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Abstract. An optimal control problem for the equations governing the stationary problem of
magnetohydrodynamics (MHD) is considered. Control mechanisms by external and injected currents
and magnetic fields are treated. An optimal control problem is formulated. First order necessary
and second order sufficient conditions are developed. An operator splitting scheme for the numerical
solution of the MHD state equations is analyzed.
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1. Introduction. Magnetohydrodynamics, or MHD, deals with the mutual in-
teraction of electrically conducting fluids and magnetic fields. In particular the mag-
netic field interacts with the current in the fluid by exerting a Lorentz force. This
feature renders it phenomenally attractive for exploitation, especially in metallurgical
processes. The Lorentz force offers a unique possibility of generating a volume force
in the fluid and hence to control its motion in a contactless fashion and without any
mechanical interference. Therefore MHD technology is used routinely today by engi-
neers, for instance, to stir molten metals during solidification, dampen their undesired
convection-driven flow during casting, filter out impurities, and melt and even levitate
metals.

With the present paper, we wish to contribute to the application of the power-
ful methods from mathematical optimization to compute tailored magnetic fields for
MHD flow control. Although this work intends primarily to lay the mathematical
foundations of MHD optimal control, we believe we have chosen a problem setup of
practical relevance, allowing our results to be directly exploited in numerical methods
and applications.

Before we turn to the problem description, let us put our work into perspec-
tive. Throughout we always refer to stationary incompressible MHD involving vis-
cous fluids. Instationary problems will require an investigation in their own right,
and compressible MHD mostly occurs in the realm of plasma physics, whereas we
focus on the engineering aspects of MHD. While a remarkable amount of attention
in the past decade was devoted to the analysis of optimal control of the Navier–
Stokes equations (see, e.g., [9, 10, 11, 14] and the references therein), we are aware
of only a few contributions so far concerning the optimal control of the MHD system
[13, 16, 17, 18, 19, 24]. The majority of these papers treat the case of low magnetic
Reynolds numbers or use either the velocity-potential or the velocity-magnetic field
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1823

formulation, which both result in the necessity of using artificial boundary condi-
tions. The MHD state equations alone have been investigated in a number of papers,
including [22, 21, 12].

We organized the material as follows: In the remainder of this section, we briefly
recall the stationary MHD state equations and their velocity-current formulation. In
section 2 the variational form of the state equations following [22] are introduced. Our
main results are given in section 3, where we consider an optimal control problem for
the MHD system. We derive the first order necessary optimality system and establish
second order sufficient conditions. In section 4, we analyze an operator splitting
scheme for the solution of the MHD state equation which makes use of existing solvers
for the Navier–Stokes equations and div-curl systems. We conclude with an outlook
on follow-up work in section 5.

Essentially, the MHD system consists of the Navier–Stokes equation with Lorentz
force, yielding the fluid velocity u and its pressure p, plus Maxwell’s equations de-
scribing the interaction of the electric field E and the magnetic field B.1 In the
stationary case, the complete MHD system is given by

∇ · J = 0 ∇×E = 0(1.1)

(charge conservation) (Faraday’s law),

∇ ·B = 0 ∇× (μ−1B) = J(1.2)

(No magnetic monopoles) (Ampère’s Law),

J = σ(E + u×B)(1.3)

(Ohm’s law),

together with the Navier–Stokes system with Lorentz force

�(u · ∇)u− ηΔu + ∇p = J ×B,(1.4)

∇ · u = 0.(1.5)

We refer to [25, 4] for more details. Here μ denotes the magnetic permeability of the
matter occupying a certain point in space, and �, η, and σ denote the fluid’s density,
viscosity, and conductivity. All of these numbers are positive. We emphasize that we
consider μ to be constant throughout space; hence we assume a nonmagnetic fluid
and no magnetic material present in its relevant vicinity.

It is an outstanding feature in magnetohydrodynamics that, from the set of state
variables (u, p,E,B,J), the electric and magnetic fields E and B extend to all of
R

3, whereas the velocity u and pressure p are confined to the bounded region Ω ⊂ R
3

occupied by the fluid. The current density J is defined within the fluid region and
possibly also in external conductors.

Rather than treating the full set of variables (u, p,E,B,J), researchers often
describe MHD systems by a properly chosen subset, which is frequently taken as the
pair of primal variables (u,B). This entails that either B has to be considered on
all of R

3, or that artificial shielding boundary conditions have to be assigned on ∂Ω
so that the coupled system can be considered on the fluid region Ω alone. Physically,
shielding boundary conditions represent a fluid being surrounded on all sides by a
perfectly conducting vessel. Such boundary conditions exclude the control action

1Strictly speaking, B should be called the magnetic induction, while H = μ−1B is the magnetic
field. It is, however, common usage in MHD literature to call B the magnetic field.
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1824 ROLAND GRIESSE AND KARL KUNISCH

by means of distant magnetic fields. This is an especially attractive feature of MHD
control. In what appear to be the practically more relevant cases, where the outside of
the fluid region Ω is finitely conducting or nonconducting, hence permitting control by
distant magnetic fields, the proper boundary condition for B is an interface condition
requiring B to be continuous across ∂Ω in both its normal and tangential components,
i.e.,

[B]∂Ω = 0,(1.6)

where [·]∂Ω denotes the jump of any quantity when going from the interior of Ω to its
exterior. As a consequence, B has to be considered on all of R

3.
These shortcomings of the (u,B) formulation are not present in the velocity-

current formulation in the variables (u,J) of the state equation system (1.1)–(1.5) as
introduced in [22]. In this formulation, the magnetic field B is eliminated by means

of a solution operator B̃(J) which solves the div-curl system (1.2) for divergence-free
currents J and respects the interface condition (1.6). With the condition that it
vanishes at infinity, the solution is unique. Moreover, the irrotational electric field E
is replaced with its potential φ (unique only up to a constant). In our case of constant

permeability μ, the operator B̃(J) is given by the Biot–Savart law,

B̃(J)(x) = − μ

4π

∫
R3

x− y

|x− y|3 × J(y) dy.(1.7)

Inserting B = B̃(J) into (1.1)–(1.5) results in the velocity-current formulation of the
stationary MHD system,

�(u · ∇)u− ηΔu + ∇p− J × B̃(J) = 0, ∇ · u = 0,(1.8)

σ−1J + ∇φ− u× B̃(J) = 0, ∇ · J = 0(1.9)

for the unknowns (u, p,J , φ). Here u and p and the electric potential φ are confined
to the region Ω occupied by our conducting fluid, while J may additionally extend to
external conductors.

In general, the total magnetic field B is a superposition of the induced magnetic
field B̃(J) and other magnetic fields, for instance, those belonging to permanent mag-
nets or fields generated by given electric currents; see (3.7). We note in passing that
in the case of weakly conducting fluids, such as, for example, salt water, or more
generally, in the case of low magnetic Reynolds numbers Rm = μσul (where u and
l are typical velocity and length scales), the magnetic field associated with the in-

duced current is negligible in comparison with an imposed field [4]. Hence, B̃(J) can
be replaced with a given field B0. We refer to [19, 24, 17] concerning the optimal
control of weakly conducting fluids and to [15] for control approaches concerning the
instationary von Kármán flow for a weakly conducting fluid with given Lorentz force.

2. Function spaces and operators. In this section, we present the proper
functional analytic setting for the stationary MHD problem following [22]. Through-
out, let Ω denote a bounded domain in R

3 with Lipschitzian boundary, and let L2(Ω),
H1(Ω), and H1

0 (Ω) and, in general, W 1,p(Ω) and W 1,p
0 (Ω) denote the usual Sobolev

spaces [1] for 1 < p < ∞. In addition, for l = 1, 2, let V l(R3) stand for the completion
of H l(R3) with respect to the seminorm which measures only the lth order derivatives
[21]. Furthermore, H1/2(∂Ω) is the trace space of H1(Ω), endowed with the norm

‖φ‖H1/2(∂Ω) = inf ‖Φ‖H1(Ω),
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1825

where the infimum extends over all Φ whose trace coincides with φ. The norm duals
of H1

0 (Ω) and H1/2(∂Ω) are H−1(Ω) and H−1/2(∂Ω), respectively. The norm dual of
W 1,p

0 (Ω) is W−1,p′
(Ω), where p′ is the dual of p, i.e., p′ = p/(p−1). Boldface notation

indicates the triple Cartesian product of a space with itself, e.g., L2(Ω) = [L2(Ω)]3,
and the symbol L2

div(Ω) denotes the subspace of divergence-free (solenoidal) functions
in L2(Ω). Finally, we denote by A� the adjoint of a bounded linear operator A and
by X ′ the dual of a normed linear space X.

We will consider solutions

u ∈ H1(Ω) ∩L2
div(Ω), J ∈ L2

div(Ω),

p ∈ L2(Ω)/R, φ ∈ H1(Ω)/R,

which satisfy (1.8)–(1.9) in variational form. In order to obtain the variational for-
mulation, we multiply (1.8)–(1.9) by smooth test functions (v, q,K, ψ), where v has
zero Dirichlet boundary values. Integration by parts yields

(2.1)

�

∫
Ω

(u · ∇)u · v + η

∫
Ω

∇u : ∇v −
∫

Ω

(∇ · v)P(p)−
∫

Ω

(J × B̃(J)) · v −
∫

Ω

(∇ ·u) q

+ σ−1

∫
Ω

J ·K +

∫
Ω

K · (∇φ) −
∫

Ω

(u× B̃(J)) ·K +

∫
Ω

J · ∇ψ =

∫
∂Ω

j ψ,

where j = J · n denotes the given boundary values in the normal direction for the
current J . In (2.1),

∫
Ω

∇u : ∇v =

3∑
i=1

∫
Ω

∇ui · ∇vi,

and P(p) denotes the projection of p on the functions with zero mean,

P(p) = p− 1

|Ω|

∫
Ω

p.

Based on (2.1), we introduce the bilinear forms

a1(u,v) = η

∫
Ω

(∇u : ∇v), a2(J ,K) = σ−1

∫
Ω

J ·K,

d1(u, p) = −
∫

Ω

(∇ · u)P(p), d2(J , φ) =

∫
Ω

J · (∇φ)

and trilinear forms

b(u,v,w) = �

∫
Ω

(u · ∇)v ·w, c(u,v,w) =

∫
Ω

(u× v) ·w,

where u,v,w ∈ H1(Ω), J ,K ∈ L2(Ω), p ∈ L2(Ω)/R, and φ ∈ H1(Ω)/R. Note that
c is defined on any Lp1(Ω) ×Lp2(Ω) ×Lp3(Ω), where 1/p1 + 1/p2 + 1/p3 = 1.

Let us now turn to the forms introduced above. Besides the obvious continuity
properties, they satisfy the following.
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1826 ROLAND GRIESSE AND KARL KUNISCH

Lemma 2.1 (LBB conditions [7]). The constraint forms d1 and d2 satisfy the
following Ladyzhenskaya–Babuska–Brezzi (LBB) conditions on H1

0(Ω) × L2(Ω)/R,
and on L2(Ω) ×H1(Ω)/R, respectively:

inf
p∈L2(Ω)/R

sup
u∈H1

0(Ω)

d1(u, p)

‖u‖H1(Ω)‖p‖L2(Ω)/R

≥ β1,

inf
φ∈H1(Ω)/R

sup
J∈L2(Ω)

d2(J , φ)

‖J‖L2(Ω)‖φ‖H1(Ω)/R

≥ β2

for some β1, β2 > 0.
Let us define the following spaces associated with the constraint forms d1 and d2:

V1 = {v ∈ H1
0(Ω) : d1(v, p) = 0 for all p ∈ L2(Ω)/R},

V 0
1 = {Φ1 ∈ H−1(Ω) : 〈Φ1,v〉 = 0 for all v ∈ V1},
V2 = {K ∈ L2(Ω) : d2(K, φ) = 0 for all φ ∈ H1(Ω)/R},
V 0

2 = {Φ2 ∈ L2(Ω)′ : 〈Φ2,K〉 = 0 for all K ∈ V2}.

Note that [26]

V1 = {v ∈ H1
0(Ω) : ∇ · v = 0 on Ω},

V2 = {K ∈ L2(Ω) : ∇ ·K = 0 on Ω and K · n = 0 on ∂Ω}.

Lemma 2.2 (properties of constraint forms). If Φ1 ∈ V 0
1 and Φ2 ∈ V 0

2 , then the
equations

d1(v, p) = 〈Φ1,v〉 for all v ∈ H1
0(Ω),

d2(K, φ) = 〈Φ2,K〉 for all K ∈ L2(Ω)

are uniquely solvable for p ∈ L2(Ω)/R and φ ∈ H1(Ω)/R, and ‖p‖L2(Ω)/R ≤
c1 ‖Φ1‖H−1(Ω) and ‖φ‖H1(Ω)/R ≤ c2 ‖Φ2‖L2(Ω)′ hold for some c1, c2 > 0.

Proof. See [7, Chap. I, Lem. 4.1].
Lemma 2.3 (passing to the limit in c).
(1) Let un ⇀ u in L2(Ω), vn → v in L3(Ω), and w ∈ L6(Ω). Then c(un,vn,w)

→ c(u,v,w).
(2) Let u ∈ L2(Ω), vn → v in L3(Ω), and wn ⇀ w in L6(Ω). Then c(u,vn,wn)

→ c(u,v,w).
Proof. For the first claim, we use the estimate

|c(un,vn,w) − c(u,v,w)| ≤
∣∣∣∣
∫

Ω

(un × (vn − v)) ·w
∣∣∣∣ +

∣∣∣∣
∫

Ω

((un − u) × v) ·w
∣∣∣∣ .

We apply Hölder’s inequality to the first term, using the native norms of all three fac-
tors involved. It converges to zero since‖vn−v‖L3(Ω) converges to zero and ‖un‖L2(Ω)

is bounded by assumption (1). Hölder’s inequality again shows that
∫
Ω
(· × v) ·w is a

continuous linear functional on L2(Ω) so that also the second term converges to zero.
The second claim follows similarly, using the splitting

|c(u,vn,wn) − c(u,v,w)| ≤
∣∣∣∣
∫

Ω

(u× (vn − v)) ·wn

∣∣∣∣ +

∣∣∣∣
∫

Ω

(u× v) · (wn −w)

∣∣∣∣ .
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1827

Lemma 2.4 (properties of B̃). The following properties hold:

(1) The Biot–Savart operator (1.7) maps any given J ∈ L2(R3) to B̃(J) ∈
V 1(R3). The restriction of B̃(J) to Ω lies in H1(Ω).
In this sense, the Biot–Savart operator defines a continuous linear map be-
tween L2(R3) and H1(Ω), i.e.,

‖B̃(J)‖H1(Ω) ≤ cB‖J‖L2(Ω)

for all J ∈ L2(Ω) and some cB > 0.

(2) If J ∈ L2
div(Ω), then B̃(J) is the unique solution of the div-curl system (1.2)

vanishing at infinity.
The operator B̃ is self-adjoint in L2(R3).

Remark 2.5. Whenever J has compact support, as will be the case in our appli-
cations, B̃(J) belongs to H1(R3). However, it is sufficient for our purpose that the

restriction of B̃(J) to Ω is in H1(Ω), as guaranteed by the lemma.
Proof of Lemma 2.4. Consider the Newton potential

(L0J)(x) = − μ

4π

∫
R3

1

|x− y|J(y) dy,

which defines an isomorphism from L2(R3) to V 2(R3) [21, 3]. One argues that B̃(J) =
∇×L0(J) holds for all J ∈ L2(R3). This implies that B(J) ∈ V 1(R3).

Since V 1(R3) embeds into H1
loc(R

3) [3], claims (1) and (2) follow. Theorem 2.7
and Remark 2.8(b) in [21] imply that (3) holds. To prove self-adjointness, we multiply

B̃(J) by a function C ∈ L2(Ω) and integrate over R
3:∫

R3

C · B̃(J) = − μ

4π

∫
R3

C(x) ·
(∫

R3

x− y

|x− y|3 × J(y) dy

)
dx

= − μ

4π

∫
R3

∫
R3

C(x) ·
(

x− y

|x− y|3 × J(y)

)
dx dy

= − μ

4π

∫
R3

J(y) ·
(∫

R3

C(x) × x− y

|x− y|3 dx

)
dy.

= − μ

4π

∫
R3

J(x) ·
(∫

R3

x− y

|x− y|3 ×C(y) dy

)
dx.

Since the left-hand side by definition equals
∫

R3 J · B̃�(C), we have found B̃�(C) =

B̃(C).
We conclude this section by a compact embedding result whose proof can be

found in [7].
Lemma 2.6 (compact maps and embeddings). For a bounded domain Ω ⊂ R

3

with Lipschitz boundary, the embeddings H1(Ω) ↪→ L6−ε(Ω) and L2(Ω) ↪→ W−1,6−ε(Ω)
are compact for all ε > 0. In addition, the pointwise product map (u, v) 
→ u v is con-
tinuous from H1(Ω) × H1(Ω) to W 1,3/2(Ω), and the latter embeds compactly into
L3−ε(Ω) for all ε > 0.

3. The optimal control problem. We analyze an optimal control problem
for the stationary MHD system motivated by the applications described in [4]. A
typical geometry that we have in mind is depicted in Figure 3.1. We assume that the
electrically conducting fluid, e.g., a liquid metal, is contained in a vessel occupying
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1828 ROLAND GRIESSE AND KARL KUNISCH

����

Ωinj

�
�
��

Ω

�
�

��

Ωext

Fig. 3.1. General setup: Fluid region Ω (cube), external conductor Ωinj attached to the fluid
region, and external conductor Ωext separate from the fluid region.

the domain Ω. On part of the boundary ∂Ω, an external conductor Ωinj is attached.
The current distribution in Ωinj is assumed to be known, but its magnitude can be
adjusted. The purpose of such a propulsion device is to drive the fluid in Ω in a desired
way, both through the action of the magnetic field induced by the current in Ωinj and
through the current, which is “injected” into the fluid region Ω through the electrodes
attached to its surface. The same assembly can be found in electromagnetic filtration
devices. Since in some cases it may be undesirable to attach the external conductor
to the surface of the fluid vessel, we included a second conductor Ωext separately from
the fluid region in which, again, the current distribution is given but its magnitude
can be controlled. This external conductor has an impact on the fluid motion in Ω
solely through its induced magnetic field. An assembly in which a number of such coils
is distributed around the fluid vessel can be found, e.g., in electromagnetic stirring
devices [4, 23], albeit their magnetic field is usually amplified by yokes in the coil
centers, which are currently not included in our model in view of the assumption that
the permeability μ is constant. In addition, we allow for another external magnetic
field Bext which is subject to optimization. In practice such a field cannot be shaped
at will. We consider it as originating from a permanent magnet whose field is again
known except for its magnitude, which serves as an optimization parameter.

From (1.8)–(1.9) we recall the stationary MHD system in velocity-current formu-
lation,

�(u · ∇)u− ηΔu + ∇p = J ×B, ∇ · u = 0 on Ω,(3.1)

σ−1J − u×B + ∇φ = 0, ∇ · J = 0 on Ω.(3.2)

We will consider solutions

y = (u, p,J , φ)(3.3)

with

u ∈ H1(Ω) ∩L2
div(Ω), J ∈ L2

div(Ω),

p ∈ L2(Ω)/R, φ ∈ H1(Ω)/R,
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1829

which satisfy (3.1)–(3.2) in variational form, together with the following boundary
conditions:

J · n = J inj · n on ∂Ωinj ∩ ∂Ω,(3.4)

J · n = 0 on ∂Ω \ ∂Ωinj,(3.5)

with the injected current J inj specified below. For the fluid velocity, we impose
Dirichlet boundary conditions

u = h on ∂Ω.(3.6)

For our setup the total magnetic field B is the superposition of the field B̃(J)

induced by the current J inside the fluid domain, the fields B̃(Jext) and B̃(J inj)
induced by the currents in the external conductors (whether or not attached to the
fluid domain), and the magnetic field Bext associated with the permanent magnet,
i.e.,

B = B̃(J) + B̃(Jext) + B̃(J inj) + Bext.(3.7)

We repeat that the external magnetic field Bext and the current fields Jext and J inj

are assumed known except for their magnitude. For instance, in the case of a smooth
wire, the current field simply follows its shape, and thus

Jext = Iext · J̃ext, J inj = Iinj · J̃ inj, Bext = Bext · B̃ext,(3.8)

where

u = (Iext, Iinj, Bext) ∈ R
3(3.9)

is the vector of control variables. Herein, Iext and Iinj denote the adjustable scalar

current strengths and J̃ext and J̃ inj are the given solenoidal current field distributions
in the external conductors Ωext and Ωinj, respectively. In practice, these currents
must be maintained by an adjustable voltage source. Likewise, Bext relates to the
strength of the external magnetic field (associated with a permanent magnet) Bext.
The boundary conditions (3.4)–(3.5), together with Assumption 3.1(3) below, close
the current loop and ensure that the total current J +Jext +J inj is solenoidal on R

3.
The restriction to finite-dimensional controls is motivated by applications. Non-

parametrized distributed current and magnetic fields (Jext,J inj,Bext) ∈ L2
div(Ω) ×(

H1(Ωinj) ∩ L2
div(Ωinj)

)
× V 1(R3) can be used as controls if the norms in the objec-

tive below are adjusted accordingly. Besides technical difficulties, the most significant
change that will occur is in the necessary optimality conditions (3.28) (see Theo-
rem 3.11 below), which will involve Poisson equations.

We are now prepared to state our optimal control problem as follows:

Minimize
αu

2
‖u− ud‖2

L2(Ωu,obs)
+

αB

2
‖B −Bd‖2

L2(ΩB,obs)
+

αJ

2
‖J − Jd‖2

L2(ΩJ,obs)

+
γext

2
|Iext|2 +

γinj

2
|Iinj|2 +

γB
2
|Bext|2(P)

subject to (3.1)–(3.7).

The control objective reflects the goal of steering the fluid velocities and the
magnetic and current fields towards the given desired fields ud, Bd, and Jd, possibly
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1830 ROLAND GRIESSE AND KARL KUNISCH

only on subdomains Ωu,obs ⊂ Ω, ΩB,obs ⊂ R
3, and ΩJ,obs ⊂ Ω of interest. The desired

fields are L2 functions in their respective domains of definition. One may choose
among those goals by setting the respective weights α equal to zero. The control
weights γ are assumed to be positive. Note that due to the “state times control”
terms u×B (through Ohm’s law (1.3)) and J ×B (the Lorentz force), problem (P)
is a particular type of bilinear control problem.

We shall require the following assumption for the analysis of the MHD system
(3.1)–(3.7).

Assumption 3.1 (problem data).
1. Ω, Ωinj, and Ωext are bounded mutually disjoint domains with C0,1 boundary,

such that Ωinj and Ω have a part of their boundary of positive surface measure
in common; see Figure 3.1.

2. The boundary velocity h ∈ H1/2(∂Ω) satisfies
∫
∂Ω

h · n = 0.

3. J̃ext and J̃ inj are (current) fields in L2
div(Ωext) and H1(Ωinj) ∩ L2

div(Ωinj),

respectively, satisfying
∫
∂Ω∩∂Ωinj

J̃ inj · n = 0.

4. B̃ext is a divergence-free (magnetic) field on R
3 such that its restriction to Ω

lies in L3+ε(Ω) for some ε > 0.

5. The nonzero fields B̃ext, B̃(J̃ext), and B̃(J̃ inj) are linearly independent.

The assumption J̃ inj ∈ H1(Ωinj) implies that the normal trace J̃ inj · n, when
restricted to the intersection ∂Ω ∩ ∂Ωinj and extended by zero, yields a function
j ∈ L2(∂Ω); hence in particular j ∈ H−1/2(∂Ω) holds. The latter is needed to
ensure the existence of a lifting J0 whose normal boundary values coincide with j,
see Lemma 3.2 below. Note that j ∈ H−1/2(∂Ω) can in general not be achieved if

merely J̃ inj ∈ L2
div(Ωinj).

In order to eliminate the boundary conditions for the velocity and current and to
homogenize the problem, we introduce liftings u0 and J0 of the given boundary data
such that

u0 ∈ H1(Ω), u0|∂Ω = h, ∇ · u0 = 0,

J0 ∈ L2(Ω), J0 · n|∂Ω = j, ∇ · J0 = 0,

with

j = J inj · n on ∂Ω ∩ ∂Ωinj and j = 0 on ∂Ω \ ∂Ωinj.(3.10)

Such a lifting exists according to the following lemma. Note that Assumption 3.1(3)
implies that

∫
∂Ω

j = 0 as required in part (b) of Lemma 3.2 below.
Lemma 3.2 (lifting). Let βi be the constants from the LBB condition (Lemma 2.1).

Then we have the following:
(a) For every h ∈ H1/2(∂Ω), there exists u0 ∈ H1(Ω) such that u0|∂Ω = h and

d1(u0, q) = 0 holds for all q ∈ L2(Ω)/R, i.e., ∇ · u0 = 0. Moreover, the map
h 
→ u0 can be chosen linearly and continuously, such that

‖u0‖H1(Ω) ≤ (1 + β−1
1 )‖h‖H1/2(∂Ω)

is satisfied.
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1831

(b) For every j ∈ H−1/2(∂Ω) which satisfies 〈j, 1〉∂Ω = 0, there exists J0 ∈ L2(Ω)
such that d2(J0, ψ) = 〈j, ψ〉∂Ω holds for all ψ ∈ H1(Ω)/R, i.e., ∇ · J0 = 0
and J0 · n = j. Moreover, the map j 
→ J0 can be chosen linearly and
continuously, such that

‖J0‖L2(Ω) ≤ β−1
2 ‖j‖H−1/2(∂Ω)

is satisfied.
Proof. The claim is a consequence of the LBB condition; see [22] for details. Note

that for functions J0 ∈ L2(Ω) such that ∇ · J0 ∈ L2(Ω), the normal trace J0 · n
exists with values in H−1/2(∂Ω) [7].

As a consequence, the fluid velocity and current can be written as

u = u0 + û, J = J0 + Ĵ ,

where û ∈ H1
0(Ω) and Ĵ · n = 0 on ∂Ω. It is important to note that in view of the

current boundary condition (3.4)–(3.5), the lifting J0 depends on the control variable
Iinj. We emphasize this dependence whenever appropriate by writing

J0 = Λ(IinjJ̃ inj · n),(3.11)

meaning that J0 is the lifting, according to Lemma 3.2(b), of the function j in (3.10).
We now consider the homogenized state equation to find

ŷ = (û, p, Ĵ , φ).(3.12)

In its variational form, the homogenized system is given by

a1(û + u0,v) − c(Ĵ + J0,B,v) + b(û + u0, û + u0,v) + d1(v, p) = 0,

d1(û, q) = 0,

a2(Ĵ + J0,K) + c(K,B, û + u0) + d2(K, φ) = 0,

d2(Ĵ , ψ) = 0

(3.13)

for all (v, q,K, ψ) ∈ H1
0(Ω) × L2(Ω)/R ×L2(Ω) ×H1(Ω)/R, where we set

B = B̃(Λ(IinjJ̃ inj · n)) + B̃(Ĵ) + B̃(Jext) + B̃(J inj) + Bext(3.14)

as an abbreviation. The homogeneous solution ŷ is sought in the space

Ŷ = H1
0(Ω) × L2(Ω)/R ×L2(Ω) ×H1(Ω)/R.(3.15)

In its strong form, (3.13) corresponds to

−ηΔû + ρ(û · ∇)û + ρ(û · ∇)u0 + ρ(u0 · ∇)û + ∇p

= ηΔu0 − ρ(u0 · ∇)u0 + J ×B + J0 ×B,

σ−1Ĵ − û×B + ∇φ = −σ−1J0 + u0 ×B

plus the incompressibility conditions ∇· û = 0 and ∇· Ĵ = 0 and boundary conditions
Ĵ · n = 0 and û = 0 on ∂Ω. We note that the velocity boundary condition is
incorporated into the space H1

0(Ω), whereas the boundary condition for the current
is of variational type.
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1832 ROLAND GRIESSE AND KARL KUNISCH

We now comment on the solvability of (3.13)–(3.14) and thus of the original system
(3.1)–(3.7). As was observed in [22] for the MHD system without Jext and Bext, the
existence of a solution seems to be contingent upon the smallness of the liftings u0

and J0, i.e., smallness of the boundary data h and J inj · n. Note that, while the
Navier–Stokes nonlinearity ρ(û · ∇)û is conservative in the sense that b(û, û, û) = 0,
this is not the case for the bilinear terms J×B and û×B. The existence proof given
in [22] uses the LBB theory [7, Chap. IV, Thm. 1.2], and it is based on a limiting
process of Galerkin approximations. Applying this technique to the present situation
likewise yields solvability, provided that the data h and J inj ·n are sufficiently small.
Under stronger assumptions involving also the remaining controls Jext and Bext,
uniqueness of the solution can be proved using [7, Chap. IV, Thm. 1.3]. In any case,
the required bounds on the data seem not exactly tangible since they involve the
embedding constants of H1(Ω) ↪→ Lp(Ω) and the constant in the Poincaré inequality,

as well as the norms of the lifting operator Λ and the Biot–Savart operator B̃. This
is the reason that we refrain from stating the exact conditions here.

We provide here an alternative existence proof based on the Leray–Schauder fixed
point theorem; see, for instance, [6, p. 222]. Let us define the operator A : Ŷ → Ŷ ′

by its components:

A1(δu, δp, δJ , δφ)(v) = a1(δu,v) + d1(v, δp),

A2(δu, δp, δJ , δφ)(q) = d1(δu, q),

A3(δu, δp, δJ , δφ)(K) = a2(δJ ,K) + d2(K, δφ),

A4(δu, δp, δJ , δφ)(ψ) = d2(δJ , ψ).

We observe that A is an isomorphism since (A1, A2)(·, ·, 0, 0) defined between H1
0(Ω)×

L2(Ω)/R×{0}×{0} and its dual is an isomorphism, and so is (A3, A4)(0, 0, ·, ·), defined
between {0} × {0} ×L2(Ω) ×H1(Ω)/R and its dual; see [22].

Proposition 3.3 (state equation). Suppose that Assumption 3.1 holds and that
‖u0‖H1(Ω) and ‖J0‖L2(Ω) are sufficiently small. Then the homogenized state equa-
tions (3.13)–(3.14), and hence the original system (3.1)–(3.7), possess at least one
variational solution. Every such solution satisfies the a priori bound

‖u‖2
H1(Ω) + ‖J‖2

L2(Ω) ≤ c1 ‖J0‖2
L2(Ω)

(
1 + ‖J0‖2

L2(Ω) + |u|2
)

+ c2 ‖u0‖2
H1(Ω)

(
1 + ‖J0‖2

L2(Ω) + |u|2
)
.(3.16)

Moreover, we have the bound

‖p‖L2(Ω)/R + ‖φ‖H1(Ω)/R ≤ c3

(
‖u‖H1(Ω) + ‖u‖2

H1(Ω) + ‖J‖L2(Ω) + ‖J‖2
L2(Ω)

)
.

(3.17)

Proof. The proof can be found in the appendix.
Remark 3.4. The constants c1 and c2 are of the form ci(1 − ‖J0‖ − ‖u0‖)−1.

From the proof we infer that the larger the viscosity η of the fluid is and the smaller
the conductivity σ is, the larger the liftings u0 and J0 in Proposition 3.3 are allowed
to become, and thus the larger the boundary data h and the control Iinj are allowed
to become.

The variational form of the state equation (3.13) gives rise to the definition of the
PDE constraint operator

e : Ŷ × R
3 → Ŷ ′.(3.18)
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1833

The components e1(ŷ, u)(v), . . . , e4(ŷ, u)(ψ) are defined through the left-hand sides of
(3.13). This concise form of the MHD system

e(ŷ, u) = 0 in Ŷ ′(3.19)

will be used below to argue existence of the Lagrange multipliers in the optimality
system, based on the following results on the linearization of e whose proofs are only
given as necessary.

Lemma 3.5 (linearized PDE constraint). The operator e is infinitely Fréchet
differentiable. Its first order partial derivative with respect to the state variables in
the direction of δy = (δu, δp, δJ , δφ) is given by

(3.20) e1
y(ŷ, u)(δy)(v) = a1(δu,v) − c(δJ ,B,v) − c(Ĵ + Λ(IinjJ̃ inj · n), B̃(δJ),v)

+ b(δu, û+u0,v)+b(û+u0, δu,v)+d1(v, δp),

e2
y(ŷ, u)(δy)(q) = d1(δu, q),

e3
y(ŷ, u)(δy)(K) = a2(δJ ,K)+c(K,B, δu)+c(K, B̃(δJ), û+u0)+d2(K, δφ),

e4
y(ŷ, u)(δy)(ψ) = d2(δJ , ψ),

where we have set again B = B̃(Λ(IinjJ̃ inj · n)) + B̃(Ĵ) + B̃(Jext) + B̃(J inj) + Bext.
As for the control variables, the first order derivative in the direction of δu = (δIext,
δIinj, δBext) is

(3.21)

e1
u(ŷ, u)(δu)(v) = −c(δIinj ·Λ(J̃ inj · n),B,v) − c(Ĵ + Λ(IinjJ̃ inj · n), δIinj ·B̃(Λ(J̃ inj ·n))

+ δIext · B̃(J̃ext) + δIinj · B̃(J̃ inj) + δBext · B̃ext,v),

e2
u(ŷ, u)(δu)(q) = 0,

e3
u(ŷ, u)(δu)(K) = a2(δIinj · Λ(J̃ inj · n),K),

+ c(K, δIinj·B̃(Λ(J̃ inj·n))+δIext·B̃(J̃ext)+δIinj·B̃(J̃ inj)+δBext·B̃ext, û+u0)

e4
u(ŷ, u)(δu)(ψ) = 0.

We note that in its strong form, the system ey(ŷ, u)(δy) = (ē, f̄ , ḡ, h̄) ∈ Ŷ ′ corre-
sponds to

−ηΔδu + ρ(δu · ∇)(û + u0) + ρ((û + u0) · ∇)δu + ∇δp

= δJ ×B + (Ĵ + J0) × B̃(δJ) + ē,

∇ · δu = f̄ ,

σ−1δJ − δu×B − (û + u0) × B̃(δJ) + ∇δφ = ḡ,

∇ · J = h̄.

The first and third components of eu(ŷ, u)δu must be read as

− δIinj · Λ(J̃ inj · n) ×B − (Ĵ + Λ(IinjJ̃ inj · n))

×
(
δIinj · B̃(Λ(J̃ inj · n)) + δIext · B̃(J̃ext) + δIinj · B̃(J̃ inj) + δBext · B̃ext

)
and

σ−1δIinj · Λ(J̃ inj · n) − (û + u0)

×
(
δIinj · B̃(Λ(J̃ inj · n)) + δIext · B̃(J̃ext) + δIinj · B̃(J̃ inj) + δBext · B̃ext

)
,
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1834 ROLAND GRIESSE AND KARL KUNISCH

respectively.
In preparation for the following proposition, let us define the operator C : Ŷ → Ŷ ′

by its components:

C1(ŷ, u)(δu, δp, δJ , δφ)(v) = −c(δJ ,B,v) − c(Ĵ + J0, B̃(δJ),v) + b(δu, û + u0,v)

+ b(û + u0, δu,v),

C2(ŷ, u)(δu, δp, δJ , δφ)(q) = 0,

C3(ŷ, u)(δu, δp, δJ , δφ)(K) = c(K,B, δu) + c(K, B̃(δJ), û + u0),

C4(ŷ, u)(δu, δp, δJ , δφ)(ψ) = 0.

The quantities u0 and J0 are the liftings according to Lemma 3.2 for given arbitrary
but fixed controls u and boundary data h.

Proposition 3.6 (linearized state equation). For any given ŷ ∈ Ŷ , u ∈ R
3, and

h ∈ H1/2(∂Ω), the linearization with respect to the state variables of the operator e
can be decomposed as

ey(ŷ, u) = A + C(ŷ, u),(3.22)

where A : Ŷ → Ŷ ′ is an isomorphism, independent of (ŷ, u), and C(ŷ, u) : Ŷ → Ŷ ′ is
a compact linear operator.

Proof. The isomorphism property of A has been noted previously; see the defini-
tion of A immediately preceding Proposition 3.3. As for compactness of C, we recall
that B ∈ L3+ε(Ω) (see Lemma 2.4 and Assumption 3.1) and infer from Lemma 2.6
that δJ 
→ δJ × B is compact from L2(Ω) to H−1(Ω). Hence δJ 
→ c(δJ ,B, ·) is

compact from L2(Ω) to H−1(Ω). Similarly, by Lemmas 2.4 and 2.6, δJ 
→ J ×B̃(δJ)

is compact from L2(Ω) to H−1(Ω), and hence δJ 
→ c(J , B̃(δJ), ·) is compact from
L2(Ω) to H−1(Ω). In addition, δu 
→ b(δu, û + u0, ·) and δu 
→ b(û + u0, δu, ·) are

continuous from H1
0(Ω) to L3/2(Ω), which embeds compactly into W−1,3−ε(Ω) for all

ε > 0 and thus into H−1(Ω). This completes the proof of compactness for C1. As for
C3, we let p = 2(3+ε)/(1+ε) < 6 and observe that δu 
→ c(·,B, δu) is continuous from
Lp(Ω) to L2(Ω). In view of the compact embedding H1

0(Ω) ↪→ Lp(Ω), this map is

compact from H1
0(Ω) to L2(Ω). Finally, since δJ 
→ B̃(δJ) is continuous from L2(Ω)

to V 1(Ω), which embeds compactly into L3(Ω), the map δJ 
→ c(·, B̃(δJ), û + u0) is
compact from L2(Ω) to L2(Ω), which completes the proof.

The previous proposition allows us to draw the following conclusions about the
properties of the linearized state operator ey(ŷ, u).

Proposition 3.7 (bounded invertibility of ey(ŷ, u)). Except for a countable set
of (η, σ) values, the operator ey(ŷ, u) is an isomorphism. Moreover, ey(ŷ, u) is an
isomorphism whenever η is sufficiently large and σ is sufficiently small.

Proof. For (ē, f̄ , ḡ, h̄) ∈ Ŷ ′, consider the equation

(A + C(ŷ, u)) (δu, δp, δJ , δφ) = (ē, f̄ , ḡ, h̄)(3.23)

and define A : Ŷ → Ŷ ′ through its coordinates

A1(δu, δp, δJ , δφ)(v) =

∫
Ω

∇δu : ∇v −
∫

Ω

(∇ · v)P(δp),

A2 = A2,

A3(δu, δp, δJ , δφ)(K) =

∫
Ω

δJ ·K +

∫
Ω

K · ∇(δφ),

A4 = A4,
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1835

where (v,K) ∈ H1
0(Ω) × L2(Ω), i.e., A arises from A by setting η = σ = 1. Multi-

plying the first two equations in (3.23) by η−1 and the last two by σ, we find that the
following equation is equivalent to (3.23):

(A + η−1C1 + σC2)(δu, δ̂p, δJ , δ̂φ) = (η−1ē, f̄ , σḡ, h̄),(3.24)

where δ̂p = η−1δp and δ̂φ = σδφ and C1 = (C1, C2, 0, 0)�, C2 = (0, 0, C3, C4)
�. From

the proof of Proposition 3.6 we have that A : Ŷ → Ŷ ′ is an isomorphism and that C1

and C2 are compact operators from Ŷ to Ŷ ′. Moreover, (3.24) is equivalent to

(I + η−1K1 + σK2)(δu, δ̂p, δJ , δ̂φ) = (e, f, g, h),(3.25)

where (e, f, g, h) = A−1(η−1ē, f̄ , σḡ, h̄), and

K1 = A−1C1, K2 = A−1C2.

Hence, K1 and K2 are compact operators in Ŷ . Therefore the spectrum of K1, denoted
by

∑
(K1), consists of 0 and at most countably many eigenvalues, with 0 being the

only possible accumulation point. For −η �∈
∑

(K1) we have

(I + σ(I + η−1K1)
−1K2)(δu, δ̂p, δJ , δ̂φ) = (I + η−1K1)

−1(e, f, g, h).(3.26)

Since (I + η−1K1) has a continuous inverse, we find that (3.26), and hence (3.23) are
solvable if −σ−1 �∈

∑
((I + η−1K1)

−1K2). Since the set of points S := {(η, σ−1) :
−η ∈ Σ(K1),−σ−1 ∈ Σ((I − η−1K1)

−1K2)} is countable in R
2, the first claim fol-

lows. The second claim is a consequence of a Neumann series argument applied to
(3.25).

From the proof of Proposition 3.7 we conclude that ey(ŷ, u), and therefore ex(ŷ, u),
is generically surjective. Lack of surjectivity of ey(ŷ, u) occurs if and only if (η, σ−1) ∈
S. In that case, Fredholm’s alternative provides another way to prove surjectivity of
ex(ŷ, u). Note that eu(ŷ, u) δu can be written in the form

eu(ŷ, u) δu = δIinj ψ1 + δIext ψ2 + δBext ψ3

with ψi ∈ Ŷ ′. In the following proposition, (A + C)� : Ŷ ′ → Ŷ refers to the Hilbert
space adjoint.

Proposition 3.8 (surjectivity of ex(ŷ, u)). If span {ψ1, ψ2, ψ3} ⊇ ker(A + C)�,
then ex(ŷ, u) is surjective.

Proof. Since A : Ŷ → Ŷ ′ is an isomorphism and C is compact, the Fredholm
alternative implies that the range of A + C is closed and R(A + C)⊥ = ker(A + C)�,

with dim ker(A + C)� =: L < ∞. Let {ωi}Li=1 ⊂ Ŷ ′ be a basis for ker(A + C)�,

orthonormalized such that 〈ωi, ωj〉Ŷ ′ = δij . For arbitrary f̂ ∈ Ŷ ′, define f̃ = f̂ −∑L
i=1〈f̂ , ωi〉Ŷ ′ ·ωi. Then f̃ ∈ ker(A+C)�,⊥ and there exists xf̃ such that (A+C)xf̃ =

f̃ . By assumption there exist (δIinj, δIext, δBext) such that eu(ŷ, u)δu = f̂ − f̃ and
the claim follows.

Having established these properties for the stationary MHD system and its
linearization, we now return to the optimal control problem. We recall that we
aim to
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1836 ROLAND GRIESSE AND KARL KUNISCH

minimize f(ŷ, u) =
αu

2
‖u− ud‖2

L2(Ωu,obs)
+

αB

2
‖B −Bd‖2

L2(ΩB,obs)

+
αJ

2
‖J − Jd‖2

L2(ΩJ,obs)
+

γext

2
|Iext|2 +

γinj

2
|Iinj|2 +

γB
2
|Bext|2(P)

over ŷ ∈ Ŷ and u ∈ Uad

subject to e(ŷ, u) = 0,

where u = û+u0 and J = Ĵ +J0. B is defined in (3.14), and Uad in Assumption 3.9
below. Recall also that the lifting J0, and hence B, depends on the control Iinj. In
order to ensure well-posedness of problem (P), we need the following assumption on
the problem data.

Assumption 3.9 (control problem data). Assume that the boundary data

‖h‖H1/2(∂Ω)

is sufficiently small, and that for some fixed r > 0 and all controls in the set

Uad = {(Iext, Iinj, Bext) ∈ R
3 : |Iinj| ≤ r},

the liftings u0 and J0 = Λ(IinjJ̃ inj · n) allow the existence of a solution to the sta-
tionary MHD system.

In fact, smallness of h and Iinj implies by Lemma 3.2 smallness of u0 and J0,
which in turn implies existence of solutions according to Proposition 3.3.

Proposition 3.10 (existence of a global minimum). Under Assumptions 3.1

and 3.9, problem (P) possesses at least one global optimal solution in Ŷ × Uad.
Proof. The proof follows along the usual lines. We set m = inf f(ŷ, u), where

the infimum extends over all state/control pairs (ŷ, u) ∈ Ŷ × Uad which satisfy the
state equation (admissible pairs). Note that m is nonnegative and finite since f
is nonnegative and the set of admissible pairs is nonempty (Assumption 3.9 and
Proposition 3.3). Now if {(ŷn, un)} is a minimizing sequence, we can infer from the
cost functional that the controls un are bounded in R

3. By the a priori estimate
(3.16), ŷn is bounded in Ŷ . We extract weakly convergent subsequences, still denoted
by index n, such that

ûn ⇀ û in H1
0(Ω), pn ⇀ p in L2(Ω)/R,

Ĵn ⇀ Ĵ in L2(Ω), φn ⇀ φ in H1(Ω)/R,

un → u in R
3.

Note that the lifting u0 is independent of n and that Jn
0 = Λ(IninjJ̃ inj · n) converges

strongly to some J0 in L2(Ω). In order to pass to the limit in e(ŷn, un), we consider
the individual terms in (3.13). For the terms involving the bilinear forms ai and di,
the convergence is evident. In addition, b(ûn, ûn,v) → b(û, û,v) is known from the
theory of Navier–Stokes problems, see [7, Chap. IV, Thm. 2.1]. The convergence of all
terms involving the trilinear form c follows from Lemmas 2.3 and 2.6. Consequently,
the weak limit (ŷ, u) satisfies the state equation e(ŷ, u) = 0, and hence the weak limit

(û+u0, p, Ĵ+J0, φ) satisfies our inhomogeneous MHD system. The claim now follows
from the weak lower semicontinuity of the objective, by which

m ≤ f(ŷ, u) ≤ lim inf
n→∞

f(ŷn, un) = m.
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1837

Theorem 3.11 (optimality system). Let Assumptions 3.1 and 3.9 hold, and let

the state ŷ = (û, p, Ĵ , φ) ∈ Ŷ and control u = (Iext, Iinj, Bext) ∈ Uad constitute a local
optimal pair for problem (P). In addition, let ex(ŷ, u) be surjective. Then there exists
a unique Lagrange multiplier

λ = (v, q,K, ψ) ∈ Ŷ

which satisfies the adjoint equations

a1(δu,v) + b(δu,u,v) + b(u, δu,v) + d1(δu, q) + c(K,B, δu)

+ αu

∫
Ωu,obs

(u− ud) · δu = 0,(3.27a)

d1(v, δp) = 0,(3.27b)

−c(δJ ,B,v) − c(J , B̃(δJ),v) + a2(δJ ,K) + c(K, B̃(δJ),u)

+ d2(δJ , ψ) + αB

∫
ΩB,obs

(B −Bd) · B̃(δJ) + αJ

∫
ΩJ,obs

(J − Jd) · δJ = 0,(3.27c)

d2(K, δφ) = 0(3.27d)

for all (δu, δp, δJ , δφ) ∈ H1
0(Ω) × L2(Ω)/R × L2(Ω) × H1(Ω)/R, and which satisfy

the three scalar optimality conditions

− c(J , B̃(J̃ext),v) + c(K, B̃(J̃ext),u) + γextIext + αB

∫
ΩB,obs

(B −Bd) · B̃(J̃ext) = 0,

(3.28a)

[
− c(J , B̃(J̃ inj),v) + c(K, B̃(J̃ inj),u) + γinjIinj + αB

∫
ΩB,obs

(B −Bd) · B̃(J̃ inj)

(3.28b)

−
〈
J̃ inj · n, ψ

〉
∂Ω∩∂Ωinj

]
(I inj − Iinj) ≥ 0 for all |I inj| ≤ r,

− c(J , B̃ext,v) + c(K, B̃ext,u) + γBBext + αB

∫
ΩB,obs

(B −Bd) · B̃ext = 0.

(3.28c)

Proof. Our proof relies on a classical abstract multiplier result; see, e.g., Maurer
and Zowe [20]. Since f is Fréchet differentiable, e is continuously Fréchet differentiable,
and ex is assumed surjective at (ŷ, u), it follows that there exists a Lagrange multiplier

λ ∈ Ŷ , which satisfies

fy(ŷ, u)(δy) +
〈
λ, ey(ŷ, u)(δy)

〉
= 0 for all δy ∈ Ŷ ,

fu(ŷ, u)(δu− δu) +
〈
λ, eu(ŷ, u)(δu− δu)

〉
≥ 0 for all δu ∈ Uad.

(3.29)

Above, the duality holds in Ŷ × Ŷ ′. It is now straightforward to verify that (3.29) is
nothing else but (3.27)–(3.28).

The elements of the Lagrange multiplier λ are termed the adjoint velocity v,
the adjoint pressure q, the adjoint current density K, and the adjoint potential ψ,
respectively, all defined on Ω.

In order to improve our understanding of the adjoint system (3.27), we also para-
phrase it in its strong form. Exploiting the self-adjointness of the linear Biot–Savart
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1838 ROLAND GRIESSE AND KARL KUNISCH

operator B̃, we obtain the dual state equations on Ω,

�(∇u)�v − �(u · ∇)v − ηΔv + ∇q −B ×K = −αuχΩu,obs
(u− ud),(3.30)

σ−1K − B̃(K × u + v × J) + ∇ψ −B × v

= −αJχΩJ,obs
(J − Jd) − αBχΩB,obs∩ΩB̃(B −Bd),(3.31)

plus incompressibility conditions

∇ · v = 0 on Ω, ∇ ·K = 0 on Ω(3.32)

and boundary conditions

v = 0 on ∂Ω, K · n = 0 on ∂Ω.(3.33)

The symbol χA denotes the characteristic function of a set A. Note that the controls
Iext, Iinj, and Bext appear (hidden within B) in the adjoint equations (3.27a) and
(3.27c), or in (3.30)–(3.31) for that matter. The reason is that the state equations
(3.1)–(3.2) contain the “state times control” terms u×B (through Ohm’s Law (1.3))
and J ×B (the Lorentz force).

Let us now turn to a condition which ensures the strict local optimality of a given
point (y, u, λ) satisfying the first order optimality condition set forth in Theorem 3.11.
To this end, we define the Lagrangian function for problem (P) as

L(ŷ, u, λ) =
αu

2
‖u−ud‖2

L2(Ωu,obs)
+

αB

2
‖B−Bd‖2

L2(ΩB,obs)
+

αJ

2
‖J −Jd‖2

L2(ΩJ,obs)

+
γext

2
|Iext|2 +

γinj

2
|Iinj|2 +

γB
2
|Bext|2 + a1(û + u0,v) − c(Ĵ + J0,B,v)

+ b(û + u0, û + u0,v) + d1(v, p) − d1(û, q) + a2(Ĵ + J0,K)

+ c(K,B, û + u0) + d2(K, φ) − d2(Ĵ , ψ) +
〈
IinjJ̃ inj · n, ψ

〉
∂Ω∩∂Ωinj

,

where again u = û+u0, J = Ĵ+Λ(IinjJ̃ inj ·n), and B is defined in (3.14). Moreover,
u0 is the fixed lifting of the velocity boundary data h from Lemma 3.2, and B is still
taken according to (3.14). It is readily checked that the following quadratic form is
the Hessian of L with respect to the state/control pair:

L′′(ŷ, u, λ)[(δy, δu)]2 = αu‖δu‖2
L2(Ωu,obs)

+ αJ‖δJ‖2
L2(ΩJ,obs)

+ αB‖δB̃‖2
L2(ΩB,obs)

+ γext|δIext|2 + γinj|δIinj|2 + γB |δBext|2 + 2b(δu, δu,v)

− 2c(δJ , δB̃,v) + 2c(K, δB̃, δu)

with the abbreviation

δB̃ = B̃(δJ) + δIinjB̃(J̃ inj) + δIextB̃(J̃ext) + δBextB̃ext.

Proposition 3.12 (second order sufficient conditions). Suppose that (ŷ, u, λ) sat-
isfies the optimality system consisting of (3.13)–(3.14), (3.27)–(3.28), and that ey(ŷ, u)
is boundedly invertible. If, moreover,

αu‖u− ud‖2
L2(Ωu,obs)

+ αB‖B −Bd‖2
L2(ΩB,obs)

+ αJ‖J − Jd‖2
L2(ΩJ,obs)
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1839

is sufficiently small, then there exists a neighborhood U of (ŷ, u) and κ > 0 such that

f(y, u) ≥ f(ŷ, u) + κ
(
‖u− u‖2 + ‖y − ŷ‖2

Ŷ

)
holds for all (y, u) ∈ U satisfying the state equation. In particular, (ŷ, u) is a strict
local optimum for (P).

Proof. We shall argue that there exists ρ > 0 such that the coercivity condition

L′′(ŷ, u, λ)[(δy, δu)]2 ≥ ρ
(
‖δy‖2

Ŷ
+ |δu|2

)
(3.34)

holds for all (δy, δu) ∈ Ŷ ×R
3, which satisfy the linear MHD system (see Lemma 3.5)

ey(ŷ, u) δy + eu(ŷ, u) δu = 0.(3.35)

The claim then follows from a Taylor series expansion of L at (ŷ, u, λ); see, e.g., [20,
Thm. 5.6]. In fact, since ‖δp‖L2(Ω)/R + ‖δφ‖H1(Ω)/R ≤ c (‖δu‖H1(Ω) + ‖δJ‖L2(Ω))
holds (cf. Lemma 2.2), we need to verify (3.34) only for the components δu and δJ
of δy.

Since ey(ŷ, u) is surjective, e�y(ŷ, u) : Ŷ → Ŷ ′ has closed range and is continuously
invertible on its range [2]. Hence in view of (3.30)–(3.33), there exists κ1 > 0 such
that

‖v‖H1(Ω) + ‖K‖L2(Ω)

≤ κ1

(
αu‖u−ud‖2

L2(Ωu,obs)
+αB‖B−Bd‖2

L2(ΩB,obs)
+αJ‖J−Jd‖2

L2(ΩJ,obs)

)
holds. From (3.35) and the bounded invertibility of ey(ŷ, u), we have

‖δJ‖L2(Ω) + ‖δu‖H1(Ω) ≤ 2‖δy‖Ŷ ≤ κ2|δu|(3.36)

for a constant κ2 > 0 independent of δu ∈ R
3. Hence

|b(δu, δu,v)| ≤ κ3|δu|2‖v‖H1(Ω)

(3.37)

≤ κ1κ3|δu|2
(
αu‖u−ud‖2

L2(Ωu,obs)
+αB‖B−Bd‖2

L2(ΩB,obs)
+αJ‖J−Jd‖2

L2(ΩJ,obs)

)
.

Further there exists κ4 independent of δu such that

|c(δJ , δB̃,v)| + |c(K, δB̃, δu)|
≤ κ4

(
‖δJ‖L2(Ω) + |δu|

) (
‖δJ‖L2(Ω)‖v‖H1(Ω) + ‖K‖L2(Ω)‖δu‖H1(Ω)

)
≤ C

(
αu‖u−ud‖2

L2(Ωu,obs)
+αB‖B−Bd‖2

L2(ΩB,obs)
+αJ‖J−Jd‖2

L2(ΩJ,obs)

)
,

where C = κ1κ2(κ2 + 1)κ4|δu|2. This last estimate, together with (3.36) and (3.37),
implies (3.34).

4. An operator splitting scheme. In this section, we address an operator
splitting scheme for the numerical solution of the MHD state equations (3.13)–(3.14).
Our approach is based on the hypothesis that one wants to decouple the system and
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1840 ROLAND GRIESSE AND KARL KUNISCH

put to use existing and validated solvers for the Navier–Stokes equations and for div-
curl systems. The same idea can be applied to the adjoint system. Different iterative
schemes for MHD have been proposed; see, for instance [22, 5]. In [5] two decoupling
algorithms for the velocity-magnetic field formulation are discussed and numerical
examples are given. This work contains a stability result for a special geometry
but no convergence analysis. The classical proofs (see, e.g., [8]) for general purpose
decomposition techniques rely on monotonicity of the differential operators, not only
in each variable separately, but also jointly in all variables simultaneously, to obtain
unconditional convergence with respect to the problem data. This behavior is not
possible for MHD systems, and localization naturally leads to smallness requirements.

With this in mind, we analyze the following iterative scheme to compute a solution
of the MHD system for given controls u = (Iext, Iinj, Bext) ∈ Uad and given velocity
boundary data h. As before, u0 and J0 denote the liftings according to Lemma 3.2.

Algorithm 4.1 (operator splitting scheme).

(1) Choose an initial guess Ĵ0∈ L2
div(Ω); set n = 0.

(2) Solve the div-curl system for Bn+1 ∈ V 1(R3),

∇ ·Bn+1 = 0, ∇× (μ−1Bn+1) = Ĵn,

with the interface condition [Bn+1]∂Ω = 0.

(3) Solve the Navier–Stokes system with Lorentz force for ûn+1 ∈ H1
0(Ω) and

pn+1 ∈ L2(Ω)/R,

−ηΔûn+1 + ρ(ûn+1· ∇)ûn+1+ ρ(ûn+1 · ∇)u0 + ρ(u0 · ∇)ûn+1+ ∇pn+1

= ηΔu0 − ρ(u0 · ∇)u0 + (Ĵn+J0) × (Bn+1+B0),

∇ · ûn+1 = 0

with homogeneous Dirichlet boundary data on ∂Ω.

(4) Solve for Ĵn+1∈ L2
div(Ω) and φn+1 ∈ H1(Ω)/R

σ−1Ĵn+1+ ∇φn+1 = (ûn+1+u0) × (Bn+1+B0) − σ−1J0,

∇ · Ĵn+1 = 0

with boundary condition Ĵn+1 · n = 0 on ∂Ω.

(5) Unless ‖Ĵn+1−Ĵn‖L2(Ω) is sufficiently small, increase n and go to (2).

Note that the solution to step (2) is given by the Biot–Savart operator B̃(Ĵn).

In steps (3) and (4), B0 = B̃(J0) + B̃(Jext) + B̃(J inj) + Bext collects the constant
contributions to the total magnetic field. Obviously, instead of computing the liftings
u0 and J0 and repeatedly solving homogeneous problems in steps (3) and (4), one

may directly address the inhomogeneous ones with unknowns ûn+1+u0 and Ĵn+1+J0.
The same applies to the div-curl system in step (2), which yields Bn+1+B0 −Bext if

Ĵn is replaced with Ĵn+J0 + Jext + J inj.
Remark 4.2 (alternative form of step (4)). Note that step (4) in Algorithm 4.1

above is equivalent to the solution of the div-curl system on Ω,

∇ · Ĵn+1 = 0,

∇× (σ−1Ĵn+1) = ∇×
[
(ûn+1+u0) × (Bn+1+B0)

]
−∇× (σ−1J0)
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1841

with boundary condition Ĵn+1 · n = 0 on ∂Ω, provided that the right-hand side is in
L2(Ω). This can be guaranteed if J0, Bext, and ∂Ω are smooth enough.

For the proposed scheme, we have the following conditional convergence result.
Proposition 4.3 (convergence of the operator splitting scheme). Let u ∈ R

3

and h ∈ H1/2(∂Ω) be a given control vector and boundary data and suppose that
η is sufficiently large and σ is sufficiently small. Then there exists ρJ > 0 such
that whenever the initial iterate Ĵ0 ∈ L2

div(Ω) satisfies ‖Ĵ0 + J0‖L2(Ω) < ρJ , then

the iterates (Ĵn, ûn) of Algorithm 4.1 converge in L2(Ω) ×H1(Ω) to the necessarily

unique solution of (3.13)–(3.14) which satisfies ‖Ĵ + J0‖L2(Ω) ≤ ρJ .
Proof. The proof uses the Banach fixed point theorem. This choice is due to the

fact that the nonlinearities in (3.13)–(3.14) are not of strictly monotone or energy
preservation type, so that techniques analogous to those developed for decomposition
methods, e.g., in [8], cannot be used. Let T : L2

div(Ω) → L2
div(Ω) denote the operator

which assigns to Ĵn the value Ĵn+1 defined by steps (2)–(4) of Algorithm 4.1. Let
us denote by ρI a common bound for the inhomogeneities ũ = (Iext, Iinj) and h, i.e.,

|ũ| ≤ ρI and ‖h‖H1/2(∂Ω) ≤ ρI . Given the solenoidal current field Ĵn, we infer from

Lemma 2.4 the existence of Bn+1 satisfying the equations in step (2) and the a priori
estimate

‖Bn+1+B0‖L3(Ω) ≤ c1 μ
(
‖Ĵn + J0‖L2(Ω) + |ũ|

)
+ c1|Bext|.

Here and below, the constants ci are independent of μ, η, σ, iteration index n, and
controls u. Let us further assume that ‖Ĵn+J0‖L2(Ω) ≤ ρJ . Then we have

‖Bn+1+B0‖L3(Ω) ≤ c1
(
μ(ρJ + ρI) + |Bext|

)
.(4.1)

Standard estimates for the Navier–Stokes equations in step (3) imply that

‖ûn+1+u0‖H1(Ω) ≤ μη−1c2

(
‖Ĵn+J0‖2

L2(Ω) + |ũ|2
)

+ c2‖Ĵn+J0‖|Bext| + c2

(
‖h‖H1/2(∂Ω) + ‖h‖2

H1/2(∂Ω)

)
≤ c2

(
μη−1(ρ2

J + ρ2
I) + ρJ |Bext| + ρI + ρ2

I

)
.(4.2)

By Lemma 2.1 and a direct computation (or by [7, Chap. I, Cor. 4.1]), the system

σ−1Ĵ + ∇φ = f on Ω, ∇ · Ĵ = 0 on Ω

with given f ∈ L2(Ω) has a unique solution J ∈ L2
div(Ω) and φ ∈ H1(Ω)/R which

satisfies ‖J‖L2(Ω) ≤ σ ‖f‖L2(Ω). Hence we conclude from step (4) and (4.1) and (4.2)
that

(4.3) ‖Ĵn+1+J0‖L2(Ω) ≤ σ c′3 ‖û
n+1 + u0‖L6(Ω)‖Bn+1 + B0‖L3(Ω)

≤ σ c′3

(
μη−1(ρ2

J + ρ2
I) + ρJ |Bext| + ρI + ρ2

I

)(
μ(ρJ + ρI) + |Bext|

)
+ c′3|Iinj|

≤ σ c3

(
μ2η−1(ρ3

J + ρ3
I) + |Bext|

(
μρJ(ρJ + ρI) + μη−1(ρ2

J + ρ2
I) + ρJ |Bext|

)
+ (ρI + ρ2

I)
(
μ(ρJ + ρI) + |Bext|

))
+ c3|Iinj|.
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1842 ROLAND GRIESSE AND KARL KUNISCH

Concerning the initialization, note that Ĵ0 can be taken as zero. Then ‖Ĵ0+J0‖L2(Ω)

is bounded by c3|Iinj|. Choosing ρJ := 2c3|Iinj| and assuming that ‖Ĵn+J0‖L2(Ω) ≤ ρJ

by induction, we obtain from (4.3) that ‖Ĵn+1+J0‖L2(Ω) ≤ ρJ , provided that, for
instance, σ is sufficiently small, or μ and |Bext| are sufficiently small. From (4.1) and
(4.2) follows the existence of constants ρB and ρu independent of n such that

‖Bn+B0‖L3(Ω) ≤ ρB and ‖ûn+u0‖H1(Ω) ≤ ρu(4.4)

for all n. To prove that T is a contraction, let Ĵ i ∈ L2
div(Ω), i = 1, 2, and let Ki

be their images under T . Further let Bi and ûi denote the associated magnetic and
velocity fields according to Algorithm 4.1. Then

‖B1 −B2‖H1(Ω) ≤ μ c4‖Ĵ1 − Ĵ2‖L2(Ω).(4.5)

Here and below, the constants are also independent of Ĵ1 and Ĵ2. Moreover, U =
û1 − û2 ∈ H1

0(Ω) satisfies

− ηΔU + ρ(U · ∇)(û1 + u0) + ρ((û2 + u0) · ∇)U + ∇P

= (Ĵ1 − Ĵ2) × (B1 + B0) + (Ĵ2 + J0) × (B1 −B2)

for some P ∈ L2(Ω)/R. This implies that

η‖∇U‖2
L2(Ω) ≤ c5

(
ρu‖∇U‖2

L2(Ω) + ρB‖∇U‖L2(Ω)‖Ĵ1 − Ĵ2‖L2(Ω)

+ ρJ‖∇U‖L2(Ω)‖B1 −B2‖L3(Ω)

)
≤ c5

(
ρu‖∇U‖2

L2(Ω) +
(
ρB + μ c4 ρJ

)
‖∇U‖L2(Ω)‖Ĵ1 − Ĵ2‖L2(Ω)

)
≤ c5

(
ρu‖∇U‖2

L2(Ω) + η/2‖∇U‖2
L2(Ω) +

(
ρB + μ c4 ρJ

)2
/(2η)‖Ĵ1 − Ĵ2‖2

L2(Ω)

)
.

Hence if η is sufficiently large, or ρu is sufficiently small (which can be achieved by μ,
|Bext|, and ρI sufficiently small), we have

‖∇U‖L2(Ω) ≤ c6 η
−1(ρB + μ c4 ρJ)‖Ĵ1 − Ĵ2‖L2(Ω).(4.6)

Finally, we obtain from step (4)

‖K1 −K2‖ ≤ σ c′7

(
‖U‖H1(Ω)‖B1 + B0‖L3(Ω) + ‖û2 + u0‖H1(Ω)‖B1 −B2‖L3(Ω)

)
≤ σ c7

(
η−1ρB(ρB + μρJ) + μ c4 ρu

)
‖Ĵ1 − Ĵ2‖L2(Ω).(4.7)

Hence we conclude that if σ is sufficiently small, or if μ is sufficiently small and η
sufficiently large, then T is a contraction on the ball {J : ‖Ĵ +J0‖L2(Ω) < ρJ}.

5. Conclusion and outlook. In this paper, we have presented and analyzed
an optimal control problem for the stationary MHD system. We derived necessary
and sufficient conditions for local optimal solutions. In addition, we analyzed an
iterative scheme for the numerical solution of the MHD state equations which is
tailored to make use of existing Navier–Stokes and div-curl solvers. We believe that
in the face of industrial MHD applications, there is ample room to extend our results
in several directions. Of particular interest are the cases of instationary MHD flows,
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OPTIMAL CONTROL FOR A STATIONARY MHD SYSTEM 1843

unknown current densities in external conductors, flows with thermal coupling and
Ohmic heating, and the case of material-dependent magnetic permeability. All of
the above present additional technical difficulties, which are the subject of future
investigations. Finally, devising an efficient numerical algorithm to solve optimal
control problems involving MHD flows presents another challenging task.

Appendix. Proof of Proposition 3.3. Let us define T : Ŷ → Ŷ according to

(δu, δp, δJ , δφ) = T (û, p, Ĵ , φ)

if and only if

A(δu, δp, δJ , δφ) = R(û, p, Ĵ , φ)(A.1)

holds in Ŷ ′. That is, T is the solution operator of a linear PDE, which depends
nonlinearly on the data (û, p, Ĵ , φ). Defining the components of R as

R1(û, p, Ĵ , φ)(v) = c(Ĵ + J0, B̃(J0) + B̃(Ĵ) + B̃(Jext) + B̃(J inj) + Bext,v)

− a1(u0,v) − b(û + u0, û + u0,v),

R2(û, p, Ĵ , φ)(q) = 0,

R3(û, p, Ĵ , φ)(K) = −c(K, B̃(J0) + B̃(Ĵ) + B̃(Jext) + B̃(J inj) + Bext, û + u0)

− a2(J0,K),

R4(û, p, Ĵ , φ)(ψ) = 0,

we easily verify that the solutions to the homogenized problem (3.13)–(3.14) are

exactly the fixed points of T . In view of Proposition 3.6 below, A : Ŷ → Ŷ ′ is
an isomorphism, and hence T is well defined from Ŷ to itself. We now confirm
that T is compact. To this end, we consider a bounded and weakly convergent
sequence (ûn, pn, Ĵn, φn) ⇀ (û, p, Ĵ , φ) in Ŷ . Since the norm in Ŷ ′ of the right-

hand side in (A.1) is a quadratic polynomial in the norms of û and Ĵ , the sequence

(δun, δpn, δJn, δφn) := T (ûn, pn, Ĵn, φn) is bounded in Ŷ and thus possesses a weakly

convergent subsequence in Ŷ , i.e., (δun, δpn, δJn, δφn) ⇀ (δu, δp, δJ , δφ). Using
Lemma 2.3, one confirms that the weak limit (δu, δp, δJ , δφ) satisfies (δu, δp, δJ , δφ) =

T (û, p, Ĵ , φ); i.e., T is weakly continuous. The difference (δun, δpn, δJn, δφn) −
(δu, δp, δJ , δφ) satisfies (A.1) with right-hand side

R(û, p, Ĵ , φ) −R(ûn, pn, Ĵn, φn),

which converges to zero strongly in Ŷ ′, as a straightforward application of Lemmas 2.3,
2.4, and 2.6 shows. Hence T is indeed compact.

Now let (û, p, Ĵ , φ) be a fixed point of s · T for any s ∈ [0, 1]; i.e., (û, p, Ĵ , φ)
satisfies (A.1) with the right-hand side multiplied by s. Testing this system with

(û, p, Ĵ , φ), we obtain

η ‖∇û‖2
L2(Ω) + σ−1‖Ĵ‖2

L2(Ω) = s
(
c(J0,B, û) − c(Ĵ ,B,u0) − b(û,u0, û)

− a1(u0, û) − a2(J0, Ĵ)
)D

ow
nl

oa
de

d 
12

/2
9/

14
 to

 1
43

.5
0.

47
.5

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1844 ROLAND GRIESSE AND KARL KUNISCH

with B according to (3.14). By Poincaré’s inequality ‖û‖L2(Ω) ≤ cP ‖∇û‖L2(Ω), one
obtains

(A.2)
η

1 + c2P
‖û‖2

H1(Ω) + σ−1‖Ĵ‖2
L2(Ω) ≤ s

(
c(J0,B, û) − c(Ĵ ,B,u0) − b(û,u0, û)

− a1(u0, û) − a2(J0, Ĵ)
)
.

The application of the Leray–Schauder fixed point theorem requires that the left-
hand side be a priori bounded uniformly in s ∈ [0, 1]. The bound may depend on the
controls (Iext, Iinj, Bext) and the boundary data h. We observe that the right-hand
side in (A.2) is bounded above by

(A.3) ‖J0‖L2(Ω)‖B̃(Ĵ)‖L3(Ω)‖û‖L6(Ω) + ‖Ĵ‖L2(Ω)‖B̃(Ĵ)‖L3(Ω)‖u0‖L6(Ω)

+ ‖∇u0‖L2(Ω)‖û‖2
L4(Ω)

plus a number of terms which are at most linear in ‖û‖ and ‖J‖. The latter can be
treated using Young’s inequality according to the pattern c ‖û‖ ≤ ε ‖û‖2 + c/(4ε),
and ε ‖û‖2 can then be absorbed into the left-hand side of (A.2) for sufficiently small
ε > 0. However, in order for the terms in (A.3) to be likewise absorbed in the left-
hand side of (A.2), the coefficients ‖J0‖L2(Ω), ‖u0‖L6(Ω), and ‖∇u0‖L2(Ω) must be

sufficiently small. In this case, ‖û‖H1(Ω) and ‖Ĵ‖L2(Ω) are indeed a priori bounded
by the right-hand side in (3.16). In view of Lemma 3.2, the same bound holds for the
inhomogeneous solution u and J . Finally, the bounds for the pressure p and potential
φ follow from Lemma 2.2. Hence we conclude the applicability of the Leray–Schauder
theorem which yields the existence of a fixed point of T .
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