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1. Introduction

In this paper we consider a control problem where the state satisfies a variational inequal-
ity of obstacle-type and the control variable is the obstacle itself. While the techniques
that we employ can be applied to a wider class of variational inequalities, we describe
them in detail for second-order elliptic obstacle problems: find y ∈ K such that

〈Ay − f, ϕ − y〉 ≥ 0 for all ϕ ∈ K , (1.1)
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where

K = {ϕ ∈ H 1
0 (�), y ≤ ψ},

with

f ∈ H, ψ ∈ Uad with ψ ≥ 0 on ∂�.

Here � is a bounded domain in Rn with Lipschitz boundary ∂ � and

V = H 1
0 (�), X = H 1(�), H = L2(�),

endowed with the norms |y|V = |∇ y|L2 and |y|X = (|y|2L2 + |∇ y|2L2)
1/2, respectively.

Further, (·, ·) denotes the inner product on H , 〈·, ·〉 stands for the duality pairing between
V and V ∗ as well as X and X∗, depending on the context, and A ∈ L(V, V ∗) is defined
by

〈A υ,w〉 = σ(υ,w) for all υ,w ∈ V,

where σ (·, ·) is a bounded bilinear coercive form on X × X , i.e. there exist M > 0 and
ω > 0 such that

σ(υ,w) ≤ M |υ|X |w|X for all υ,w ∈ X

and

σ(υ, υ) ≥ ω |υ|2V for all υ ∈ V . (1.2)

Moreover, σ is assumed to satisfy

σ(υ, υ+) ≥ 0 for all υ ∈ X,

where υ+(x) = max(υ(x), 0) for a.e. x ∈ �. For fixed λ̄ ∈ L2(�) satisfying λ̄ ≥ 0 a.e.
on � the closed convex subset of admissible obstacles Uad of X is defined by

Uad = {ψ ∈ X : ψ(x) ≥ 0 on ∂� and

− σ(ψ, υ)+ ( f, υ) ≤ (λ̄, υ) for all υ ∈ V with υ ≥ 0}. (1.3)

Note that Uad �= ∅ since the solution ψ̃ ∈ H 1
0 (�) to �ψ̃ = λ̄ − f is in Uad. For

ψ ∈ H 2(�), with ψ ≥ 0 on ∂�, we have that ψ ∈ Uad if �ψ ≤ λ̄ − f a.e. in �. For
ψ ∈ X , with �ψ not in L2(�), the geometrical interpretation of the second inequality
in the definition of Uad requires that ψ is convex downward at jumps in the derivative
of ψ . From Theorem 2.1 of this paper and also the results in [IK2], it follows that for
ψ ∈ Uad the variational inequality (1.1) can be equivalently expressed as

Ay + λ = f, λ = max(0, λ+ y − ψ), (1.4)

where λ has the property that λ ≤ λ̄.
The focus of the paper is directed to the following optimization problem which

involves the obstacle as the control variable:min J (y, ψ) = g(y)+ α
2

∫
�

(|ψ |2 + |∇ψ |2) dx

subject to (1.1) and ψ ∈ Uad,

(P)
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where α > 0 and g is a C1 functional on V that is bounded from below. We note that (P)
can also be considered as a bilevel optimization problem with the outer level defined by
J and the inner optimization given by

min 1
2σ(y, y)− ( f, y) over y ∈ K ,

for which (1.1) is the optimality condition. The main contribution of this work is the
development of an optimality system for (P). Such systems are frequently the basis for
numerical realizations and sensitivity analysis related to optimal control problems. We
also propose an algorithm for solving the optimality system numerically.

Let us consider for a moment the time discretized Black–Scholes model for Amer-
ican options, see, e.g. [S]:

− 1

�t
(v − v̂)+ σ

2

2
S2 vSS + r S vS − r v ≤ 0⊥ v(S) ≥ ψ(S)

for a.e. S ∈ (0,∞), where ψ is the reward function. Here S ≥ 0 denotes the price, v
is the value of the share, r > 0 is the interest rate, and σ > 0 is the volatility of the
market. Several control problems can be formulated but a control problem discussed in
this paper is formulated as: given the measured value function v̄ find a reward function
ψ ∈ H 1 that minimizes∫ ∞

0
(|v − v̄|2 d S + α

∫ ∞
0
|ψS|2 d S,

for some α > 0. Recall thatψ(S) = max(0, K − S) for the put andψ(S) = max(0, S−
K ) for the call option, where K > 0 is the strike price. Thus the regularity of the involved
obstacles is just that allowed by Uad. However, differently from (1.1), the Black–Scholes
model is set on an infinite domain and the differential operator has weakly singular
coefficients, thus additional work will be necessary to apply the approach we present
here.

Before turning to our contribution we also comment on some related work. There
are many references for variational inequalities, for example [BL1]. Control of obstacle
problems with the control given by f rather than ψ has been treated by several authors
before, we mention [B] and [MP] and the references given there. In that work no emphasis
is put on expressing the optimality system by means of equations rather than variational
inequalities. This distinction can be of importance for numerical techniques. In [OKZ]
and [H] control of obstacle problems are treated where the control is part of the domain,
respectively a coefficient in the differential operator, which relates to a problem in lubri-
cation theory. The work most closely related to ours is presented in [BL2] and [BL3].
There, however, H 2-regularity of the obstacles is required and the optimality system is
less complete than the one obtained in this paper. Control of obstacle problems with
H 1-regular obstacles are considered in [AL] in the special case that the obstacle satisfies
the same Dirichlet boundary conditions as the state variable and the forcing function
obeys certain sign conditions.

We next briefly outline the approach that is taken and state the main result. For the
Lagrangian

L(y, λ, ψ, p, η) = J (y, ψ)+ 〈Ay + λ− f, p〉 + (max(0, λ+ y − ψ)− λ, η)
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a formal application of the Lagrange multiplier method yields
A∗ p + ŝgn η + g′(y) = 0,

〈−α�ψ + αψ − ŝgn η, χ − ψ〉 ≥ 0 for all χ ∈ Uad,

p + (ŝgn− 1)η = 0,

ψ ∈ Uad,

(1.5)

together with (1.4), where ŝgn denotes the function defined by

ŝgn (x) =
{

0 if (λ+ y − ψ)(x) ≤ 0,

1 if (λ+ y − ψ)(x) > 0.

System (1.5) is only formal since x → max(0, x) is not C1 regular. Define the C1-
approximation

maxc(0, x) =



x, x ≥ 1

2c
,

c

2

(
x + 1

2c

)2

, |x | ≤ 1

2c
,

0, x ≤ − 1

2c
,

where c > 0. Then maxc(0, x) = ∫ x
−∞ sgnc(s) ds, where

sgnc(x) =



1, x ≥ 1

2c
,

c

(
x + 1

2c

)
, |x | ≤ 1

2c
,

0, x ≤ − 1

2c
.

The complementarity system (1.4) will be approximated by means of

Ay +maxc(0, λ̄+ c(y − ψ)) = f, (1.6)

where the max-operation was replaced by a generalized Moreau–Yosida-type regulariza-
tion. As will be seen from Theorem 2.2 below, this choice of regularization guarantees
that the regularized solutions yc satisfy yc ≤ ψ for all c > 0 which, in turn, will imply that
for the regularized multipliers λc = maxc(0, λ̄+c(y−ψ))we have 0 ≤ λc ≤ λ̄+1/c. It
will be shown that λc converges to λ in (1.4), so that in particular the Lagrange multiplier
for each ψ ∈ Uad satisfies 0 ≤ λ ≤ λ̄.

For any c ≥ 1 the regularized optimal control problem is introduced as{
min J (y, ψ)

subject to Ay +maxc(0, λ̄+ c(y − ψ))− f = 0 and ψ ∈ Uad.
(Pc)

It will be shown in Theorems 2.1–2.3 of Section 2 that (Pc) has a solution (yc, ψc) ∈
V × Uad and every weak cluster point as c → ∞ of solutions to (Pc) is a solution to
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(P). Note in particular that the solutions to the regularized problems (Pc) are themselves
feasible. This can be achieved by use of the shift λ̄. The choice of regularization used here
constitutes a further development of this technique which was already used for obstacle
problems in [IK1] and control of obstacle problems [IK2], where the control was given
by the forcing f . For (y, ψ) ∈ V × X define

F(y, ψ) = Ay +maxc(0, λ̄+ c(y − ψ)).

Then F is Frechet differentiable from V × X to V ∗ with

F ′(y, ψ)(h, υ) = Ah + c(s̃gnc)(h − v),

where

s̃gnc = sgnc(λ̄+ c(y − ψ)).

Moreover, since

〈Aϕ + c s̃gnc ϕ, ϕ〉 ≥ σ(ϕ, ϕ) for all ϕ ∈ V,

it follows from the Lax–Milgram theorem that Fy(y, ψ): V → V ∗ is surjective. Thus
the necessary optimality condition for (Pc) is given by

Ayc +maxc(0, λ̄+ c (yc − ψc)) = f,

A∗ pc + c s̃gnc pc + g′(yc) = 0,

〈−α�ψc + αψc − c s̃gnc pc, χ − ψc〉 ≥ 0 for all χ ∈ Uad,

s̃gnc = sgnc(λ̄+ c(yc − ψc)),

ψc ∈ Uad.

(1.7)

Under the additional requirement that

σ(υ,w) = (a∇υ,∇w)+ (�b∇υ,w)+ (d υ,w), (1.8)

where a(x) ≥ αwithα > 0, d(x) ≥ 0, and a, �b, d are in L∞(�), with |−→b |L∞ sufficiently
small so that σ still satisfies (1.2), the following main result will be proved in Section 3.

Theorem 1.1. Assume that {g′(yc)}c≥1 is bounded in Lq(�) with q > min(n/2, 1).
Then every sequence of solutions {(yc, ψc)}c>0 contains a weakly in V × X convergent
subsequence with indices {cn}∞n=1, lim cn = ∞, and weak limit (y, ψ). Moreover, there
exists an associated p ∈ V ∩ L∞(�) and µ ∈ C(�)∗ ∩ H−1(�) such that

pcn → p weakly in V and weakly star in L∞(�),
µcn := c s̃gnc pcn → µ weakly star in C(�)∗ and weakly in V ∗.
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Moreover, we have

Ay + λ = f, λ = max(0, λ+ y − ψ),
A∗ p + µ+ g′(y) = 0 in V ∗,
〈−α�ψ + αψ − µ, χ − ψ〉 ≥ 0 for all χ ∈ Uad,

µ(y − ψ) = 0 a.e. in �,

pλ = 0 a.e. in �,

σ(p, p)+ (g′(y), p) ≤ 0,

〈µ, p ϕ〉V ∗,V ≥ 0 for all ϕ ∈ W 1,q̄(�),

with ϕ ≥ 0, where q̄ > n,

ψ ∈ Uad.

(1.9)

It will follow from the proof that if y → (g′(y), υ) is continuous from V to R for every
υ ∈ L∞(�) (e.g. g(y) = |y − yd |2L2 , yd ∈ L2(�) given), then the second equation in
(1.9) also holds in C(�)∗. Further, if the problem was cast in finite-dimensional spaces
or if µ was an a.e. defined function, then in place of the last inequality in (1.9) we have
sgn µ = sgn p.

Note that identifying µ by s̃gn η in (1.5), we find

p + η = µ,
and the fourth and fifth equations in (1.7) follow from (1.5), since s̃gn = 0 for y < ψ

and s̃gn = 1 if λ > 0. The last two equations are, however, not contained in (1.5).

Remark 1.1. If in the definition of Uad the space X is replaced by V , then the definition
of J can be replaced by J (y, ψ) = g(y)+ (α/2) ∫

�
|∇ψ |2 and the result of this paper

remains correct if, in the optimality conditions, the term−�ψ+ψ is replaced by−�ψ.

2. Existence and Asymptotic Behavior for c→∞

In this section we establish the existence and asymptotic behavior of solutions to (1.6)
and (Pc). Let M denote the embedding constant of V into H , i.e. |ϕ|H ≤ M |ϕ|V , for all
ϕ ∈ V .

Theorem 2.1.

(a) For each c > 0 and ψ ∈ Uad there exists a unique solution yc of (1.6) with
yc ≤ ψ and 0 ≤ λc = maxc(0, λ̄+ c (yc − ψ)) ≤ λ̄+ 1/2c. Moreover,

|yc|V ≤ M

ω
(|λc|H + | f |H ) ≤ M

ω

(
|λ̄|H + |�|

1/2

2c
+ | f |H

)
. (2.1)

(b) For every ψ ∈ Uad we have yc → y strongly in V and λc → λ weakly in H as
c→∞. Moreover, (y, λ) is the unique solution to (1.4), 0 ≤ λ ≤ λ̄ and

|y|V ≤ M

ω
(|λ̄|H + | f |H ). (2.2)
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(c) For arbitrary ψ and ψ̂ ∈ Uad let yc and ŷc denote the corresponding solutions
to (1.6). Then

ω|yc − ŷc|2V ≤ 2

(
|λ̄|H + |�|

1/2

2c

)
|ψ − ψ̂ |H . (2.3)

Similarly, if y and ŷ are the solution to (1.1) with ψ and ψ̂ , respectively, then

ω|y − ŷ|2V ≤ 2|λ̄|H |ψ − ψ̂ |H . (2.4)

Proof. (a) Recall that λ̄ ≥ 0 is fixed in L2(�). Since

y ∈ V → Ay +maxc(0, λ̄+ c (y − ψ)) ∈ V ∗

is an everywhere defined monotone, coercive, and hemicontinous mapping, there exists
a unique solution yc ∈ V to (1.6). For any ϕ ∈ V we find

σ(yc − ψ, ϕ)+ σ(ψ, ϕ)+ (λc, ϕ)− ( f, ϕ) = 0, (2.5)

where λc = maxc(0, λ̄ + c(yc − ψ)). We now utilize (2.5) with ϕ = max(0, yc − ψ).
Since maxc(0, x) ≥ max(0, x) ≥ x it follows that

(λc, ϕ) ≥ (λ̄, ϕ)+ c|ϕ|2H .

Moreover, by the assumptions on σ , we have

σ(yc − ψ,max(0, yc − ψ)) ≥ 0.

Using these inequalities in (2.5), we find

c |ϕ|2H + (λ̄, ϕ)+ σ(ψ, ϕ) ≤ ( f, ϕ).

Since ψ ∈ Uad, this implies that ϕ = 0 and hence yc ≤ ψ . Note that

0 ≤ maxc(0, x) ≤ max

(
x,

1

2c

)
for all x ∈ R. (2.6)

Hence we have 0 ≤ λc ≤ λ̄+ 1/2c a.e. on �, for every c > 0. From

σ(yc, yc) = −(λc, yc)+ ( f, yc)

we conclude that

ω|yc|2V ≤ |yc|(|λc| + | f |) ≤ M |yc|V
(
|λ̄| + |�|

1/2

2c
+ | f |

)
and hence

|yc|V ≤ M

ω

(
|λ̄|H + |�|

1/2

2c
+ | f |H

)
. (2.7)
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(b) From (2.7) it follows that {yc}c≥1 is bounded in V , and 0 ≤ λc ≤ λ̄ + 1/2c
implies that {λc}c≥1 is bounded in H . Hence there exists y ∈ V and λ ∈ H such that for
a subsequence {cn} of {c},

(ycn , λcn ) converges weakly in V × H to some (y, λ) ∈ V × H,

where y ≤ ψ and 0 ≤ λ ≤ λ̄ a.e. in �.
Taking the limit in (1.6) we find for n→∞ that

Ay + λ = f in V ∗. (2.8)

Since for n→∞ by the definition of λc and (2.6)

0 ≤
(
λcn ,

λ̄

cn
+ ycn − ψ

)
+ |�|

4c3
n

→ (λ, y − ψ) ≤ 0,

we find that (λ, y − ψ) = 0, and thus

λ = max(0, λ+ (y − ψ)).

Combined with (2.8), this implies that (y, λ) is the unique solution to (1.4). Therefore
the whole family {yc, λc}c≥1 converges weakly in V × H to the unique solution (y, λ)
of (1.4). Finally, since H embeds compactly into V ∗, we have that λc → λ strongly in
V ∗. By the Lax–Milgram theorem A ∈ L(V, V ∗) has a bounded inverse and therefore
yc → y strongly in V as c→∞. Taking the limit in (2.1) we obtain (2.2).

(c) From (1.6) we have

σ(yc− ŷc, yc− ŷc)+(maxc(0, λ̄+c(yc−ψ))−maxc(0, λ̄+c(ŷc−ψ)), yc− ŷc)

= 0.

Expressing

yc − yĉ = 1

c
(λ̄+ c (yc − ψ)− (λ̄+ c(ŷc − ψ̂)))+ ψ − ψ̂,

and using the monotonicity of x → maxc(0, x) we obtain

ω |yc − yĉ|2V ≤ −(λc − λĉ, ψ − ψ̂) ≤ 2

(
|λ̄|H + |�|

1/2

2c

)
|ψ − ψ̂ |H

and (2.3) follows. Taking the limit c→∞ implies (2.4).

Theorem 2.2. There exists a solution (y∗, ψ∗) ∈ V ×Uad to (P). Similarly, for every
c > 0, there exists a solution (yc, ψc) ∈ V × X to (Pc).

Proof. Let {(yn, ψn)}∞n=1 be a minimizing sequence for (P). Due to the properties of
the cost-functional J and by (2.2), the sequence {(yn, ψn)}∞n=1 is bounded in V × X .
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Hence there exits a subsequence, denoted by the same symbol and (y∗, ψ∗) ∈ V ×Uad,
satisfying y∗ ≤ ψ∗ such that ψn → ψ∗ weakly in X and yn → y∗ weakly in V . By
Theorem 2.1(c), moreover, it follows that yn → y∗ strongly in V and that y∗ is the
solution to (1.1) with ψ = ψ∗. Due to the weak lower semicontinuity of norms and
continuity of g: V → R it follows that

J (y∗, ψ∗) ≤ lim inf
n→∞ J (yn, ψn),

and consequently (y∗, ψ∗) is a solution to (P). The existence of a solution to (Pc), c > 0,
can be argued analogously.

Theorem 2.3. There exists a weak cluster point in V × X of the family of solutions
{(yc, ψc)} to (Pc) as c → ∞, and every such weak cluster point is a solution to (P).
Moreover, every weak cluster point is a strong cluster point in V × X .

Proof. Let (y∗, ψ∗) be a solution to (P) and let y∗c denote the solution to (1.6) with
ψ = ψ∗ ∈ Uad. Then

J (yc, ψc) ≤ J (y∗c , ψ
∗), (2.9)

where (yc, ψc) is any solution to (Pc), c > 0. The properties of J together with (2.1)
imply that {(yc, ψc)}c≥1 is bounded in V × X . Hence there exists a sequence {cn}, with
lim cn = ∞, y ∈ V , and ψ ∈ Uad such that ycn → y weakly in V , ψcn → ψ weakly in
X and strongly in H . By Theorem 2.1(b),(c) we have ycn → y = y(ψ) strongly in V ,
where y(ψ) is the solution to (1.1). Using Theorem 2.1(b), once again we find y∗c → y∗

strongly in V . Taking the limit in (2.9), we obtain J (y(ψ), ψ) ≤ J (y∗, ψ∗) and thus
(y, ψ) = (y(ψ), ψ) is a solution of (P). It remains to argue that ψcn → ψ strongly
in X . This follows from the fact that

g(ycn )+
α

2
|ψcn |2X ≤ g(y∗cn

)+ α
2
|ψ∗|2X ,

which implies that

lim sup
n→∞
|ψcn |2X ≤ |ψ∗|2X ≤ lim inf

n→∞ |ψcn |2X .

Thus limn→∞ |ψcn |X = |ψ |X which together with weak convergence implies strong
convergence of ψcn to ψ .

3. Proof of Theorem 1.1

Let {(yc, ψc)} be a sequence of solutions to (Pc) that converges weakly, and hence by
Theorem 2.3 also strongly in V × Uad to a solution (y, ψ) of (P) as c→∞. The first
equation in (1.9) follows from Theorem 2.3. We henceforth denote the j th equality or
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inequality in (1.7), respectively (1.9), by (1.7)( j), respectively (1.9)( j). Taking the inner
product of (1.7)(ii) by pc we find

σ(pc, pc)+ c(s̃gnc pc, pc) = −(g′(yc), pc),

where s̃gnc = sgnc(λ̄ + c(yc − ψ), 0) ≥ 0. Since σ is coercive on V , there exists a
constant M1 independent of c ≥ 1 such that

|pc|2V + c(s̃gnc pc, pc) ≤ M1. (3.1)

Here we also use the fact that

|(g′(yc), yc)| ≤ |g′(yc)|L2n/(n+2) |yc|L2n/(n−2) ≤ K |g′(yc)|Lq |yc|V ,
where K is the embedding constant of V into L2n/(n−2) and Lq into L2n/(n+2). By as-
sumption the term {|g′(yc)|Lq } is bounded.

By Stampacchia’s weak maximum principle [T] and the regularity requirements on
a, �b, d in (1.8), there exists M2 independent of c ≥ 1 such that |pc|L∞ ≤ M2|g′(yc)|Lq .

Again boundedness of {|g′(yc)|Lq }c≥1 implies the existence of a constant M3 independent
of c ≥ 1 such that

|pc|L∞ ≤ M3. (3.2)

Next we show that µc = c s̃gnc pc is bounded in L1(�) uniformly with respect to c ≥ 1.
For ε > 0 define

ρε(x) =


1, x ≥ ε,
− 1

2ε3
x3 + 3

2ε
x, |x | < ε,

−1, x ≤ −ε,
and note that 0 ≤ ρ ′ε(x) ≤ 3/2ε on R. Taking the inner product of (1.7)(ii) with ρε(pc),
we obtain

(a ρ ′ε(pc)∇ pc,∇ pc)+ (�b∇ pc, ρ
′
ε(pc)pc)+ (d pc, ρε(pc))+ (c s̃gnc pc, ρε(pc))

= −(g′(yc), ρε(pc)).

Due to (3.1), there exists M4 independent of c ≥ 1, such that

|(�b∇ pc, ρ
′
ε(pc)pc)| ≤ M4.

Since ρε ≥ 0 we have

(c s̃gnc pc, ρε(pc)) ≤ |g′(yc)|L1 + M4.

Moreover, 0 ≤ pcρε(pc) → |pc| a.e. in � as ε → 0. Thus by Lebesgue’s bounded
convergence theorem

|µc|L1 ≤ |g′(yc)|L1 + M4. (3.3)

Hence {µc}c≥1 is bounded in L1(�) and consequently it is also bounded in C(�)∗.
Hence by a corollary to Alaoglu’s theorem and the fact that C(�) is separable there
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exists a weakly star convergent subsequence with limit µ ∈ C∗(�). By (1.7)(ii) the
family {µc}c≥1 is also bounded in V ∗ and thus there exists a further subsequence which
converges weakly toµ in V ∗. Moreover, {pc}c≥1 is bounded in V∩L∞(�). Consequently
there exist a subsequence {cn}∞n=1 and µ ∈ C(�)∗ ∩ V ∗ and p ∈ V ∩ L∞(�) such that{

µcn → µ weakly in V ∗ and weakly star in C(�)∗,
pcn → p weakly in V and weakly star in L∞(�).

(3.4)

These are the convergence claims above (1.9). Passing to the limit in (1.7)(ii) and (iii), we
obtain (1.9)(ii) and (iii). By Theorem 2.1 we may assume that possibly after choosing yet
another subsequence we have thatλcn = maxcn (0, λ̄+cn(ycn−ψcn )) is weakly convergent
in H with limit λ. A short calculation shows that on set S = {x ∈ �: 0 < s̃gnc < 1} we
have λc < (1/2c)s̃gnc. From (3.1) and (3.3), we find (deleting the subscript n)∫

�

|pcλc| ≤
∫

S
|pcλc| +

∫
�\S
|pcλc| ≤ 1

2c

∫
S
|pc| s̃gnc +

(∫
�\S
|pc|2

)1/2

|λc|H

≤ 1

2c2
|µc|L1 +

(∫
�\S

s̃gnc pc pc

)1/2

|λc|H

≤ 1

2c2
|µc|L1 +

(
M1

c

)1/2

|λc|H → 0 for c→∞.

Thus pcλc → 0 in L1(�) and hence in C(�)∗. Since pc → p strongly in H , pcλc → pλ
weakly star in C(�)∗ and thus pλ = 0 a.e. and (1.9)(v) holds. Note that

µc(yc − ψc) = c sgnc pc(yc − ψc)→ 0 strongly in L1(�) as c→∞. (3.5)

In fact, with T = {x ∈ �: s̃gnc(x) > 0} we have by (3.1)∫
�

|µc(yc − ψ)| = c
∫
�

|s̃gnc pc(yc − ψc)|

≤ c(s̃gnc pc, pc)
1/2

(∫
T

s̃gnc |yc − ψc|2
)1/2

≤ (s̃gnc pc, pc)
1/2

(∫
T
|λ̄+ 1

2c
|2
)2

→ 0 for c→∞.

For ϕ ∈ W 1,p
0 (�), p > n, we have ϕ(yc − ψc) ∈ V, ϕ(y − ψ) ∈ V and

(µc(yc − ψc), ϕ)− 〈µ, ϕ (y − ψ)〉V ∗,V
= (µc, ϕ (yc − ψc − (y − ψ)))+ 〈µc − µ, ϕ(y − ψ)〉V ∗,V

as c→∞. Hence, for all ϕ ∈ W 1,p
0 , p > n, we have

0 = lim
c→∞〈µc(yc − ψc), ϕ〉L1, L∞ = 〈µc, (yc − ψc)ϕ〉V ∗,V
= 〈µ, (y − ψ)ϕ〉V ∗,V = 〈µ(y − ψ), ϕ〉(W 1,p

0 )∗,W 1,p
0
.

This implies that µ(y − ψ) ∈ L1(�), µ(y − ψ) = 0 a.e. and (1.9)(iv) follows.
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Inequality (1.9)(vi) follows from (1.7)(ii). Note that

pc c s̃gnc pcϕ ≥ 0 a.e. in � for every ϕ ∈ W 1,q̄(�)

with ϕ ≥ 0, where q̄ > n.

Consequently 〈µ, p ϕ〉V ∗,V ≥ 0 for all such ϕ, which is (1.9)(vii).

Remark 3.1 (Sufficiency of Optimality Condition (1.9)). Assume that

g(y) = 1
2 |y − yd |2L2(�) (3.6)

for some yd ∈ L2(�), that (y∗, ψ∗, λ∗, p∗, µ∗) ∈ V × X × H × V × (L∞(�)∗ ∩ V ∗)
satisfies (1.9), and that

ψ∗ ≤ yd on I = {x : λ∗ (x) = 0}. (3.7)

Then (y∗, ψ∗) solves (P). In fact, let (y, ψ, λ) ∈ V ×Uad × H satisfy (1.4), i.e.

Ay + λ = f, λ = max(0, λ+ y − ψ),

with y �= y∗. Then by (1.9)(i)–(v)

J (y, ψ)− J (y∗, ψ∗) = g(y)− g(y∗)+ α
2
|ψ |2X −

α

2
|ψ∗|2X

> (y∗ − yd , y − y∗)H + α(ψ∗, ψ − ψ∗)X

= −〈µ∗, y − y∗〉 − σ(p∗, y − y∗)+ 〈µ∗, ψ − ψ∗〉
= 〈µ∗, ψ − y〉 + (λ, p∗).

From (1.9) (vii) we deduce that 〈µ∗,min(0, p∗)〉 ≥ 0.
Hence from (1.9) (ii), (v) and (3.6)

0 ≤ σ(p∗,min(0, p∗))+ 〈µ∗, min(0, p∗)〉 = (yd − y∗,min(0, p∗))

≤ (yd − ψ∗ + ψ∗ − y∗, min(0, p∗)) ≤ (yd − ψ∗, min(0, p∗))L2(�\A) ≤ 0

and therefore p∗ ≥ 0, and (λ, p∗) ≥ 0. This implies that (p∗, ψ − y) ≥ 0 and since
ψ − y ∈ V we have 〈µ∗, ψ − y〉 ≥ 0 by (1.9)(vii). Thus we find J (y, ψ) > J (y∗, ψ∗),
and hence (y∗, ψ∗) is optimal for (P) and (1.9) is sufficient, if (3.7) holds.

4. Some Numerical Examples

In this section we propose a numerical realization of the optimality system (1.9). It
appears that in earlier work algorithmic aspects for optimal control of obstacle problems
with control given by the obstacle were not addressed. The algorithm is described on the
continuous level. Clearly for implementation purposes an adequate discretization must
be utilized.
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Algorithm

(i) Set k = 1, choose ψ1, γ ∈ (0, 1] and ε > 0.
(ii) Solve

Ay + λ = f,

λ = max(0, λ+ y − ψk)

for (yk, λk) ∈ V × H . Set Ik = {x : y(x) ≤ ψk(x)}, Ak = �− Ik .

(iii) Solve

A∗ p = −g′(y) in Ik,

p = 0 on ∂Ik

for pk on Ik and set

pk = 0 on Ak .

(iv) Set

µk =
{

0 on Ik,

−g′(yk)− A∗ pk on Ak .

(v) Solve −α�ψ + αψ = µk for ψ̂k+1.

(vi) Set ψk+1 = γ ψ̂k+1 + (1− γ )ψk .

(vii) Terminate if |λk−max(0, λk+ yk−ψk+1)|L2 < ε, otherwise update k = k+1
and go to (ii).

Below we report on numerical results with this algorithm based on a finite-difference ap-
proximation involving the three-, respectively five-, point approximation of the Laplacian
in dimensions one or two, and g given by (3.6). First we make a series of remarks.

Remark 4.1. (i) The algorithm uses an iteration loop with respect to the variable ψ .
As a result one iteration of the algorithm requires the solution of one obstacle problem
in step (i), and two elliptic solves, one for pk on the subset Ik of� in step (ii) and one for
ψ̂k+1 in step (v). We relate the algorithm to the optimality system (1.9). Clearly (ii)–(v)
of the algorithm correspond to (1.9)(i)–(iii). Moreover, µ(y − ψ) = 0, i.e. (1.9)(iv), is
realized by algorithm (iv), and pλ = 0, i.e. (1.9)(v), is realized by algorithm (iii). Finally
(1.9)(vi) and (vii) are realized since µk pk = 0 componentwise on each iteration level k
and by (iii) of the algorithm.

(ii) The existence of a unique solution to (iii) is guaranteed if Ik is a sufficiently
regular domain (e.g. ∂Ik Lipschitzian).

(iii) For some examples we restricted ψ to satisfy homogenous Dirichlet boundary
conditions, i.e. ψ ∈ V . In this case the potential term α ψ in (v) was eliminated.

(iv) Unless specified otherwise we ignored the constraint −(∇ψ, ∇v) + ( f, v) ≤
(λ̄, v) for all v ≥ 0 in the definition of Uad. A possible numerical realization can be based
on a penalty term of the form β|(�ψ + f − λ̄)+|2L2 .

(v) Concerning the stopping criterion, note that if λk = max(0, λk + yk − ψk+1)

then (yk+1, λk+1) = (yk, λk). This follows from the fact that for given ψk (respectively
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Figure 1. Example 1. yd : dash-dot, ψ∗ = y∗: solid line. (Left) ψ = 0 on boundary. (Right) No boundary
conditions for ψ .

ψk+1) the solution to the system in (ii) is unique. Unless specified otherwise we stopped
the algorithm with ε = 10−11 in the one-dimensional case and with ε = 10−7 in the
two-dimensional case.

(vi) For solving the complementarity system (ii) we used the primal–dual active set
strategy, see [IK3] and the references therein. We recall that this algorithm typically has
finite step convergence for discretized problems.

(vii) Clearly the algorithm requires further investigations, which are not within the
scope of this paper. These include a convergence analysis, investigation of the effects
of lack of strict complementarity, and proper choices for the relaxation parameter γ .
Alternatives for solving (1.9) or the original problem (1.1) are of interest as well.

Example 1. This is a one-dimensional example with� = (0, 1),α = 0.5, and f = 10.
The choice of yd is based on solving −�ȳ + λ̄ = f , λ̄ = max(0, λ̄ + ȳ − ψ) with
ψ̄(x) = 1 − x and setting yd = 2ȳ. In Figure 1 we depict the solutions for the grid
size h = 1

32 for the cases Uad = H 1
0 (�) and Uad = {ψ ∈ H 1(�): ψ ≥ 0 on ∂�},

respectively. Not surprisingly the results are completely different. By the choice of yd

it can be expected that for the solution y we have y < yd in �, which is confirmed by
the numerical results. Further, for the case Uad = H 1

0 (�) one can conjecture that the
solution to (1.9) is such that all of� constitutes the active set, i.e. that for the solution we
have y = ψ . Assuming strict complementarity this implies that p = 0, since λp = 0.
Consequently, µ = yd − y > 0 in � which, using (1.9)(iii) with Uad = H 1

0 (�), gives
the equation, for ψ ,

−α�ψ + αψ = yd ,

which finally determines all variables (y, λ, p, µ,ψ) of the solution to (1.9). Precisely
this solution is found numerically.

Example 2. For this two-dimensional example, � = (0, 1) × (0, 1), α = 0.05, and
f = 30. Further, yd is based on solving −�ȳ + λ̄ = f , λ̄ = max(0, λ̄ + ȳ − ψ)
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Figure 2. Example 2: Optimal ψ (left) and optimal y with no boundary conditions on ψ .

with ψ(x1, x2) = 2 − 1.5x1. Its solution is rotated clockwise by 90◦ and multiplied
by 0.2 to obtain yd . The numerical results for ψ and y with meshsize h = 1

64 and
Uad = {ψ ∈ H 1(�): ψ ≥ 0 on ∂�} are depicted in Figure 2. The corresponding data
yd is given on the left of Figure 3. The numerical result for Uad = H 1

0 (�) and otherwise
the same problem data is given on the right of Figure 4. This is again an example where,
in the case Uad = H 1

0 (�), all of � is the active set and y = ψ at the solution. In this
case the algorithm required 15 iterations with the stopping criterion set to ε = 10−7

and 26 iterations for ε = 10−10. Next we turn to the case, alluded to in Remark 4.1(iii),
where the upper bound on �ψ + f − λ̄ is realized with a penalty term, with penalty
parameter 1. The corresponding results for ψ and y with λ̄ = f are given in Figure 4.
Comparing the results for ψ in Figure 2 to Figure 4 we can observe that the procedure
is effective.

Example 3. This is another two-dimensional example with � = (0, 1)× (0, 1), α =
0.5, f = 30 except on (0, 1) × (0.2344, 0.6250) where f = −5, and yd = 0.5. In
this case for both choices of Uad described in Example 2, only a part of � is active.
The numerical results for h = 1

64 , with and without homogenous Dirichlet boundary
conditions, are given in Figures 5 and 6, respectively.
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Figure 3. Example 2: desired state yd (left) and optimal ψ with Dirichlet boundary conditions.
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Figure 4. Example 2: optimal ψ (left) and optimal y with no boundary conditions on ψ and upper bound
for (�ψ)+.
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Figure 5. Example 3: optimal ψ (left) and optimal y with Dirichlet conditions on ψ .
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Figure 6. Example 3: optimal ψ (left) and optimal y without boundary conditions on ψ .
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