the inner product in R

d, (x, y) respectively x · y. The latter will only be
utilized in the case of nested inner products.

3. Examples

Throughout the examples section it is assumed that (H5) is satisfied and that the regularity assumptions of
Section 2 for D, Ω and U hold. If J does not depend on Γ we write J(u,Ω) in place of J(u,Ω,Γ).

3.1. Elliptic Dirichlet boundary value problem

As a first example we consider the volume functional

J(u,Ω) =
∫

Ω

j1(u) dx

subject to the constraint
(μ∇u,∇ψ)Ω − (f, ψ)Ω = 0, (3.1)
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where X = H1
0 (Ω), f ∈ H1(U) and μ ∈ C1(Ū ,Rd×d) such that μ(x) is symmetric and uniformly positive

definite. Here Ω = D and Γ = ∂Ω. Thus E(u,Ω) : X → X∗ is given by

〈E(u,Ω), ψ〉X∗×X = (μ∇u,∇ψ)Ω − (f, ψ)Ω.

The equation on the perturbed domain is determined by

〈E(ut,Ωt), ψt〉X∗
t ×Xt =

∫
Ωt

(μ∇ut,∇ψt) dxt −
∫

Ωt

fψt dxt

=
∫

Ω

(μtAt∇ut, At∇ψt)It dx−
∫

Ω

f tψtIt dx ≡ 〈Ẽ(ut, t), ψt〉X∗,X , (3.2)

for any ψt ∈ Xt, with ut = ut ◦ Ft, μ
t = μ ◦Ft, f t = f ◦Ft and Xt = H1

0 (Ωt). Here we used that
∇ut = (At∇ut)◦F−1

t and Lemma 2.3. (H1) is a consequence of (2.8), (3.2) and the smoothness of μ and f .
Since (3.1) admits a unique solution and (H6) holds, Proposition 2.1 implies (H2). Since Ẽ is linear in u
assumption (H3) follows. For the verification of (H4) observe that

〈Ẽ(ut, t) − Ẽ(u, t) − E(ut,Ω) + E(u,Ω), ψ〉X∗×X = ((μtItAt − μ)∇(ut − u), At∇ψ)Ω
+ (μ∇(ut − u), (At − I)∇ψ).

Hence (H4) follows from differentiability of μ, (2.8) and (H2).
In view of Theorem 2.1 we have to compute d

dt 〈Ẽ(u, t), p〉X∗×X |t=0 for which we use the representation on Ωt

in (3.2). Recall that the solution u of (3.1) as well as the adjoint state p, defined by

(μ∇p,∇ψ)Ω = (j′1(u), ψ)Ω, ψ ∈ H1
0 (Ω) (3.3)

belong to H2(Ω) ∩H1
0 (Ω). Since Ω ∈ C1,1 (actually Lipschitz continuity of the boundary would suffice), u as

well as p can be extended to functions in H2(U), which we again denote by the same symbol. Therefore
Lemma 2.3(1) and Lemma 2.4 entail that

d
dt 〈Ẽ(u, t), p〉X∗×X |t=0 = d

dt (
∫
Ωt

(μ∇(u ◦ F−1
t ),∇(p ◦ F−1

t )) dxt −
∫
Ωt
fp ◦ F−1

t dxt)|t=0

=
∫
Γ(μ∇u,∇p) (h, n) ds+

∫
Ω

(
(μ∇(−∇u · h),∇p) +

(
μ∇u,∇(−∇p · h)

)
+ f(∇p, h)

)
dx.

(3.4)

Note that ∇u · h as well as ∇p · h do not belong to H1
0 (Ω) but they are elements of H1(Ω). Therefore Green’s

theorem implies

∫
Ω

(
(μ∇(−∇u · h),∇p) + (μ∇u,∇(−∇p · h)) + f(∇p, h)

)
dx =

∫
Ω

div(μ∇p) (∇u, h) dx−
∫

Γ

(μ∇p, n)(∇u, h) ds

+
∫

Ω

(div(μ∇u) + f) (∇p, h) dx−
∫

Γ

(μ∇u, n) (∇p, h) ds

= −
∫

Ω

j′1(u) (∇u, h) dx− 2
∫

Γ

(μn, n)
∂u

∂n

∂p

∂n
(h, n) ds. (3.5)

Above we used the strong form of (3.1) and (3.3) in L2(Ω) as well as the identities

(μ∇u, n) = (μn, n)
∂u

∂n
(∇u, h) =

∂u

∂n
(h, n)
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(together with the ones with u and p interchanged) which follow from u, p ∈ H1
0 (Ω). Applying Theorem 2.1

results in

dJ(u,Ω)h = − d
dt

〈Ẽ(u, t), p〉X∗,X |t=0 +
∫

Ω

j1(u) div h dx

=
∫

Γ

(μn, n)
∂u

∂n

∂p

∂n
(h, n) ds+

∫
Ω

(j′1(u)(∇u, h) + j1(u) div h) dx

=
∫

Γ

(μn, n)
∂u

∂n

∂p

∂n
(h, n) ds+

∫
Ω

div(j1(u)h) dx,

and the Stokes theorem yields the final result

dJ(u,Ω)h =
∫

Γ

(
(μn, n)

∂u

∂n

∂p

∂n
+ j1(u)

)
(h, n) ds.

Remark 3.1. If we were to be content with a representation of the shape variation in terms of volume integrals
we could take the expression for d

dt Ẽ(u, t)|t=0 given in (3.4) and bypass the use of Green’s theorem in (3.5).
The regularity requirement on the domain then results from u ∈ H2(Ω), p ∈ H2(Ω). In [1] the shape derivative
in terms of the volume integral is referred to as the weak shape derivative, whereas the final form in terms of
the boundary integrals is called the strong shape derivative.

3.2. Inverse interface problem

We consider an inverse interface problem which is motivated by electrical impedance tomography. Let
U = Ω = (−1, 1) × (−1, 1) and ∂U = ∂Ω. Further let the domain D = Ω−, with Ω̄− ⊂ U , represent the
inhomogeneity of the conducting medium and set Ω+ = U \ Ω̄−. We assume that Ω− is a simply connected
domain of class C1,1 with boundary Γ which represents the interface between Ω− and Ω+. The inverse problem
consists of identifying the unknown interface Γ from measurements z which are taken on the boundary ∂U .
This can be formulated as

min J(u,Ω) ≡
∫

∂U

(u− z)2 ds (3.6)

subject to the constraint

− div(μ∇u) = 0, in Ω− ∪ Ω+,

[u] = 0,
[
μ
∂u

∂n−

]
= 0 on Γ, (3.7)

∂u

∂n
= g, on ∂U,

where g ∈ H1/2(∂U), z ∈ L2(∂U), with
∫

∂U
g =

∫
∂U

z = 0, with [v] = v+ − v− on Γ and n+/− standing for the
unit outer normals to Ω+/−. The conductivity μ is given by

μ(x) =

{
μ− x ∈ Ω−,
μ+ x ∈ Ω+,

for some positive constants μ− and μ+. In the context of the general framework of Section 2 we have j1 = j2 = 0
and j3 = (u − z)2. Clearly (3.7) admits a unique solution u ∈ H1(U) with

∫
∂U u = 0. Its restrictions to Ω+

and Ω− will be denoted by u+ and u−, respectively. It turns out that the regularity of u± is better than the
one of u.
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Proposition 3.1. Let Ω and Ω± be as described above. Then the solution u ∈ H1(U) of (3.7) satisfies

u± ∈ H2(Ω±).

Proof. Let ΓH be the smooth boundary of a domain ΩH with

Ω− ⊂ ΩH ⊂ ΩH ⊂ U.

Then u|ΓH ∈ H3/2 (ΓH). The problem

{
−div(μ+∇uH) = 0 in U\ΩH

∂uH

∂n = g on ∂U, uH = u|ΓH on ΓH ,

has a unique solution uH ∈ H2(U\ΩH) with uH = u+|ΩH . Therefore,

b := u|∂U = uH |∂U ∈ H3/2(∂U).

Then the solution u to (3.7) coincides with the solution to

⎧⎨
⎩

−div(μ∇u) = 0, in Ω− ∪ Ω+,
[u] = 0, [μ ∂u

∂n− ] = 0 on Γ,
u = b, on ∂U.

We now argue that u± ∈ H2(Ω±). Let ub ∈ H2(U) denote the solution to

{ −Δub = 0 in U
ub = b on ∂U.

Define w ∈ H1
0 (U) as the unique solution to the interface problem

⎧⎪⎨
⎪⎩

−div(μ∇w) = 0 in Ω
[w] = 0, [μ ∂w

∂n− ] = −[μ ∂ub

∂n− ] on Γ.

w = 0 on ∂U.

(3.8)

Then ub ∈ H2(Ω) implies [μ ∂ub

∂n− ] ∈ H1/2(Γ). By [2] equation (3.8) has a unique solution w ∈ H1
0 (U) with the

additional regularity w± ∈ H2(Ω±). Consequently u = w+ ub satisfies u|∂Ω = g and u± ∈ H2(Ω±), as desired.
In an analogous way p± ∈ H2(Ω±). �

To consider the inverse problem (3.6), (3.7) within the general framework of Section 2 we set X = {v ∈
H1(U) :

∫ v

∂U = 0} and define

〈E(u,Ω), ψ〉X∗×X = (μ∇u,∇ψ)U − (g, ψ)∂U ,

respectively

〈Ẽ(u, t), ψ〉X∗×X = (μtAt∇u,At∇ψIt)U − (g, ψ)∂U

= (μ+∇(u◦F−1
t ),∇(ψ◦F−1

t ))Ω+
t

+ (μ−∇(u◦F−1
t ),∇(ψ◦F−1

t ))Ω−
t
− (g, ψ)∂U .
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Note that the boundary term is not affected by the transformation Ft since the deformation field h vanishes
on ∂U . The adjoint state is given by

− div(μ∇p) = 0, in Ω− ∪ Ω+,

[p] = 0,
[
μ
∂p

∂n−

]
= 0 on Γ, (3.9)

∂p

∂n
= 2(u− z) on ∂U,

respectively

(μ∇p,∇ψ)U = 2(u− z, ψ)∂U , for ψ ∈ X. (3.10)

Assumption (H4) requires us to consider

1
t
|〈Ẽ(ut − u, t) − E(ut − u,Ω), ψ〉| ≤ 1

t

∫
Ω+

|(μ+ItAt∇(ut − u), At∇ψ) − (μ+∇(ut − u),∇ψ)| dx

+
1
t

∫
Ω−

|(μ−ItAt∇(ut − u), At∇ψ) − (μ+∇(ut − u),∇ψ)| dx

≤ μ+

∫
Ω+

∣∣∣∣
(

1
t
(ItAt − I)∇(ut − u), At∇ψ

)∣∣∣∣ dx

+ μ+

∫
Ω+

|(∇(ut − u),
1
t
(At − I)∇ψ)| dx

+ μ−
∫

Ω−

∣∣∣∣
(

1
t
(ItAt − I)∇(ut − u), At∇ψ

)∣∣∣∣ dx

+ μ−
∫

Ω−
|(∇(ut − u),

1
t
(At − I)∇ψ)| dx.

The right hand side of this inequality converges to 0 as t → 0 by (2.8). The remaining assumptions can be
verified as in Example 3.1 and thus Theorem 2.1 is applicable. By Proposition 3.1 the restrictions u± = u|Ω± ,
p± = p|Ω± satisfy u±, p± ∈ H2(Ω±). Using Lemma 2.3 we find that

d
dt

〈Ẽ(u, t), p〉X∗×X |t=0 =
∫

∂Ω+
(μ+∇u+,∇p+)(h, n+) ds−

∫
Ω+

(μ+∇(∇u+ · h),∇p+) dx

−
∫

Ω+
(μ+∇u+,∇(∇p+ · h)) dx+

∫
∂Ω−

(μ−∇u−,∇p−)(h, n−) ds

−
∫

Ω−
(μ−∇(∇u− · h),∇p−) dx−

∫
Ω−

(μ−∇u−,∇(∇p− · h)) dx

=
∫

Γ

[μ∇u,∇p](h, n+) ds−
∫

Ω+
μ+

(∇(∇u+ · h),∇p+) + (∇u+,∇(∇p+ · h)
)
dx

−
∫

Ω−
μ−(∇(∇u− · h),∇p−) + (∇u−,∇(∇p− · h)

)
dx.
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Applying Green’s formula as in Example 3.1 (observe that (∇u, h), (∇p, h) /∈ H1(U)) together with (3.9)
results in

−
∫

Ω+
(μ+(∇(∇u+ · h),∇p+)) dx −

∫
Ω−

(μ−(∇(∇u− · h),∇p−)) dx

=
∫

Ω+
div(μ+∇p+)(∇u+, h) dx+

∫
Ω−

div(μ−∇p−)(∇u−, h) dx

−
∫

∂Ω+
(μ+∇p+, n+)(∇u+, h) ds−

∫
∂Ω−

(μ−∇p−, n−)(∇u−, h) ds

= −
∫

Γ

[
μ
∂p

∂n+
(∇u, h)

]
ds.

In the last step we utilize h = 0 on ∂U . Similarly we obtain

−
∫

Ω+
(μ+(∇u+,∇(∇p+ · h))) dx −

∫
Ω−

(μ−(∇u−,∇(∇p− · h))) dx = −
∫

Γ

[
μ
∂u

∂n+
(∇p, h)

]
ds.

Collecting terms results in

dJ(u,Ω)h = −
∫

Γ

[μ(∇u,∇p)] (h, n+) ds+
∫

Γ

([
μ
∂p

∂n+
(∇u, h)

]
+

[
μ
∂u

∂n+
(∇p, h)

])
ds.

The identity

[ab] = [a]b+ + a−[b] = a+[b] + [a]b−

implies

[ab] = 0 if [a] = [b] = 0.

Hence the transition conditions [
μ
∂u

∂n+

]
=

[
∂u

∂τ

]
= 0[

μ
∂p

∂n+

]
=

[
∂p

∂τ

]
= 0, (3.11)

where ∂
∂τ stands for the tangential derivative imply

[
μ
∂p

∂n+
(∇u, h)

]
=

[
μ
∂p

∂n+

∂u

∂n+
(h, n+) + μ

∂p

∂n+

∂u

∂τ
(h, τ)

]

=
[
μ
∂p

∂n+

∂u

∂n+
(h, n+)

]
+

[
μ
∂p

∂n+

∂u

∂τ
(h, τ)

]

=
[
μ
∂p

∂n+

∂u

∂n+

]
(h, n+),

and analogously [
μ
∂u

∂n+
(∇p, h)

]
=

[
μ
∂p

∂n+

∂u

∂n+

]
(h, n+),
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which entails

dJ(u,Ω)h = −
∫

Γ

[μ(∇u,∇p)] (h, n+) ds+ 2
∫

Γ

[
μ
∂p

∂n+

∂u

∂n+

]
(h, n+) ds

= −
∫

Γ

[
μ
∂u

∂τ

∂p

∂τ

]
(h, n+) ds+

∫
Γ

[
μ
∂u

∂n+

∂p

∂n+

]
(h, n+) ds

= −
∫

Γ

[μ]
∂u

∂τ

∂p

∂τ
(h, n+) ds+

∫
Γ

[
μ
∂u

∂n+

∂p

∂n+

]
(h, n+) ds.

In view of (3.11) this can be rearranged as

−[μ]
∂u

∂τ

∂p

∂τ
+

[
μ
∂u

∂n+

∂p

∂n+

]

= −μ+∂u

∂τ

∂p

∂τ
+ μ− ∂u

∂τ

∂p

∂τ
+ μ+ ∂u+

∂n+

∂p+

∂n+
− μ− ∂u−

∂n+

∂p−

∂n+

= −μ+

(
∂u

∂τ

∂p

∂τ
+

1
2

(
∂u+

∂n+

∂p−

∂n+
+
∂u−

∂n+

∂p+

∂n+

))

+ μ−
(
∂u

∂τ

∂p

∂τ
+

1
2

(
∂u−

∂n+

∂p+

∂n+
+
∂u+

∂n+

∂p−

∂n+

))

= −1
2
[μ]

(
(∇u+,∇p−) + (∇u−,∇p+)

)
which gives the representation

dJ(u,Ω,Γ)h = −1
2

∫
Γ

[μ]
(
(∇u+,∇p−) + (∇u−,∇p+)

)
(h, n+) ds

= −
∫

Γ

[μ](∇u+,∇p−) (h, n+) ds.

3.3. Elliptic systems

Here we consider a domain Ω = U \D, where D̄ ⊂ U and the boundaries ∂U and Γ = ∂D are assumed to
be C1,1 regular.

We consider the optimization problem

min J(u,Ω,Γ) ≡
∫

Ω

j1(u) dx+
∫

Γ

j2(u) ds

where u is the solution of the elliptic system

〈E(u,Ω), ψ〉X∗×X =
∫

Ω

(
a(x,∇u,∇ψ) − (f, ψ)

)
dx−

∫
Γ

(g, ψ) ds = 0 (3.12)

in X = {v ∈ H1(Ω)l : v|∂U = 0}. Above ∇u stands for (Du)T . We require f ∈ H1(U)l and that g is the trace
of a given function G ∈ H2(U)l. Furthermore we assume that a : Ū × R

d×d × R
d×d satisfies

(1) a(·, ξ, η) is continuously differentiable on Ū for every ξ, η ∈ R
d×d.

(2) a(x, ·, ·) defines a bilinear form on R
d×d × R

d×d which is uniformly bounded in x ∈ Ū .
(3) a(x, ·, ·) is uniformly coercive for all x ∈ Ū .

In the case of linear elasticity a is given by

a(x,∇u,∇ψ) = λ tr e(u) tr e(ψ) + 2μ e(u) : e(ψ),
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where e(u) = 1
2 (∇u+(∇u)T ), and λ, μ are the positive Lamé coefficients. In this case a is symmetric, and (3.12)

admits a unique solution in X ∩H2(Ω)l for every f ∈ L2(Ω)l and g ∈ H
1
2 (∂U)l, see e.g. [3].

The method of mapping suggests to define

〈Ẽ(u, t), ψ〉X∗×X =
∫

Ω

(
a(Ft(x), At∇u,At∇ψ) − (f t, ψ)

)
It dx−

∫
Γ

(gt, ψ)wt ds

=
∫

Ωt

(
a(x,∇(u◦F−1

t ),∇(ψ◦F−1
t )) − (f, ψ◦F−1

t )
)
dx−

∫
Γt

(g, ψ◦F−1
t ) ds. (3.13)

The adjoint state is determined by the equation

〈Eu(u,Ω)ψ, p〉X∗×X =
∫

Ω

(
a(x,∇ψ,∇p) − j′1(u)ψ

)
dx−

∫
Γ

j′2(u)ψ ds = 0, (3.14)

ψ ∈ X . Under the regularity assumptions on a equation (3.12) admits a unique solutions in X ∩H2(Ω)l [15].
Moreover the adjoint equation admits a solution for any right hand side in X∗ so that Proposition 2.1 is
applicable. Assumptions (H1)–(H4) can then be argued as in Section 3.1.

Employing Lemma 2.3 we obtain

d
dt

〈Ẽ(u, t), p〉X∗×X |t=0 = −
∫

Ω

(
a(x,∇(∇uTh),∇p) + a(x,∇u,∇(∇pTh)

)
dx

+
∫

Γ

a(x,∇u,∇p) (h, n) ds+
∫

Ω

(f,∇pTh) dx−
∫

Γ

(f, p) (h, n) ds

+
∫

Γ

(g,∇pTh) ds−
∫

Γ

(
∂

∂n
(g, p) + κ(g, p)

)
(h, n) ds.

Since ∇uTh ∈ X and ∇pTh ∈ X this expression can be simplified using (3.12) and (3.14)

d
dt

〈Ẽ(u, t), p〉X∗×X |t=0 = −
∫

Ω

j′1(u)∇uTh dx−
∫

Γ

j′2(u)∇uTh ds

+
∫

Γ

(
a(x,∇u,∇p) − (f, p)

)
(h, n) ds−

∫
Γ

(
∂

∂n
(g, p) + κ(g, p)

)
(h, n) ds,

which implies

dJ(u,Ω,Γ)h =
∫

Ω

j′1(u)∇uTh dx+
∫

Ω

j1(u) div h dx

+
∫

Γ

j′2(u)∇uTh ds+
∫

Γ

j2(u) divΓ h ds

+
∫

Γ

(−a(x,∇u,∇p) + (f, p) +
∂

∂n
(g, p) + κ(g, p)

)
(h, n) ds.

For the third and fourth term the tangential Green’s formula, see e.g. [12], (or the Appendix of the internal
technical report for this paper for a detailed proof in the case of a C1,1 boundary only),

∫
Γ

j′2(u)∇uTh ds+
∫

Γ

j2(u) divΓ h ds =
∫

Γ

( ∂
∂n

j2(u) + κj2(u)
)
(h, n) ds.
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The first and second term can be combined using the Stokes theorem. Summarizing we finally obtain

dJ(u,Ω,Γ)h =
∫

Γ

(−a(x,∇u,∇p) + (f, p) + j1(u)

+
∂

∂n

(
j2(u) + (g, p)

)
+ κ(j2(u) + (g, p))

)
(h, n) ds. (3.15)

This example also comprises the shape optimization problem of Bernoulli type

min J(u,Ω) ≡ min
Γ

∫
Γ

u2 ds

where u is the solution of the mixed boundary value problem

−Δu = f in Ω,
u = 0 on ∂U,
∂u
∂n = g on Γ

which was analyzed with a similar approach in [11]. Here the boundary ∂Ω of the domain Ω ⊂ R
2 is the disjoint

union of a fixed part ∂U and an unknown part Γ both with nonempty relative interior. Let the state space X
be given by

X = {ϕ ∈ H1(Ω): ϕ = 0 on ∂U}.
Then the Eulerian derivative of J is given by (3.15) which reduces to

dJ(u,Ω,Γ)h =
∫

Γ

(−(∇u,∇p) + fp+
∂

∂n
(u2 + gp) + κ(u2 + gp)

)
(h, n) ds.

This result coincides with the representation obtained in [11]. The present derivation however is considerably
simpler due to a better arrangement of terms in the proof of Theorem 2.1. It is straightforward to adapt the
framework to shape optimization problems associated with the exterior Bernoulli problem.

3.4. Navier-Stokes system

Consider the stationary Navier-Stokes equations

−νΔu+ (u · ∇)u + ∇p = f, in Ω,
div u = 0, in Ω,

u = 0, on ∂U, (3.16)

on a bounded domain Ω ⊂ R
d, d = 2, 3, with ν > 0 and f ∈ H1(U). In the context of the general framework

we set Ω = D and Γ = ∂Ω. The variational formulation of (3.16) is given by
Find (u, p) ∈ X ≡ H1

0 (Ω)d × L2(Ω)/R such that

〈E(
(u, p),Ω

)
, (ψ, χ)〉X∗×X ≡ ν(∇u,∇ψ)Ω + ((u · ∇)u, ψ)Ω

− (p, divψ)Ω − (f, ψ)Ω + (div u, χ)Ω = 0 (3.17)

holds for all (ψ, χ) ∈ X . Let the cost functional J be given by

J(u,Ω) =
∫

Ω

j1(u) dx.
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Considering (3.17) on a perturbed domain Ωt mapping the equation back to the reference domain Ω yields
the form of Ẽ(u, t). Concerning the transformation of the divergence we note that for ψt ∈ H1

0 (Ωt)d and
ψt = ψt ◦ Ft ∈ H1

0 (Ω)d one obtains

divψt = (Dψt
iA

T
t ei) ◦ F−1

t = ((At)i∇ψt,i) ◦ F−1
t ,

where ei stands for the i-th canonical basis vector in R
d and (At)i denotes the i-th row of At = (DFt)−T . We

follow the convention to sum over indices which occur at least twice in a term. Thus one obtains

〈Ẽ(
(ut, pt), t

)
, (ψ, χ)〉X∗×X = ν(ItAt∇ut, At∇ψ)Ω +

(
(ut · At∇)ut, Itψ

)
Ω

− (
pt, It(At)k∇ψk

)
Ω
− (f tIt, ψ)Ω +

(
It(At)k∇ut

k, χ
)
Ω

= 0,

for all (ψ, χ) ∈ X .
The adjoint state (λ, q) ∈ X is given by the solution to

〈E′((u, p),Ω)
(ψ, χ), (λ, q)〉X∗×X = (j′1(u), ψ)Ω

which amounts to

ν(∇ψ,∇λ)Ω + ((ψ · ∇)u + (u · ∇)ψ, λ)Ω − (χ, div λ)Ω + (divψ, q)Ω = (j′1(u), ψ)Ω, (3.18)

for all (ψ, χ) ∈ X . Integrating by parts one obtains

((u · ∇)ψ, λ)Ω = −
∫

Ω

ψ · λ div u dx−
∫

Ω

ψ · ((u · ∇)λ) dx +
∫

Γ

(ψ · λ) (u · n) ds = −(ψ, (u · ∇)λ)Ω

because u ∈ H1
0 (Ω)d and div u = 0. Therefore

((ψ · ∇)u+ (u · ∇)ψ, λ)Ω = (ψ, (∇u)λ− (u · ∇)λ )Ω (3.19)

holds for all ψ ∈ H1(Ω)d. As a consequence the adjoint equation can be interpreted as

−νΔλ+ (∇u)λ − (u · ∇)λ −∇q = j′1(u),

div λ = 0, (3.20)

where the first equation holds in L2(Ω)d, the second one in L2(Ω).
For the evaluation of d

dt 〈Ẽ
(
(u, p), t

)
, (λ, q)〉X∗×X |t=0, (u, p), (λ, q) ∈ X being the solution of (3.17), respec-

tively (3.18), we transform this expression back to Ωt which gives

〈Ẽ(
(u, p), t

)
, (λ, q)〉X∗×X = ν(∇(u ◦ F−1

t ),∇(λ ◦ F−1
t ))Ωt

+
(
(u ◦ F−1

t · ∇)u ◦ F−1
t , λ ◦ F−1

t

)
Ωt

− (div(λ ◦ F−1
t ), p ◦ F−1

t )Ωt

− (f, λ ◦ F−1
t )Ωt + (div(u ◦ F−1

t ), q ◦ F−1
t )Ωt .

To verify conditions (H1)–(H4) we introduce the continuous trilinear form c : H1
0 (Ω)d ×H1

0 (Ω)d ×H1
0 (Ω)d by

c(u, v, w) = ((u · ∇)v, w) and assume that

ν2 > N|f |H−1 and ν >M (3.21)

where N = supu,v,w∈H1
0

c(u,v,w)
|u|

H1
0
|v|

H1
0
|w|

H1
0

and M = supv∈H1
0

c(v,v,u)
|v|2

H1
0

, with u the solution to (3.16). Condition (H1)

is satisfied by construction. If ν is sufficiently large so that the first inequality in (3.21) is satisfied, existence
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of a unique solution (u, p) ∈ H1
0 (Ω)d ×L2(Ω)/R to (3.16) is guaranteed, see e.g. [4,5,14]. The second condition

in (3.21) ensures the bijectivity of the linearized operator E′(u, p) [5], and thus (H6) holds. In particular this
implies that (H2) holds and that the adjoint equation admits a unique solution. To verify (H3) we consider for
arbitrary (v, q) ∈ X and (ψ, χ) ∈ X

〈E((v, q),Ω) − E((u, p),Ω) − E′((u, p),Ω)((v, q) − (u, p)), (ψ, χ)〉X∗,X

= ((v − u) · ∇)(v − u), ψ) ≤ K|ψ|H1
0 (Ω)|v − u|2H1

0 (Ω),

where K is an embedding constant, independent of (v, q) ∈ X and (ψ, χ) ∈ X . Verifying (H4) requires us to
consider the quotient of the following expression with t and taking the limit as t→ 0:

ν[(ItAt∇(ut − u), At∇ψ) − (∇(ut − u),∇ψ)] + [((ut · At∇)ut, Itψ) − ((ut · ∇)ut, ψ) − ((u ·At∇)u, Itψ)

+ ((u · ∇)u, ψ)] − [(It(At)k∇ψk, p
t − p) + (divψ, pt − p)]

+ [(It(At)k∇ (ut
k − uk), χ) − (div(ut − u), χ)],

for (ψ, χ) ∈ X . The first two term in square brackets can be treated by analogous estimates as in Examples 3.1
and 3.2. Noting that the third and forth square bracket can be estimated quite similarly to each other we give
the estimate for the last one:

((It − 1)(At)k∇(ut
k − uk), χ) + (((At)k − ek)∇(ut

k − uk), χ)(ek∇(ut
k − uk) − div(ut − u), χ)

which, upon division by t, tends to 0 for t→ 0.
In the following calculation we utilize that (u, p), (λ, q) ∈ H2(Ω)d ×H1(Ω), which is satisfied if Γ is C2, see

e.g. [4]. Applying Lemma 2.3 results in

d
dt

〈Ẽ(
(u, p), t

)
, (λ, q)〉X∗×X |t=0 = ν(∇(−∇uTh),∇λ)Ω + ν(∇u,∇(−∇λTh))Ω + ν

∫
Γ

(∇u,∇λ) (h, n) ds

+
((

(−∇uTh) · ∇)
u, λ

)
Ω

+
(
(u · ∇)(−∇uTh), λ

)
Ω

+
(
(u · ∇)u,−∇λTh

)
Ω

+
∫

Γ

(
(u · ∇)u, λ

)
(h, n) ds

− (−∇pTh, div λ)Ω − (p, div(−∇λTh))Ω −
∫

Γ

p div λ (h, n) ds

− (f,−∇λTh)Ω −
∫

Γ

fλ (h, n) ds

+ (div(−∇uTh), q)Ω + (div u,−∇qTh)Ω +
∫

Γ

q div u (h, n) ds.

Since div u = div λ = 0 and u, λ ∈ H1
0 (Ω)d this expression simplifies to

d
dt

〈Ẽ(
(u, p), t

)
, (λ, q)〉X∗×X |t=0 = ν(∇u,∇ψλ)Ω + ((u · ∇)u, ψλ)Ω − (p, divψλ)Ω − (f, ψλ)Ω

+ ν(∇ψu,∇λ)Ω + ((ψu · ∇)u+ (u · ∇)ψu, λ)Ω + (divψu, q)Ω

+ ν

∫
Γ

(∇u,∇λ) (h, n) ds,

where we have used the abbreviation

ψu = −(∇u)Th, ψλ = −(∇λ)Th.
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Note that ψu, ψλ ∈ H1(Ω)d but not in H1
0 (Ω)d. Green’s formula together with (3.16), (3.20) entails

d
dt

〈Ẽ(
(u, p), t

)
, (λ, q)〉X∗×X |t=0 = (−νΔu+ (u · ∇u)u+ ∇p− f, ψλ)Ω +

∫
Γ

ν

(
∂u

∂n
, ψλ

)
ds+

∫
Γ

p (ψλ, n) ds

+ (ψu,−νΔλ+ (∇u)λ− (u · ∇)λ−∇q)Ω +
∫

Γ

ν

(
∂λ

∂n
, ψu

)
ds

+
∫

Γ

q (ψu, n) ds+ ν

∫
Γ

(∇u,∇λ) (h, n) ds

= −
∫

Γ

ν

(
∂u

∂n
, (∇λ)Th

)
ds−

∫
Γ

p ((∇λ)T h, n) ds−
∫

Γ

ν

(
∂λ

∂n
, (∇u)Th

)
ds

−
∫

Γ

q ((∇u)Th, n) ds+ ν

∫
Γ

(∇u,∇λ) (h, n) ds− (j′1(u), (∇u)Th)Ω

= −
∫

Γ

(
ν

(
∂u

∂n
,
∂λ

∂n

)
+ p

(
∂λ

∂n
, n

)
+ q

(
∂u

∂n
, n

))
(h, n) ds

− (j′1(u), (∇u)Th)Ω.

Arguing as in example 3.3 one eventually obtains by Theorem 2.1

dJ(u,Ω,Γ)h =
∫

Γ

(
ν

(
∂u

∂n
,
∂λ

∂n

)
+ p

(
∂λ

∂n
, n

)
+ q (

∂u

∂n
, n)

)
(h, n) ds

+
∫

Ω

(j1(u) div h+ j′1(u)∇uTh) dx

=
∫

Γ

(
ν

(
∂u

∂n
,
∂λ

∂n

)
+ p

(
∂λ

∂n
, n

)
+ q (

∂u

∂n
, n) + j1(u)

)
(h, n) ds.

3.5. Lack of shape differentiability of the state variable

We provide an example where the chain rule approach to obtain the shape derivative of the cost functional
with respect to perturbations of the domain is not applicable, whereas the technique presented in this paper
guarantees shape differentiability of the cost.

We consider the volume functional
J(u,Ω) =

∫
Ω

|∇u|2 dx (3.22)

subject to the constraint
〈E(u,Ω), ψ〉X∗×X = (∇u,∇ψ)Ω − (f, ψ)Ω = 0, (3.23)

where X = H1
0 (Ω). Differently from the previous examples we assume that Ω ⊂ R

3 is of class C2,1 and
f ∈ W 1,q(Ω) with q ∈ (1, 6

5 ). As a consequence we obtain u ∈ W 3,q(Ω) [7]. The equation on the perturbed
domain is the same as in (3.2), whereas the adjoint equation is given by

〈Eu(u,Ω)ψ, p〉X∗×X = (∇ψ,∇p)Ω − 2(∇u,∇ψ)Ω = 0, ψ ∈ X, (3.24)

which can be interpreted as

Δp = 2Δu, in Ω,

p = 0, on Γ. (3.25)

Since u ∈ W 3,q(Ω) we obtain Δu ∈ W 1,q(Ω) which entails p ∈ W 3,q(Ω). Sobolev’s embedding theorem then
implies ∇u, ∇p ∈ L3(Ω)3 and Δu, Δp ∈ L3/2(Ω) for each q ≥ 1. Thus the last term in (3.24) is well defined.
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Since u ∈ W 3,q(Ω) we have ∂u
∂n ∈ W 2− 1

q ,q(Γ) and since Γ is a two-dimensional manifold it follows that
∂u
∂n ∈ L2(Γ). Similarly ∂p

∂n ∈ L2(Γ).
If the shape derivative of u existed in H1(Ω), then it is the variational solution to

Δu′ = 0, in Ω,

u′ = −∂u
∂n

(h, n), on Γ. (3.26)

Let us choose h such that h|Γ = n. Due to the assumption that q ∈ (1, 6
5 ) the space W 2− 1

q ,q(Γ) is not embedded
in H

1
2 (Γ) [8]. Hence there exists g ∈W 2− 1

q ,q(Γ)\H 1
2 (Γ). Since the mapping f → ∂u

∂n is a homeomorphism from
W 1,q(Ω) to W 2− 1

q ,q(Γ), see [8], [7] (Chap. 1), there exists f ∈ W 1,q(Ω) such that ∂u
∂n = g. Since the Dirichlet

solution operator of (3.26) is a homeomorphism from H1(Ω) → H
1
2 (Γ) it follows from (3.26), with (h, n) = 1

on Γ, that u cannot be shape differentiable with shape derivative u′ ∈ H1(Ω) for this choice of f . As a side
remark we mention that (3.26) admits a very weak solution u′ ∈ L2(Ω) since ∂u

∂n (h, n) ∈ L2(Γ).
Next we use the technique of Theorem 2.1 to argue that the shape derivative of J for problem (3.22) and (3.23)

exists and we compute its form. This computation holds for any perturbation characterized by h ∈ C2,1(Ū ,R3).
Theorem 2.1 is not directly applicable since the functionals in (2.1) do not include derivatives of the state. We
therefore give an independent proof following the lines of the proof of Theorem 2.1. We first address (H1’),
(H2)–(H4). Conditions (H3) and (H4) follow by the same arguments as in the example of Section 3.1. To verify
(H1’) of Remark 2.1 it suffices to verify the existence of d

dt 〈Ẽ(u, t), p〉X∗×X |t=0 where u and p stand for the
solutions of (3.23), respectively (3.24). This follows from

〈Ẽ(u, t), p〉X∗×X =
∫

Ω

(At∇u,At∇p) It dx−
∫

Ω

f tItp dx

=
∫

Ω

(At∇u,At∇p) It dx−
∫

Ωt

f (p ◦ F−1
t ) dx

(2.8) and Lemma 2.3. To verify (H2) note that∣∣∣∣1t (f t − f)
∣∣∣∣
Lq(Ω)

is bounded for t→ 0+,

if f ∈W 1,q(U). Since ut − u ∈ W 3,q(Ω) ⊂ L∞(Ω),∣∣∣∣1t (Itf t − f, ut − u)
∣∣∣∣ ≤M

for some constant M independent of t > 0, thus 1
t |ut − u|2X ≤M and hence ut → u in X as t→ 0. Then,∣∣∣∣1t (Itf t − f, ut − u)

∣∣∣∣ ≤
( ∣∣∣∣It − 1

t

∣∣∣∣
L∞

|f t|Lq +
∣∣∣∣f t − f

t

∣∣∣∣
Lq

)
|ut − u|Lp ,

where 1
q + 1

p = 1, and thus p > 6. Now,

|ut − u|Lp = |ut − u|1−α
L∞ (|ut − u|Lp α)α ≤ C|ut − u|1−α

L∞ |ut − u|αX ,

where pα = 6 and C is the embedding constant of X into L6(Ω). Thus,∣∣∣∣1t (Itf t − f, ut − u)
∣∣∣∣ → 0
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and
1
t
|ut − u|2X → 0,

which implies (H2).
The difference of the cost function at Ωt and Ω can be written as

J(ut,Ωt) − J(u,Ω) =
∫

Ωt

|∇ut|2 dx−
∫

Ω

|∇u|2 dx

=
∫

Ω

(It|∇ut|2 − |∇u|2) dx +
∫

Ω

It(|At∇ut|2 − |∇ut|2) dx

= R(t) + S(t).

The first term corresponds to Theorem 2.1 with j2 = j3 = 0 and j1(u(x)) replaced by |∇u(x)|2. Hence we
obtain as before

R(t) =
∫

Ω

It|∇(ut − u)|2 dx+
∫

Ω

(It − 1)(2∇u,∇(ut − u)) dx+
∫

Ω

(2∇u,∇(ut − u)) dx+
∫

Ω

(It − 1)|∇u|2) dx

= R1(t) +R2(t) +R3(t) +R4(t).

As in the proof of Theorem 2.1 we argue

lim
t→0

Ri(t) = 0, i = 1, 2

and use the adjoint equation in R3(t)

R3(t) = (2∇u,∇(ut − u))Ω = (∇(ut − u),∇p)Ω
= 〈E(ut,Ω) − E(u,Ω), p〉X∗×X

= −〈Ẽ(ut, t) − Ẽ(u, t) − E(ut,Ω) + E(u,Ω), p〉X∗×X

− 〈Ẽ(u, t) − Ẽ(u, 0), p〉X∗×X ,

which by (H4) and (H1’) gives

lim
t→0

1
t
R3(t) = − d

dt
〈Ẽ(u, t), p〉X∗×X |t=0.

It turns out to be advantageous to replace ut in S(t) by the fixed solution u. This motivates the following
splitting (norms and inner products are taken in R

3)

|At∇ut|2 − |∇ut|2 = |At∇(ut − u) +At∇u|2 − |∇(ut − u) + ∇u|2
=

(
(At − I)∇(ut − u), (At + I)∇(ut − u)

)
+ 2

(
(At − I)∇(ut − u), At∇u

)
+ 2

(∇(ut − u), (At − I)∇u)
+ |At∇u|2 − |∇u|2,

and this results in

S(t) =
(
It(At − I)∇(ut − u), (At + I)∇(ut − u)

)
Ω

+ 2
(
It(At − I)∇(ut − u), At∇u

)
Ω

+ 2
(
It∇(ut − u), (At − I)∇u)

Ω

+
∫

Ω

It(|At∇u|2 − |∇u|2) dx = S1(t) + S2(t) + S3(t) + S4(t).
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In view of (H2) and (2.8) we conclude

lim
t→0

1
t
Si(t) = 0; i = 1, 2, 3.

Concerning S4 we argue

S4(t) =
∫

Ω

It(|At∇u|2 − |∇u|2) dx =
∫

Ω

(It|At∇u|2 − |∇u|2) dx −R4(t)

= S5(t) −R4(t).

Since ∇2u ∈ L3/2(Ω,R3×3) and ∇u ∈ L3(Ω)3 we infer that |∇u|2 ∈ W 1,1(Ω). Therefore Lemma 2.3 can be
applied to obtain

lim
t→0

1
t
S5(t) =

d
dt

∫
Ωt

|∇(u ◦ F−1
t )|2 dx|t=0

=
∫

Γ

|∇u|2 (h, n) ds+ 2
∫

Ω

(∇u,∇(−∇u · h)) dx

=
∫

Γ

(
∂u

∂n

)2

(h, n) ds+ 2
∫

Ω

(∇u,∇(−∇u · h)) dx.

The boundary term above is integrable since ∇u ∈ W 2,1(Ω)3 implies ∇u ∈ L2(Γ)3, hence ∂u
∂n ∈ L2(Γ). Collecting

terms results in

dJ(u,Ω)h = − d
dt

〈Ẽ(u, t), p〉X∗×X |t=0 +
∫

Γ

(
∂u

∂n

)2

(h, n) ds

+ 2
∫

Ω

(∇u,∇(−∇u · h)) dx (3.27)

(note the cancellation of R4(t)). Using Proposition 2.37 in [13] the derivative above is calculated as in Exam-
ple 3.1:

d
dt

〈Ẽ(u, t), p〉X∗×X |t=0 =
d
dt

(∫
Ωt

(∇(u ◦ F−1
t ),∇(p ◦ F−1

t )) dx−
∫

Ωt

f(p ◦ F−1
t ) dx

)
|t=0

=
∫

Γ

∂u

∂n

∂p

∂n
(h, n) dx+ (∇(−∇u · h),∇p)Ω + (∇u,∇(−∇p · h))Ω + (f,∇p · h)Ω

= (∇(−∇u · h),∇p)Ω,

where we used Green’s theorem and −Δu = f in the last step. Another application of Green’s theorem combined
with (3.25) shows

(∇(−∇u · h),∇p)Ω = (Δp,∇u · h)Ω −
∫

Γ

∂u

∂n

∂p

∂n
(h, n) dx

= 2(Δu,∇u · h)Ω −
∫

Γ

∂u

∂n

∂p

∂n
(h, n) dx

which implies
d
dt

〈Ẽ(u, t), p〉X∗×X |t=0 = 2(Δu,∇u · h)Ω −
∫

Γ

∂u

∂n

∂p

∂n
(h, n) dx.
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Inserting this expression into (3.27) and applying Green’s theorem one more time we are eventually led to

dJ(u,Ω)h = 2(Δu,−∇u · h)Ω + 2(∇u,∇(−∇u · h))Ω

+
∫

Γ

∂u

∂n

∂p

∂n
(h, n) dx+

∫
Γ

(
∂u

∂n

)2

(h, n) ds

=
∫

Γ

∂u

∂n

∂p

∂n
(h, n) dx−

∫
Γ

(
∂u

∂n

)2

(h, n) ds. (3.28)

Note that such a functional is not covered by Theorem 2.1.
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