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Abstract

In this paper, we study semi-smooth Newton methods for the numerical solution of regularized pointwise
state-constrained optimal control problems governed by the Navier-Stokes equations. After deriving an
appropriate optimality system for the original problem, a class of Moreau-Yosida regularized problems
is introduced and the convergence of their solutions to the original optimal one is proved. For each regu-
larized problem a semi-smooth Newton method is applied and its local superlinear convergence verified.
Finally, selected numerical results illustrate the behavior of the method and a comparison between the
max-min and the Fischer-Burmeister as complementarity functionals is carried out.

Mathematics Subject Classifications: 35Q35, 49J20, 65J15, 65K10.

Keywords: Optimal control, Navier-Stokes equations, state constraints, semi-smooth Newton methods.

1. Introduction

In this article, we investigate semi-smooth Newton methods for the numerical solu-
tion of the following state-constrained optimal control problem:






min J (y, u) = 1
2

∫

�

|y − zd |2 dx + α
2

∫

�̃

|u|2 dx
subject to
−ν�y + (y · ∇)y + ∇p = Bu in �
div y = 0 in �
y ∈ C,

(P)

where α > 0 and C is the closed convex set defined by C := {v ∈ C(�̄) : v|� = g

and ya(x) ≤ v(x) ≤ yb(x), for all x ∈ �̄S}, with �S a subdomain of �. The con-
straint set realizes pointwise constraints on each component of the velocity vector
field, which is motivated by the necessity of diminishing recirculations by limiting
the upward vertical velocity or the backward horizontal velocity in some sectors of
the domain.

The application of semi-smooth Newton methods to state-constrained linear-
quadratic optimal control problems was studied in [1], [3], [13]. In [1], due to the lack
of regularity of the Lagrange multiplier associated to the state constraint, the au-
thors apply a semi-smooth Newton method, or equivalently the primal-dual active
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set strategy, to a discretized version of the original problem. The same approach is
adopted in [3], where the authors investigate the efficiency of the method compared
to interior point algorithms. Since the discretized version of the problem hides the
difficult structure of the multiplier associated to the state constraint, numerical diffi-
culties, primarily on the boundary between active and inactive sets, are encountered.
In [13], the authors introduce a family of regularized infinite-dimensional problems
to overcome the lack of regularity of the Lagrange multiplier and ensure the appli-
cability of semi-smooth Newton methods. Convergence of the regularized solutions
and of the semi-smooth Newton method for each regularized system is proved.

In the context of optimal control of the Navier-Stokes equations, semi-smooth New-
ton methods were investigated, in presence of control constraints, in [9], [11], [20]. In
the boundary control case, the phenomenon of lack of regularity of the multiplier
is also present. The approach adopted in [11] consists also in the introduction of a
class of regularized problems to cope with the difficulties related to the lack of regu-
larity. Thereafter, the convergence of the regularized solutions and the semi-smooth
Newton method is verified.

In this paper, we consider distributed optimal control of the Navier-Stokes equations
in the presence of pointwise state constraints of box type. Utilizing the methodology
of [11], [13], a family of regularized problems is introduced and the convergence of
the regularized solutions towards the original one is proved. For each regularized
problem a semi-smooth Newton algorithm is employed and its convergence verified.
In the last part of the paper, detailed numerical examples are exhibit. The behavior of
themax-min and the Fischer-Burmeister functionals in the context of semi-smooth
Newton methods is numerically compared.

The outline of the paper is as follows. In Sect. 2, the optimal control problem is stated
and the optimality system, which constitutes the starting point of our method, is
obtained. In Sect. 3, a family of regularized problems is introduced and the conver-
gence of the regularized solutions towards the original one is verified. Local super-
linear convergence of a semi-smooth Newton method for each regularized problem
is proved in Sect. 4. Finally, in Sect. 5, detailed numerical examples are given and
the behavior of the max-min and Fischer-Burmeister complementarity functionals
in the context of semi-smooth Newton methods is numerically compared.

2. Problem Statement and Optimality System

Let us firstly introduce some notation to be used. We consider an open bounded
domain � ⊂ R

2 with boundary � of class C2. On this domain we consider the
family of Sobolev spaces Hm(�) := Hm(�) × Hm(�). For these spaces a norm is

introduced via ‖u‖Hm =
(∑

[j ]≤m
∥
∥Dju

∥
∥2

L2

)1/2
and a scalar product is defined in

the following way:

(u, v)Hm =
∑

[j ]≤m
(Dju,Djv)L2 .
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For the L2-inner product and norm no subindices are used. The closure of D(�)
in the Hm(�) norm is denoted by Hm

0 (�) and it can be proved that if � is smooth
enough, H1

0(�) = {v ∈ H1(�) : v|∂� = 0}. For this space the Poincaré inequality
holds, i.e.,

‖u‖ ≤ κ ‖∇u‖ , for all u ∈ H1
0(�),

where κ is a constant dependent on �.

We also introduce the closed subspaces V = {v ∈ H1
0(�) : div v = 0} and H1/2

0 =
{v ∈ H1/2(�) :

∫

�
v · �n d� = 0} of H1

0(�) and H1/2(�), respectively, which constitute
themselves Hilbert spaces endowed with the induced scalar product. Additionally,
we define a trilinear form c : H1(�) × H1(�) × H1(�) → R by c(u, v,w) =
((u · ∇)v,w) and the associated constant N := supu,v,w∈V

|c(u,v,w)|
‖u‖V ‖v‖V ‖w‖V .

The space of continuous functions on �̄, vanishing at the boundary, is denoted by
C0(�). It is well known that the dual space (C0(�))

′ can be associated with the space
of regular Borel measures M(�) endowed with the norm

‖µ‖M(�) = |µ|(�),

where |µ|(�) is the total variation of µ (cf. [17, p. 40]). The duality product is then
given by

〈µ, v〉M(�),C0(�) =
∫

�

v dµ.

The aim of this research is to find a solution (y∗, u∗) ∈ C(�̄)×L2(�)of the following
optimal control problem:






min J (y, u) = 1
2

∫

�

|y − zd |2 dx + α
2

∫

�̃

|u|2 dx
subject to
−ν�y + (y · ∇)y + ∇p = Bu in �
div y = 0 in �
y ∈ C,

(P)

where C := {v ∈ C(�̄) : v|� = g and ya(x) ≤ v(x) ≤ yb(x), for all x ∈ �̄S}, with
ya, yb ∈ L∞(�̄S),α > 0, ν is the viscosity coefficient of the fluid,g ∈ H1/2

0 ∩H3/2(�)

and B ∈ L(L2(�̃),L2(�)) stands for the extension by 0 operator, where �̃ is a sub-
domain of�. Throughout we assume the existence of at least one feasible pair (y, u)
to (P). Under this assumption, existence of an optimal solution can be verified in a
standard manner (see [10, theorem 3.2]).

Remark 2.1: If �̃ = � and there exists at least one y ∈ C ∩ H2(�) with div y = 0,
then there exists a feasible pair for (P).
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Since there exists a function ŷ ∈ H2(�) such that ŷ|� = g and div ŷ = 0 (cf. [18,
p. 117]), the state equations can be rewritten as






−ν�w + (w · ∇)ŷ + (ŷ · ∇)w + (w · ∇)w + ∇p = F + Bu in �
div w = 0 in � ,
w = 0 on �

(1)

where w := y − ŷ and F := ν�ŷ − (ŷ · ∇)ŷ. Using again the fact that ŷ ∈ H2(�),

it can be verified (see [10]) that w also belongs to W := (H2(�) ∩ V ), which is
embedded in C0(�).

Let us now introduce formally the control-to-state operator

ϕ : L2(�̃) → W × (L2
0(�) ∩H 1(�))

u �→ (G(u),H(u)) = (w(u), p(u)),

where (w, p, u) satisfy (1). The derivative of ϕ at u∗ in direction v, denoted by
(w′, p′) := (G′(u∗)v,H ′(u∗)v), is given by the unique solution of the system






−ν�w′ + (w′ · ∇)ŷ + (ŷ · ∇)w′ + (w′ · ∇)w
+(w · ∇)w′ + ∇p′ = Bv in �

div w′ = 0 in � ,
w′ = 0 on �

(2)

which is equivalent, using the definition of w, to the system






−ν�y′ + (y′ · ∇)y + (y · ∇)y′ + ∇p′ = Bv in �
div y′ = 0 in � .
y′ = 0 on �

(3)

Problem (P) may therefore be rewritten in reduced form as






min J (u) = 1
2

∫

�

|G(u)+ ŷ − zd |2 dx + α
2

∫

�̃

|u|2 dx

subject to: G(u) ∈ Ĉ,
(4)

where Ĉ is the closed convex set given by

Ĉ := {v ∈ C0(�) : wa(x) ≤ v(x) ≤ wb(x), for all x ∈ �̄S},

with wa(x) := ya(x)− ŷ(x) and wb(x) := yb(x)− ŷ(x).

In the following theorem existence of Lagrange multipliers for the optimal control
problem is proved and an appropriate optimality system is obtained. The result relies
on a Slater type condition which is stated next and hereafter assumed.
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Assumption 2.2: Let (y∗, u∗) ∈ C ∩ H2(�)× L2(�̃) be an optimal solution for (P).
There exists a pair (ȳ, ū) ∈ W × L2(�̃) solution to

−ν�ȳ + (ȳ · ∇)y∗ + (y∗ · ∇)ȳ + ∇p̄ = B(ū− u∗) in �

div ȳ = 0 in �

ȳ = 0 on � (5)

such that y∗ + ȳ ∈ int C.

Theorem 2.3: Let (y∗, u∗) ∈ C ∩ H2(�) × L2(�̃) be an optimal solution for (P)

with ν > M(y∗), where M(y) := supv∈V
|c(v,y,v)|

‖v‖2
V

. Then there exist multipliers λ ∈
H ∩ W1,s

0 (�) with s ∈ [1, 2[ and µ ∈ M(�) such that the optimal solution of (P) is
characterized by the following optimality system:

−ν�y∗ + (y∗ · ∇)y∗ + ∇p = Bu∗ in �
div y∗ = 0 in �

(6)

−ν
∫

�

λ �w dx +
∫

�

(y∗ · ∇)w λ dx +
∫

�

(w · ∇)y∗ λ dx

=
∫

�

(zd − y∗)w dx − 〈µ,w〉M(�),C0(�), for all w ∈ W, (7)

αu∗ = B
λ, (8)

y∗ ∈ C, (9)

〈µ, ȳ − y∗〉M(�),C0(�) ≤ 0, for all ȳ ∈ C, (10)

where B
 stands for the adjoint operator of B.

Proof: We begin by studying the properties of the control-to-state mapping. Let

us consider the operator ψ : W × (L2
0(�) ∩H 1(�))× L2(�̃) → L2(�) defined by

ψ(w, p, u) = −ν�w + (w · ∇)ŷ + (ŷ · ∇)w + (w · ∇)w + ∇p − F − Bu.
Since (y∗, u∗) is an optimal solution for (P), the triple (w∗, p∗, u∗), withw∗ := y∗−ŷ,
satisfies the state equationψ(w∗, p∗, u∗) = 0. It can be verified thatψ is of classC∞
(see [7, pp. 5–6]). Its partial derivative with respect to (w, p) at (w∗, p∗) in direction
(δw, δp) is given by

ψ(w,p)(w
∗, p∗, u∗)(δw, δp) = − ν�δw + (δw · ∇)ŷ + (ŷ · ∇)δw + (δw · ∇)w∗

+ (w∗ · ∇)δw + ∇δp.
Since ν > M(y∗), the operatorψ(w,p)(w∗, p∗, u∗) is invertible. Utilizing the implicit
function theorem, there exists an open neighborhoodU of u∗ and a control-to-state
operator
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ϕ : U → W × (L2
0(�) ∩H 1(�))

u �→ (G(u),H(u)) = (w(u), p(u))

of class C∞. The control-to-state mapping is therefore well defined.

Utilizing the general Lagrange multipliers existence theorem stated in [6, p. 1001],
withK = U,we can assure existence of a real number θ ≥ 0 and a measureµ ∈ M(�)

such that

(θJ ′(u∗)+G′(u∗)
µ, u− u∗) ≥ 0, for all u ∈ K (11)

〈µ, w̄ − w∗〉M(�),C0(�) ≤ 0, for all w̄ ∈ Ĉ. (12)

In our particular case, since U is open and Assumption 2.2 holds, we may choose
θ = 1 and rewrite Eq. (11) as

J ′(u∗)+G′(u∗)
µ = 0 in L2(�̃), (13)

where G′(u∗)
 denotes the adjoint operator of G′(u∗). Also, using the form of Ĉ,
inequality (12) can be expressed as

〈µ, ȳ − y∗〉M(�),C0(�) ≤ 0, for all ȳ ∈ C. (14)

The derivative of the cost functional in direction v ∈ L2(�̃) is given by

(J ′(u∗), v) = (y∗ − zd, y
′)+ α(u∗, v),

where y′ ∈ W is the unique solution to the system (3). Therefore, we get that

(J ′(u∗)+G′(u∗)
µ, v) = (y∗ − zd, y
′)+ (αu∗, v)+ 〈µ,G′(u∗)v〉M(�),C0(�)

= 〈y∗ − zd + µ, y′〉M(�),C0(�) + (αu∗, v),

which, by defining the adjoint state λ ∈ H ∩ W1,s
0 (�) as the unique solution (cf. [10,

p. 11]) of

−ν
∫

�

λ �w dx +
∫

�

(y · ∇)w λ dx +
∫

�

(w · ∇)y λ dx

=
∫

�

(zd − y∗)w dx − 〈µ,w〉M(�),C0(�), for all w ∈ W,

yields

(J ′(u∗)+G′(u∗)
µ, v) = ν(λ,�y′)− c(y∗, y′, λ)− c(y′, y∗, λ)+ (αu∗, v).

Finally, taking the inner product of (3) with λ and using (13), we obtain that

αu∗ = B
λ. ��
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Let us hereafter consider �S = �. Defining the active sets by

Aa = {x ∈ � : y∗(x) = ya(x)} and Ab = {x ∈ � : y∗(x) = yb(x)},
the inactive set by

I = �\(Aa ∪ Ab)

and assuming extra regularity of the state constraint multiplier, for example µ ∈
L2(�), Eqs. (9)–(10) would be equivalent to the complementarity system:






ya(x) ≤ y(x) ≤ yb(x)

µ|Ab ≥ 0

µ|Aa ≤ 0

µ|I = 0,

(15)

which can also be written, utilizing the max and min functions, as the following
operator equation:

µ = max(0, µ+ y − yb)+ min(0, µ+ y − ya). (16)

3. Regularized Problems

In general, the reformulation (16) of Eqs. (9)–(10) is not possible due to the lack of
regularity of the multiplier µ. In this section, following [13], we introduce a family
of Moreau-Yosida regularized problems which approximate the original one and
allows us to overcome the difficulties resulting from the fact that the Lagrange mul-
tiplier associated to the inequality constraints is a measure.

We consider the following family of penalized optimal control problems:





min Jγ (y, u) = J (y, u)+ 1
2γ

∫

Ab
γ

|µ̄+ γ (y − yb)|2 dx

+ 1
2γ

∫

Aa
γ

|µ̄+ γ (y − ya)|2 dx

subject to
−ν�y + (y · ∇)y + ∇p = Bu in �
div y = 0 in �
y = g on �,

(Pγ )

where γ > 0 is the regularization parameter, µ̄ ∈ L2(�) and the regularized active
and inactive sets are defined by

Aa
γ ={x ∈ � : µ̄+γ (yγ − ya)≤0 a.e.}, Ab

γ = {x ∈ � : µ̄+ γ (yγ − yb)≥0 a.e.}
and

Iγ = �\(Aa
γ ∪ Ab

γ ).
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The functional Jγ (y, u) can equivalently be written as

Jγ (y, u)=J (y, u)+ 1
2γ

‖max(0, µ̄+γ (y − yb))‖2+ 1
2γ

∥
∥min(0, µ̄+γ (y − ya))

∥
∥2
.

Special choices of µ̄ ∈ L2(�) are of particular interest in the context of augmented
Lagrangian methods (cf. [13, p. 13]). In [13], the authors consider a linear state-con-
strained optimal control problem and compare an augmented Lagrangian update
of µ̄ and the case µ̄ ≡ 0. The second approach, combined with a continuation strat-
egy with respect to γ, turned out to be numerically more efficient. In the sequel we
concentrate on the case µ̄ ≡ 0.

Existence of an optimal solution for (Pγ ) can be argued as for the unconstrained or
control constrained cases (cf. [9, p. 663]). In the following theorem, convergence of
the regularized solutions, as γ → ∞, is studied.

Theorem 3.1: Let ν >M(y∗) hold for all solutions of (P). The sequence
{(yγ , pγ , uγ )}γ>0 of solutions to (Pγ ) contains a subsequence, which converges strongly
in W ×H 1(�)× L2(�) to an optimal solution (y∗, p∗, u∗).

Proof: Let (y∗, u∗) ∈ W × U be a solution to (P). From the properties of the
regularized cost functional we know that

Jγ (yγ , uγ ) ≤ Jγ (y
∗, u∗) = J (y∗, u∗). (17)

Consequently, since α > 0, the sequence {uγ }γ>0 is uniformly bounded in L2(�̃),

which implies that {yγ }γ>0 is uniformly bounded in W. Therefore, there exists a
subsequence (yγ , uγ ) ⊂ W × L2(�̃) such that yγ ⇀ ŷ in W and uγ ⇀ û in L2(�̃).

Additionally, from Eq. (17) the following terms:

1
γ

∥
∥max(0, γ (yγ − yb))

∥
∥2 and

1
γ

∥
∥min(0, γ (yγ − ya))

∥
∥2 (18)

are uniformly bounded with respect to γ . Hence,

lim
γ→∞

∥
∥max(0, yγ − yb)

∥
∥ = 0 and lim

γ→∞
∥
∥min(0, yγ − ya)

∥
∥ = 0.

Applying Fatou’s Lemma to the previous terms we get that ŷ ≤ yb, ya ≤ ŷ and,
consequently, ŷ ∈ C. Considering additionally that

J (ŷ, û) ≤ lim inf J (yγ , uγ ) ≤ lim inf Jγ (yγ , uγ ) ≤ J (y∗, u∗), (19)

we get that (ŷ, û) is solution of (P). Subsequently, we denote the pair (ŷ, û) by
(y∗, u∗).

To verify strong convergence, let us first note that due to (17) and (19)

lim
γ→∞

∥
∥yγ − zd

∥
∥2 + α

∥
∥uγ

∥
∥2 = ∥

∥y∗ − zd
∥
∥2 + α

∥
∥u∗∥∥2
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and, hence, uγ → u∗ strongly in L2(�̃). From the state equations it can be verified
that the difference yγ − y∗ satisfies the equation

ν(∇(yγ − y∗),∇v)+ c(yγ , yγ , v)− c(y∗, y∗, v) = (uγ − u∗, v), for all v ∈ V,
(20)

which, considering that

c(yγ , yγ , yγ − y∗)− c(y∗, y∗, yγ − y∗)

= c(yγ , yγ , yγ − y∗)+ c(yγ − y∗, y∗, yγ − y∗)− c(yγ , y
∗, yγ − y∗)

= c(yγ , yγ − y∗, yγ − y∗)+ c(yγ − y∗, y∗, yγ − y∗)

≥ −|c(yγ − y∗, yγ − y∗, y∗)| ≥ −M(y∗)
∥
∥yγ − y∗∥∥2

V

yields the following estimate:

(ν − M(y∗))
∥
∥yγ − y∗∥∥

v ≤ ∥
∥uγ − u∗∥∥ . (21)

Since the nonlinear term is twice Frechét differentiable, it also follows that
∥
∥(yγ · ∇)yγ − (y∗ · ∇)y∗∥∥ ≤ C̄

∥
∥yγ − y∗∥∥

V
. (22)

Utilizing (21)–(22) and applying Stokes extra regularity results (cf. [18, p. 25]) to the
difference Eqs. (20), we thus obtain

∥
∥yγ − y∗∥∥W + ∥

∥pγ − p∗∥∥
H 1 ≤ C

∥
∥uγ − u∗∥∥ (23)

and, consequently, yγ → y∗ strongly in W and pγ → p∗ strongly in H 1(�) ��

From the definition of M(·) it follows that

M(yγ ) = sup
v∈V

|c(v, yγ , v)|
‖v‖2

V

≤ sup
v∈V

|c(v, yγ − y∗, v)| + |c(v, y∗, v)|
‖v‖2

V

≤ N ∥
∥yγ − y∗∥∥

V
+ M(y∗).

Since by Theorem 3.1 yγ → y∗ strongly in W , there exists a sufficiently large γ̄ such
that ν > M(yγ ), for all γ > γ̄ . Introducing the Lagrangian for (Pγ )

Lγ (y, u, λ) = Jγ (y, u)+ ν(∇y,∇λ)+ c(y, y, λ)− (Bu, λ),

existence of Lagrange multipliers for γ > γ̄ is justified and the solution satisfies the
following optimality system in variational sense (cf. [9, 11]):

−ν�yγ + (yγ · ∇)yγ + ∇pγ = Buγ in �

div yγ = 0 in � . (24)

yγ = g on �
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−ν�λγ − (yγ · ∇)λγ + (∇yγ )T λγ + ∇qγ = zd − yγ − µγ in �

div λγ = 0 in � , (25)

λγ = 0 on �

αuγ = B
λγ , (26)

µγ = max(0, γ (yγ − yb))+ min(0, γ (yγ − ya)). (27)

Next, convergence of the regularized variables (λγ , µγ ) is verified.

Theorem 3.2: Letν >M(y∗)hold for all solutions of (P). The sequence {(λγ , µγ )}γ>γ̌ ,
with γ̌ := max(1, γ̄ ), of multipliers associated with (Pγ ) contains a subsequence which
converges to a pair (λ̂, µ̂) in the sense that λγ ⇀ λ̂ weakly in L2(�) and µγ ⇀∗ µ̂
weakly* in M(�). The pair (λ̂, µ̂) solves, together with (y∗, p∗, u∗), the optimality
system (6)–(10). Moreover, λγ |�̃ → λ̂|�̃ strongly in L2(�̃).

Proof: Since for γ ≥ 1,

Jγ (yγ , uγ ) ≤ J (yγ , uγ )+ 1
2

‖max(0, γ (y − yb))‖2 + 1
2

∥
∥min(0, γ (y − ya))

∥
∥2

≤ J (y∗, u∗),

the terms
∥
∥max(0, γ (yγ − yb))

∥
∥2 and

∥
∥min(0, γ (yγ − ya))

∥
∥2

are uniformly bounded with respect to γ . From (27), the sequence {µγ }γ>γ̌ is uni-
formly bounded in L2(�) and therefore uniformly bounded in M(�). Taking into
account the bijectivity of the adjoint operator (see [10, theorem 4.4]), it follows
from (25) that {λγ }γ>γ̌ is also uniformly bounded in L2(�). Therefore, there exists
a subsequence, also denoted by (λγ , µγ ), such that λγ ⇀ λ̂ weakly in L2(�) and
µγ ⇀

∗ µ̂ weakly* in M(�).

To verify that µ̂ satisfies (10), let us first consider the set Aa
γ with µ̄ = 0. From

(27), it follows that µγ ≤ 0 a.e. in Aa
γ . For ȳ ∈ C, then yγ − ȳ ≤ 0 in Aa

γ and

(µγ , ȳ − yγ )Aa
γ

≤ 0. On the set Ab
γ , we obtain that µγ ≥ 0 a.e. and yγ − ȳ ≥ 0, for

all ȳ ∈ C. Therefore (µγ , ȳ − yγ )Ab
γ

≤ 0. Finally, on Iγ we obtain that µγ = 0 a.e.
and therefore (µγ , ȳ− yγ )Iγ = 0, for all ȳ ∈ C. Consequently, considering all three

cases and since � = Ab
γ ∪ Ab

γ ∪ Iγ , we get that

〈µγ , ȳ − yγ 〉M(�),C0(�) ≤ 0, for all ȳ ∈ C. (28)

Passing to the limit in (28) yields (10).

Considering (25) in very weak form and passing to the limit, we obtain that (λ̂, µ̂)
satisfies Eq. (7). Finally, passing to the limit in (26) yields that λγ |�̃ → λ̂|�̃ strongly
in L2(�̃). ��
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4. Semi-smooth Newton Method

In this section, we introduce a semi-smooth Newton algorithm for the numerical
solution of each regularized problem (Pγ ). The well posedness of the algorithm
and sufficient conditions for local superlinear convergence of the method are
investigated.

4.1. Formulation using max and min functions

The algorithm is motivated by the regularized version, expressed by Eq. (27), of the
original complementarity system. The formulation in terms of the Newton differ-
entiable max and min functions allows the application of a semi-smooth Newton
method to the optimality system of (Pγ ). Expressed as an active set strategy, the
algorithm determines in each iteration the following active and inactive sets by

Ab
n = {x : γ (yn−1 − yb) ≥ 0}, In = {x : γ (yn−1 − yb) < 0 < γ (yn−1 − ya)} and

Aa
n = {x : γ (yn−1 − ya) ≤ 0}, and then solves the optimal control problem on the

inactive set. The complete algorithm can be stated as follows:

Algorithm 4.1: (1) Initialization: choose (u0, y0, λ0) ∈ L2(�) × W × L2(�) and
set n = 1.

(2) Until a stopping criteria is satisfied, set

Ab
n = {x : γ (yn−1 − yb) ≥ 0} Aa

n = {x : γ (yn−1 − ya) ≤ 0}
and

In = {x : γ (yn−1 − yb) < 0 < γ (yn−1 − ya)}.
Find the solution (yn, pn, un, λn, φn, µn) of:

−ν�yn + (yn−1 · ∇)yn + (yn · ∇)yn−1 + ∇pn = Bun + (yn−1 · ∇)yn−1

div yn = 0 (29)

yn|� = g

−ν�λn − (yn · ∇)λn−1 − (yn−1 · ∇)λn + (∇yn−1)
T λn + (∇yn)T λn−1

+∇φn = zd − yn − µn − (yn−1 · ∇)λn−1 + (∇yn−1)
T λn−1 (30)

div λn = 0

λn|� = 0.

αun = B
λn (31)

µn =





γ (yn − yb) in Ab
n

0 in In
γ (yn − ya) in Aa

n

(32)

and set n = n+ 1.
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Let us note that the system to be solved in step (2) results from linearization of
system (24)–(27) and corresponds to the optimality system of the following linear
quadratic optimal control problem:






min
δx∈H1(�)×L2(�)

1
2 〈L′′

γ (xn−1, λn−1, ξn−1)δx, δx〉 + 〈L′
γ (xn−1, λn−1, ξn−1), δx〉

subject to
−ν�δy + (δy · ∇)yn−1 + (yn−1 · ∇)δy + ∇δp

= Bδu + ν�yn−1 − (yn−1 · ∇)yn−1 − ∇pn−1
div δy = 0
δy |� = 0,

(33)

where xn = (yn, un) and δx = xn − xn−1. Taking
∥
∥yn−1 − yγ

∥
∥
V

sufficiently small
such that ν − M(yn−1) >

1
2 (ν − M(yγ )) > 0, existence of Lagrange multipli-

ers (λn, µn, φn) can be verified. Moreover, system (29)–(32) has a unique solution,
equivalent to the solution of (33), if a second-order condition of the type

〈L′′
γ (yn−1, un−1, λn−1)(w, h), (w, h)〉 ≥ ‖(w, h)‖2

H1(�)×L2(�)
, (34)

is satisfied for all (w, h) in the ker of the linear state equation in (33). This is accom-

plished if
∥
∥λn−1 − λγ

∥
∥
V

is sufficiently small and a second-order sufficient condition

for the regularized optimal pair (yγ , uγ ) holds (cf. [11, p. 19]).

From the quadratic properties of the trilinear from we get, introducing the operators

H : H1(�)× H1(�) → (H1(�))′ H̃ : H1(�)× H1(�)→(H1(�))′

(v,w)→(v · ∇)w (v,w)→(∇v)T w
that

E1 := ((yn − yγ ) · ∇)(yn − yγ ) = H(yn)− H(yγ )− H′(yγ )(yn − yγ )

= 1
2
H′′(yγ )(yn − yγ )(yn − yγ ),

E2 := ((yn − yγ ) · ∇)(λn − λγ )

= H(yn, λn)− H(yγ , λγ )− H′(yγ , λγ )(yn − yγ , λn − λγ )

= 1
2
H′′(yγ , λγ )(yn − yγ , λn − λγ )(yn − yγ , λn − λγ ),

E3 := (∇(yn − yγ ))
T (λn − λγ )

= H̃(yn, λn)− H̃(yγ , λγ )− H̃′(yγ , λγ )(yn − yγ , λn − λγ )

= 1
2
H̃′′(yγ , λγ )(yn − yγ , λn − λγ )(yn − yγ , λn − λγ ).

In the following theorem a local convergence result for the semi-smooth Newton
method is stated. The result is formulated in terms of the constants σ := (ν −
M(yγ ))

−1, θ := α

16σ 2κ2 , and it relies on the frequently used hypothesis ν > M(yγ )
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and a smallness condition on the adjoint state λγ . From control constrained optimal
control, it is known that a sufficient condition for the latter to hold is the closedness
of the reached controlled state with respect to the desired one.

Theorem 4.2: If ν > M(yγ ), N ∥
∥λγ

∥
∥
V
< θ and

∥
∥y0 − yγ

∥
∥W ,

∥
∥λ0 − λγ

∥
∥

V are suffi-

ciently small, then the sequence {(yn, un, λn, µn)} generated by the algorithm converges

superlinearly in W × L2(�)× L2(�)× L2(�) to (yγ , uγ , λγ , µγ ).

Proof: Let us take δ > 0 such that

ν − M(y) ≥ 1
2
(ν − M(yγ )) > 0 and

θ − N ‖λn‖V ≥ 1
2
(θ − N ∥

∥λγ
∥
∥
V
) > 0 (35)

for all (y, λ) with
∥
∥y − yγ

∥
∥W < δ and

∥
∥λ− λγ

∥
∥
V
< δ

Introducing the notation δu = un+1−uγ , δy = yn+1−yγ and similarly for δλ, δp, δµ,
and taking into account the systems of equations satisfied by the regularized solution
and the iterate (yn, pn, un, λn, µn) we obtain the system:






−ν�δy + (yn · ∇)δy + (δy · ∇)yn + ∇δp = Bδu + E1
div δy = 0
δy |� = 0
−ν�δλ − (yn · ∇)δλ − (δy · ∇)λn + (∇yn)T δλ

+(∇δy)T λn + ∇δφ = E3 − E2 − δy − δµ

div δλ = 0

δλ|� = 0

αδu = B
δλ
δµ = γGkmaxδy + γGkminδy + R,

(36)

where

R = max(0, γ (yγ + (yk − yγ )− yb))− max(0, γ (yγ − yb))+ γGkmax(yk − yγ )

+ min(0, γ (yγ + (yk − yγ )− ya))− min(0, γ (yγ − ya))+ γGkmin(yk − yγ ),

Gkmaxφ =
{
φ on Ab

n+1

0 in �\Ab
n+1

and Gkminφ =
{
φ on Aa

n+1

0 in �\Aa
n+1

.

Due to Newton differentiability of themax(0, ·) andmin(0, ·) functions (cf. [12]) we
obtain that

‖R‖L2 = o(
∥
∥yk − yγ

∥
∥

LP ), (37)

with p > 2.
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Multiplying δµ by δy and considering the variational formulation of the adjoint
equations, we get

(δµ, δy) = (E3 − E2, δy)− ∥
∥δy

∥
∥2 − ν(∇δλ,∇δy)+ c(yn, δλ, δy)

+c(δy, λn, δy)− c(δy, yn, δλ)− c(δy, δy, λn),

which, utilizing also the variational formulation of the state equations yields

(δµ, δy) = −α ‖δu‖2 − ∥
∥δy

∥
∥2 − 2c(δy, δy, λn)+ (E3 − E2, δy)− (E1, δλ)

Consequently,

α ‖δu‖2 + ∥
∥δy

∥
∥2 − 2N ‖λn‖V

∥
∥δy

∥
∥2
V

≤ ‖R‖ ∥
∥δy

∥
∥ + C1(

∥
∥yn − yγ

∥
∥
V

∥
∥yn − yγ

∥
∥

W1,4 ‖δλ‖
+ ∥

∥yn − yγ
∥
∥

W1,4

∥
∥λn − λγ

∥
∥

∥
∥δy

∥
∥
V
). (38)

From the state equations increment system (36) we obtain the estimate

(ν − M(yn))
∥
∥δy

∥
∥
V

≤ κ(‖δu‖ + ‖E1‖), (39)

which, considering the smallness condition (35), yields

‖δu‖ ≥ 1
2κσ

∥
∥δy

∥
∥
V

− ‖E1‖ . (40)

Taking the square on both sides of (40) we get

α

2
‖δu‖2 ≥ α

8κ2σ 2

∥
∥δy

∥
∥2
V

− α

2κσ
‖E1‖

∥
∥δy

∥
∥
V

+ α

2
‖E1‖2 . (41)

From (38) and (41), we thus obtain

α

2
‖δu‖2 + ∥

∥δy
∥
∥2 +

( α

8κ2σ 2
− 2N ‖λn‖V

) ∥
∥δy

∥
∥2
V

≤ ‖R‖ ∥
∥δy

∥
∥ + α

2κσ
‖E1‖

∥
∥δy

∥
∥
V

+ C1

( ∥
∥yn − yγ

∥
∥
V

∥
∥yn − yγ

∥
∥

W1,4 ‖δλ‖

+ ∥
∥yn − yγ

∥
∥

W1,4

∥
∥λn − λγ

∥
∥

∥
∥δy

∥
∥
V

)
.

Utilizing the smallness condition θ − N ‖λn‖V ≥ 1
2 (θ − N ∥

∥λγ
∥
∥
V
) > 0 we get that

α

2
‖δu‖2 + ∥

∥δy
∥
∥2 + βγ

∥
∥δy

∥
∥2
V

≤ κ ‖R‖ ∥
∥δy

∥
∥
V

+ α

2κσ

∥
∥yn − yγ

∥
∥2

W1,4

∥
∥δy

∥
∥
V

+C1

(∥
∥yn − yγ

∥
∥2

W1,4 ‖δλ‖ + ∥
∥yn − yγ

∥
∥

W1,4

∥
∥λn − λγ

∥
∥

∥
∥δy

∥
∥
V

)
,

with βγ := θ − N ∥
∥λγ

∥
∥
V
.
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Considering the increment optimality condition δλ = αδu and using (40), together
with the estimate ‖E1‖ ≤ ∥

∥yn − yγ
∥
∥2

W1,4 , yields

α

2
‖δu‖2 + ∥

∥δy
∥
∥2 + β

∥
∥δy

∥
∥2
V

≤ C1α
∥
∥yn − yγ

∥
∥2

W1,4 ‖δu‖ + (2κ2σ ‖R‖ + α
∥
∥yn − yγ

∥
∥2

W1,4

+2κC1σ
∥
∥yn − yγ

∥
∥

W1,4

∥
∥λn − λγ

∥
∥)(‖δu‖ + ∥

∥yn − yγ
∥
∥2

W1,4).

Taking into account that
∥
∥yn − yγ

∥
∥W < δ,

∥
∥λn − λγ

∥
∥
V
< δ and using 2ab ≤

a2 + b2 for all a, b > 0, we get the existence of a constant C2 > 0 such that

α

4
‖δu‖ + 1

4
‖δλ‖ ≤ C2(

∥
∥yn − yγ

∥
∥2

W1,4 + ∥
∥λn − λγ

∥
∥2
)+ o(

∥
∥yn − yγ

∥
∥

Lp ). (42)

Utilizing the state equations increment system again, it can be verified, proceeding
as in the proof of Theorem 3.1, that

∥
∥δy

∥
∥W ≤ Ĉ ‖δu‖ .

Consequently, there exists a constant C > 0 such that

∥
∥δy

∥
∥W + ‖δu‖ + ‖δλ‖ ≤ C(

∥
∥yn − yγ

∥
∥2

W + ∥
∥λn − λγ

∥
∥2
)+ o(

∥
∥yn − yγ

∥
∥W ) (43)

and, therefore, superlinear convergence of the iterates is verified. ��

4.2. Formulation using Fischer-Burmeister function

For the introduction of the Fischer-Burmeister nonlinear complementarity func-
tional for the regularized optimality system (24)–(27), we decompose the multiplier
µγ = µb − µa, with

µb := 1
2
(−µγ + |µγ |) and µa := 1

2
(µγ + |µγ |)

and introduce the auxiliar variable ỹ := yγ − 1
γ
µγ . With these definitions, Eq. (27)

with µ̄ = 0 can be rewritten as

µγ = max(0, µγ + γ (ỹ − yb))+ min(0, µγ + γ (ỹ − ya))

or, equivalently, as complementarity system:






µa, µb ≥ 0,

ya ≤ ỹ ≤ yb,

(µb, yb − ỹ) = (µa, ỹ − ya) = 0.

(44)
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Using Fischer-Burmeister’s function, system (44) can be replaced by

�1(µb, ỹ) =
√

µ2
b + γ 2(yb − ỹ)2 − µb − γ (yb − ỹ) = 0, (45)

�2(µa, ỹ) =
√

µ2
a + γ 2(ỹ − ya)2 − µa − γ (ỹ − ya) = 0. (46)

By defining the sets Sb = {x : µb(x) = ỹ(x) − yb(x) = 0}, Sa = {x : µa(x) =
ỹ(x)− ya(x) = 0} and I = �\(Sb ∪ Sa), it can be verified that the Newton deriva-
tives of (45) and (46), in the directions (δµb , δỹ) and (δµa , δỹ), satisfy

(d1, d2) ∈
{

{((τ1 − 1)δµb ,−(τ2 − 1)γ δỹ) : τ 2
1 + τ 2

2 ≤ 1} on Sb
{�′

1(µb, ỹ)} else

and

(e1, e2) ∈
{

{((τ1 − 1)δµa , (τ2 − 1)γ δỹ) : τ 2
1 + τ 2

2 ≤ 1} on Sa
{�′

2(µa, ỹ)} else,

respectively (cf. [20, p. 831]). Choosing in particular τ1 = τ2 = 1/2 for the derivative
candidates, the complete algorithm can be stated through the following steps:

Algorithm 4.3: (1) Initialization: choose (u0, y0, λ0, µb,0, µa,0) ∈ L2(�) × W ×
L2(�)× L2(�)× L2(�) and set n = 1.

(2) Until a stopping criteria is satisfied, set

Sbn =
{

x : µb,n−1 = yn−1 − yb − 1
γ
µb,n−1 + 1

γ
µa,n−1 = 0

}

San =
{

x : µa,n−1 = yn−1 − ya − 1
γ
µb,n−1 + 1

γ
µa,n−1 = 0

}

In = �\(Sb ∪ Sa).
Find the solution (yn, pn, un, λn, φn, µa,n, µb,n) of

−ν�yn + (yn−1 · ∇)yn + (yn · ∇)yn−1 + ∇pn = un + (yn−1 · ∇)yn−1

div yn = 0 (47)

yn|� = g,

−ν�λn − (yn · ∇)λn−1 − (yn−1·∇)λn + (∇yn−1)
T λn + (∇yn)T λn−1

+∇φn = zd − yn − µb,n + µa,n − (yn−1 · ∇)λn−1 + (∇yn−1)
T λn−1

div λn = 0

λn|� = 0. (48)

αun = λn (49)
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−µb,n + γ ỹn = −µb,n−1 · δµb − γ 2(yb − ỹn−1) · δỹ
√
µ2
b,n−1 + γ 2(yb − ỹn−1)

−
√

µ2
b,n−1 + γ 2(yb − ỹn−1)+ γyb on San ∪ I (50)

−µb,n + γ ỹn = γyb on Sbn (51)

−µa,n − γ ỹn = −µa,n−1 · δµb − γ 2(ỹn−1 − ya) · δỹ
√
µ2
a,n−1 + γ 2(ỹn−1 − ya)

−
√

µ2
a,n−1 + γ 2(ỹn−1 − ya)− γya on Sbn ∪ I (52)

−µa,n − γ ỹn = −γya on San (53)

ỹn = yn − 1
γ
µb,n + 1

γ
µa,n (54)

and set n = n+ 1.

5. Numerical Results

In this section, we describe some numerical tests, which illustrate the performance
of the semi-smooth Newton method applied to a class of state constrained opti-
mal control problems of the stationary Navier-Stokes equations. Themax-min and
Fischer-Burmeister functionals are chosen as examples of Newton differentiable
NCP-functions and their behavior is numerically compared.

For the numerical simulations, a forward facing step channel geometry is used. We
consider a channel of length 1 and height 0.5. The fluid flows from left to right with
inflow boundary condition of parabolic type (with maximum value 1) and outflow
“do nothing” condition (cf. [19]). For the discretization of the domain a homoge-
neous staggered grid with step h is utilized. A first-order upwind finite differences
scheme is used for the approximation of the partial differential equations.

The target of the control problem is to drive the fluid to an almost linear behavior
given by the Navier-Stokes flow with Reynolds number equal to 1 and, through the
presence of pointwise state constraints, avoid recirculations before and/or after the
step. In that sense, the Re = 1 flow is chosen as desired state zd . The uncontrolled
flow with Re = 1000, depicted in Fig. 1, illustrates the main recirculation zones in
the channel.

The semi-smooth Newton algorithm is terminated when the norm of the increments
reaches the precision tol,whose value is typically set equal to 10−5.The resulting lin-
ear systems in each semi-smooth Newton iteration are solved exactly using Matlab’s
sparse solver.
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Fig. 1. Streamlines of the uncontrolled state

Fig. 2. Example 1: Plot of the control vector;
∥
∥uγ

∥
∥

L2 = 0.120096

Fig. 3. Example 1: Contour plot of the control

Example 1: In this first example, we chooseRe = 1000 (see Fig. 1) and set the state
constraint y1 ≥ −10−7 in� in order to reach the objective of avoiding recirculations.
The control regularization parameter is set to the value α = 0.1. Figures 2 and 3
show the optimal control obtained for the penalization parameter γ = 106. With
this penalization parameter, the minimum of the regularized horizontal velocity
takes the value −2.4247 · 10−4.

The final controlled state is depicted in Fig. 4, where it can be observed that, at the
scale of numerical resolution, no recirculations are present. To obtain this solution,
the control reaches high values, which occur mainly in the recirculation zones. By
numerical evaluation the L2 and L∞ control norms reach the values 0.120096 and
7.331976, respectively.

In Table 1, the performance of the penalization approach is numerically tested. The
number of iterations, the size of the active set and the values of the cost functional
are tabulated for different values of γ. It can be seen that the dependence of the
iteration number on the penalization parameter is significantly larger for the Fischer-
Burmeister than the max-min complementarity functional. Moreover, the total
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Fig. 4. Example 1: Plot of the streamlines of the final controlled state

Table 1. Example 1, h = 1/240, ε = 10−4

γ 10 102 103 104 105 106

Iter. max 5 5 8 8 8 9

|Aa
γ ∪ Ab

γ | 62 58 40 30 28 28
Iter. F-B 7 7 9 15 37 54
J (yγ , uγ ) 0.003997 0.004002 0.004080 0.004339 0.004443 0.004458

number of iterations is consistently larger for the Fischer-Burmeister than themax-
min functional. Similar observations were made in [8, 15] for finite dimensional
optimization problems.

The data for the performance of the semi-smooth Newton method with themax-min
functional, are reported in Table 2. The size of the active set, the values of the cost
functional, the difference between two consecutive iterates of the velocity field, the
convergence rate estimate and the residual values of the nonlinear complementarity
functional are tabulated for each SSN iteration. Local superlinear convergence of
the method can be observed numerically.

Next, we consider the limit case when the tracking type component of the cost
functional is dropped, i.e., J (y, u) = 1

2 ‖u‖2. The solution to this problem corre-
sponds to the minimum control norm required to eliminate the fluid recirculations
via the state constraints. From Fig. 5, it can be observed that the control action in
this case is significantly concentrated in the recirculation zones. The state constraint

Table 2. Example 1, h = 1
240 , ε = 10−7, γ = 104

Iteration | An | J (y, u)
∥
∥yn − yn−1

∥
∥

∥
∥yn−yn−1

∥
∥

∥
∥yn−1−yn−2

∥
∥ NCP

1 0 0.00447153 19.0394 – 74.7580
2 9 0.00424673 4.8617 0.2553 881.0017
3 45 0.00435671 0.5394 0.110967 69.5120
4 33 0.00434033 0.446645 0.827893 5.8360
5 31 0.00433979 0.005584 0.0125 0.4800
6 30 0.00433980 6.179 ·10−4 0.110648 0
7 30 0.00433980 3.550 ·10−7 5.745 ·10−4 0
8 30 0.00433980 1.361 ·10−14 3.835 ·10−8 0
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Fig. 5. Example 1: Minimum control norm problem: control;
∥
∥uγ

∥
∥

L2 = 0.083488

Fig. 6. Example 1: Minimum control norm problem: final state

y1 ≥ −10−7 is satisfied on the whole domain and the recirculations are reduced (see
Fig. 6). The cost functional takes the optimal value J (yγ , uγ ) = 0.0139407 and the
number of SSN iterations needed to reach the solution is 23.

Example 2: For this example, we chose the state constraint y1 ≤ 1.75 in �. The
remaining parameter values areRe = 1000, α = 0.01 and γ = 104. It is anticipated
that this type of constraint results in a more homogeneous outflow horizontal veloc-
ity and that large velocity gradients in the last part of the channel are diminished.
Besides that, this type of constraint is imposed in order to obtain a bigger active set,
which allows the visualization of the Lagrange multiplier structure. The constraint
y1 ≤ 1.75 results in a reduction of 7.5% of the maximum value of the horizontal
velocity in the uncontrolled flow. It can be seen from Fig. 7 that this constraint also
results in a remarkable reduction of the recirculation zones. In fact, in the last part
of the channel, the bubble almost disappears.

Fig. 7. Example 2: Plot of the streamlines of the final controlled state, γ = 104
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Fig. 8. Example 2: Plot of the control vector;
∥
∥uγ

∥
∥

L2 = 0.2803324

As can be seen in Fig. 8, in this case the optimal control is not concentrated on the
recirculations zones, but acts in a more distributed way throughout the channel.

In Table 3, the behavior of the penalized problem is reported. As in Example 1,
there is a clear difference in the number of iterations of the semi-smooth Newton
method when applied to the max-min and the Fischer-Burmeister functionals. The
data show clearly a better behavior of the max-min function based algorithm.

In order to further improve the efficiency of the latter, we also test a continuation
procedure to accelerate the convergence. In this case the solution of the regularized
problem with value γ is used as initialization for the next larger γ -value. The data
for this approach are given in Table 4.

The fact that the Lagrange multiplierµ∗ is only a measure can be observed from the
behavior of its approximation µγ along the boundary of the active set (see Fig. 9).

Next, we turn to the situation of controls localized on sub-domains �̃ = �c.Our two
choices for sub-domains are depicted in Fig. 10. In the first case, when the control
domain is located on the recirculation zone, the controlled velocity field satisfies the
state constraint on the whole domain. The maximum of the regularized horizontal
velocity takes the value 1.7527. As expected, the effect of recirculation diminishing
is now smaller than in the case �̃ = �. The cost functional in this case takes the

Table 3. Example 2, h = 1/240, ε = 10−4

γ 10 102 103 104 105 106

Iter. max 5 7 10 17 24 25

|Aa
γ ∪ Ab

γ | 2257 2063 1955 1907 1888 1878

Iter. F-B 7 11 17 31 62 84
J (yγ , uγ ) 0.0023302 0.0026332 0.0026801 0.0026859 0.0026866 0.0026867

Table 4. Example 2, h = 1/240, ε = 10−4

γ 102 104 106

Iter. 7 7 4
∑ = 18

|Aa
γ ∪ Ab

γ | 2063 1907 1879
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Fig. 9. Example 2: Horizontal velocity yγ and multiplier µγ

Ω
c

Ω
c

Fig. 10. Example 2: Subdomains of control and correspondent reached states

optimal value J (yγ , uγ ) = 0.004927 and the number of SSN iterations, with the
max-min NCP function, is 22.

In the second case with the location of the control sub-domain before the step, again
an effective control action throughout the whole fluid is achieved. The state con-
straint is satisfied on�, and the recirculation after the step is eliminated. Compared
to the previous sub-domain control case and also to the case �̃ = � (see Fig. 7), the
effect of recirculation diminishing is more significant with respect to the vortex after
the step, but fails by diminishing the one before the step. The cost functional takes the
optimal value J (yγ , uγ ) = 0.004961 and the number of SSN iterations needed is 17.
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