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A globalization strategy for multigrid schemes solving optimal control problems is presented. This
approach searches for possible negative eigenvalues of the reduced Hessian considered at the coarsest
grid of the multigrid process, If negative eigenvalues are detected, a globalization step in the direction
of negative curvature is performed to escape undesired maxima or saddle points. It is shown that the
multigrid solution step provides a descent update. Examples are given to illustrate and validate the
present approach.
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1. Introduction

Recent results [1,2,3,6] give evidence that multigrid methods solve optimality systems with
optimal computational complexity. Optimality systems represent first-order necessary condi-
tions for minimization problems subject to differential equations as equality constraints. In
a convex setting where the optimal control solution is unique, solving the optimality system
is equivalent to solving the optimal control problem. However, in general, these solutions
represent only extremal points and additional conditions must be satisfied to guarantee that
they are the minima sought.

Our purpose is to formulate fast solvers for optimal control problems that possibly have
multiple extremal points. Our approach combines fast multi grid schemes for solving optimality
systems [1,2,3,6] with a negative-curvature update introduced to solve global unconstrained
minimization problems [see for example refs. 7,12, 14].

In the following section optimal control problems are formulated that allow for multiple
extremal points satisfying the first-order necessary optimality conditions. In section 3, second-
order sufficient conditions for a minimum are discussed in terms of the reduced Hessian and
the related eigenvalue problem. The presence of nonpositive eigenvalues indicates possible
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maxima or saddle points. We use the eigenvector corresponding to the negative eigenvalue with
largest absolute value to define a globalization step along the direction of negative curvature
to escape undesired maxima or saddle points. This step is performed at the coarsest grid
of a multigrid scheme for solving the optimality system. The resulting globalized multigrid
algorithm is defined in section 4. Further optimization properties of the multigrid scheme are
discussed in section 5.

To determine the negative eigenvalue of the reduced Hessian we propose a power method
approach in section 6. An example is worked out to further illustrate and validate the approach
proposed in this paper. Implementation details are given in the Appendix A. A section of
conclusion completes the exposition of the work.

2. Optimal control problems

We consider the optimal control problem

min J(y, u),
uel

. (N
e(y,u) =0in ,

where y and 4 denote the state- and control variables of a controlled partial differential equation
expressed as e(y,u) = 0, with e: Y x U — Z for appropriate Hilbert spaces ¥, U, and Z.
 is an open bounded set in R?. The cost functional J is formally given by

J(rou) = h(y) + vgu), 2)

where v > 0 is the weight of the cost of the control. Here, g and / are required to be continu-
ously differentiable, bounded from below, and such that g(u) — oo as |ju|| — oco. Allowing
g and h to be locally nonconvex and e to be possibly nonlinear, problem (1) may have multiple
extremals including minima, maxima, and saddle points.

Local minima satisfy the first-order necessary conditions. To define these conditions
consider the Lagrangian

L(y,u, p) =J(y,u)+ {e(y, u), p)z,z+,

where p is the Lagrange multiplier, in the following referred to as the adjoint variable. By
equating to zero the Frechét derivatives of L with respect to the triple (y, u, p), we obtain the
following optimality system

e(y,u) =0,
e (y,u) p=—h(y), 3)
vg'(u) +e; p=0.

Numerical approximations to solutions of system (3) can be obtained, after discretization,
using multigrid or other iterative methods starting from any initial guess. The particular choice
of the starting approximation determines towards which solution the iterative scheme will
converge. Solutions to system (3) are not necessarily local minima, rather they are extremal
points.

Our purpose is to introduce in the multigrid scheme a mechanism allowing to distinguish
among different types of extremal points and providing the direction for escaping undesired
maxima and saddle points.
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3. Second-order conditions for a minimum

If J and e are twice continuously differentiable, the second-order sufficient conditions for a
minimum are given by the optimality system (3) and the following

Lec(y,u, p)(v,0) > ¢/ |IvI1%, ¢ >0, forall v e N(e'(y, u)), )

where x = (y, u) and ¢’ represents the linearized equality constraint [see for example ref. 6].
We assume that the null space A'(¢'(y, u)) can be represented by N(e/(y, u)) = T(y,u) U,

where
1
T(y,lt) _ [ e). e"i|,
Ill

and e,, ¢, are evaluated at (y, u). Therefore, condition (4) becomes
H(y,u, p)w, w) > o llwl?, ¢ >0, (5)
for all w € U. The operator H is the reduced Hessian defined by

H(y,u,p) =T, w* L (y,u, p) T(y, u).

That is, H is given by
H(y,u, p) = Luu(y, u, p) + C(y, )" Ly (y, u, p)C(y, u), (6)

where C(y, u) = e, (y, u)~'e,(y, u), assuming ey (y,u) =0.

Notice that H is symmetric. Therefore condition (5) requires that, in order to have a
minimum, all eigenvalues of the reduced Hessian be positive. Otherwise, the occurrence of
nonpositive eigenvalues indicates the presence of possible maxima or saddle points. Thus, in
principle, once a solution to system (3) is found, one should solve the eigenvalue problem
associated to H. If all eigenvalues are positive, we have a minimum and therefore a solution
to problem (1). If some eigenvalues are negative, the solution of the optimality system is not
a solution to the optimal control problem.

Clearly, in an infinite dimensional setting, the analysis of the spectrum of H may be
an overwhelming task. Even after discretization, solving the eigenvalue problem may
be computationally more expensive than solving the optimality system.

The multigrid strategy provides a way to overcome this difficulty. A successful multigrid
procedure is based on a hierarchy of discrete equations able to represent, at different scales,
the underlying continuous problem. In the present work, we make the assumption that spectral
properties of the reduced Hessian are well represented on the hierarchy of grids. Subsequently,
the globalization strategy is based on the spectral properties of the Hessian H on the coarsest
grid. In case negative eigenvalues of the reduced Hessian are detected, we use the eigenvector
corresponding to the smallest eigenvalue to determine an escape direction. This direction of
negative curvature [ 12,14] is given by the eigenvector corresponding to the negative eigenvalue
with largest absolute value. The implementation of this globalization step within a multigrid
framework is subject of the next section.

In the earlier discussion, we tacitly assumed that the spectrum of the Hessian before dis-
cretization also consists of pure point-spectrum. This is the case, for example, if e‘T' is a
compact operator corresponding to the case of elliptic- or parabolic-type partial differen-
tial equations and g(u) = %llullz. A similar remark applies, for example, for the choice
glu) = %||Vu||2. In either of these two cases, the resulting reduced Hessian is such that
its spectrum can be well represented in a hierarchy of grids.
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4. Globalization and the full approximation storage multigrid scheme

We formulate a globalization procedure within the multigrid full approximation storage (FAS)
scheme [5]. The present approach remains valid for the class of nonlinear multigrid (NMGM)
methods discussed in ref. [8]. The choice of FAS or NMGM schemes is motivated by the
general applicability of these schemes to linear and nonlinear problems and by the fact that
the optimal control variables and not the corresponding errors are represented at all levels of
the multigrid process. This is needed in order to define (6) on coarser levels.

Our globalized multigrid approach relies on two features. First, we define the FAS multigrid
procedure such that it provides a descent step for the optimal control constrained minimization
problem. Secondly, on the coarsest grid we analyze the possible encounter of extremal points
that are not minima and define an escape direction, if necessary, on the basis of negative-
curvature eigenvectors.

To guarantee a multigrid step which is minimizing, we define the smoothing process based
on the gradient of the reduced cost functional and show that the FAS coarse-grid correction
step provides a descent update. We postpone the discussion on the optimization properties of
the proposed FAS approach to the following section.

In order to define our multigrid solution process consider a sequence of grids {€2;}s-0
and denote the operators and variables defined on the grid with mesh size & = hy = hg /2%,
k=1,..., M,withindex k. Onthe grid 2, h = hy, the optimality system (3) is represented by

eV, up)y = 0,
e)‘(yln uh);;ph = —h'()’h), (7N
Ugl(uh) + ei;ph =0.

In general, an initial approximation to the solution of this problem will differ from the exact
solution because of errors involving high-frequency as well as low-frequency components.
In order to reduce all frequency components of the error, the multigrid strategy combines
two complementary schemes. The high-frequency components of the error are reduced by
smoothing iterations, whereas the low-frequency error components are effectively reduced
by a coarse-grid correction method.

The smoothing iteration § used is a Gauss—Seidel scheme which belongs to the class of
collective relaxations [see refs. 2, 3]. A Gauss—Seidel step at x € €2, consists in updating the
values y, u, and p such that the resulting residual of the optimality system at that point is
zero. The neighboring variables related to the stencils of the operators involved are considered
constant during this process. That is, the state equation in system (7) provides y, (x) as function
of uy(x) at the grid point. Replacing y;, in the adjoint equation by this function, we obtain
p(x) as function of u(x). From these considerations, the optimality condition becomes

vg'(up) + € py(uy) = 0. (8)

This equation corresponds to requiring that the gradient of the reduced cost functional
J(y(u), u) with respect to the control variable u is zero. Therefore in order to update the
control function in the smoothing process, we use condition (8) to perform a few steps of the
following descent scheme (compare with ref. [1])

W =y — B(g () + € piun)). @

Anoptimal choice of the scaling factor 8 > Omay be done using line search methods. However,
for our purpose we choose 8 = 1072/,/v and apply (9) at most 10 times. After each step we
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check whether J(y (™), up™ ), < J(y(un), up)y is satisfied; if not, we keep the previous
update of u; and stop iterating. With the new value of u given, new values for y and p are
obtained. This completes the Gauss—Seidel step. For more details we refer to the Appendix A
where a formal algorithm of the smoothing process is given.

Once the smoothing iteration has reduced the rough components of the error, a coarse-grid
correction is performed to correct for the components of the error which are smooth. First, a
coarse-grid problem is constructed on the grid with mesh size H = h;_|. That is,

e(yn, un)n = t(NF,
exOn un)ypn +h'Gu) =t(p), (10)
vg'(uy) + € pn =0,

where 1( y),’,’ and 7(y) ,’:’ are fine-to-coarse defect corrections defined by

T = ey B ) — 17 CeCon, unn), (1D
TPy = exCylyu, P uny B pu+ W ) = 1 ey ny wndipn + W) (12)
Here I/7: L2 — L% denotes a restriction operator and /7: L2 — L2, another restriction

operator not necessarily equal to /. We choose /! to be full-weighting [16] and 7' to be
straight injection. Once the coarse-grid problem is solved, the coarse-grid correction follows

W =+ Ty — I yw), (13)
W = up + Iy (uw — T uy), (14)
P = pu+ Iy (p — I pa), (15)

where / L’,: L%, — L% represents an interpolation operator. Assuming the high-frequency com-
ponents of the error on the finer grid are well damped by applying m| pre-smoothing iteration,
then the grid €2 should provide enough resolution for the pre-smoothed error. On the coarse
grid this error is approximated by (wy — IA,f’ wy) with w = (y, 4, p) in corrections (13), (14),
and (15). This idea of transferring the problem to be solved to a coarser grid can be applied
along a set of nested meshes. Once the coarsest grid is reached, one solves the coarsest problem
to convergence by applying, as we do, a few steps of the smoothing iteration. The solution
obtained on each grid is then used to correct the approximation on the next finer grid. The
coarse-grid correction followed by my post-smoothing steps is applied from one grid to the
next, up to the finest grid with level M. This entire process represents one V (m, mj) cycle
of the FAS multigrid process.

In the process described earlier we apply the globalization step at the coarsest grid. At
the coarsest level, a convergence check is performed after each smoothing step. Only after
this check is passed globalization sets in. In this case an algorithm is called that determines
the negative eigenvalue with largest modulus. If such an eigenvalue exists, the normalized
eigenvector ¢, corresponding to the negative eigenvalue with largest absolute value is used to
perform the following globalization step

W™ =up —ody. (16)

We choose |o| = /B (with B as in scheme (9); see ref. [14]) and the sign of o is such that
oy - (vg'(uy) + e} py(uy)) > 0. Then, the multigrid procedure continues as described.

To summarize the procedure outlined earlier let us express the optimality system by

Ar(wy) = fi, where wy = (yx, ug, pi). Recall that the multigrid scheme can be interpreted
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as an iteration of the type w' = w'~" + By (fu — Ay (w'™")), where By is the multigrid
iteration operator at level k.
The recursive form of the V (m, m,)-cycle FAS multigrid algorithm is given as follows:

FAS multigrid V (m, m;)-cycle with globalization step
Set B) = Al_' by iterating with Sy and if ||res|| < tol perform the globalization step (16).
Fork =2,..., M, define Byg in terms of B;_; as follows.

(i) Set w{_o) = Wy (starting approximation).

(ii) Smoothing. Define w{” for! =1,...,m,, by

o a-n
wy = S(we 7, fio).

(iii) Coarse grid correction. Set wi™™ = w{"" + I} (qi_| — IE'wi™) where g, is
defined by

Qi1 = By [ 17 (e = Acf™)) + A (7 ™) ]

(iv) Set By fi = w"*"**" where w” for £ =m, +2,...,m, +my + 1, is given by step
(11) with w,ﬁ'"'ﬂ) = wpv.
In the following section, we discuss the optimization properties of the FAS multigrid scheme
described earlier.

S. Optimization properties of the FAS scheme

Although the focus in this paper lies on the globalization of the multigrid approach, we
digress in this section to give an interpretation of the FAS multigrid step as a descent step.
Instead of describing the multigrid process as a method that efficiently reduces all frequency
components of the error of an initial approximation to the required solution, we consider the
multigrid solution step from an optimization point of view. Earlier contribution in this direction
can be found in refs. [10,13]. These investigations consider nonlinear multigrid methods as
minimization procedures for unconstrained optimization problems only.

Let us consider the case where e(yy, up)y = —Apyy — uy and h(y) = ||y — zllig(Q)/Z,
and assume that g’ is Lipschitz continuous with Lipschitz constant ¥ > 0, and satisfies the
following monotonicity requirement

(g/(u) - g,(v)s U — U) = 8”“ - v”il(g)v

for some § > 0.

We start our discussion with some comments on the proposed smoothing iteration. Consider
a given initial approximation for the control function. In correspondence, assume to solve the
state and the adjoint equations exactly. Then, step (9) provides an update for the control which
provides a decay. In our case, this process is actually performed at each grid point where
solving exactly for the state and adjoint variables reduces to a simple algebraic manipulation.
The result is a minimization of the cost functional with respect to the variables defined on the
grid point. This smoothing step belongs to the class of successive subspace correction (SSC)
methods discussed in ref. [15].
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Uniform convergence rates for the SSC iteration applied to a convex functional F () are
proven in ref. [15] assuming that F is Gateaux differentiable and that there exist constants
K,L >0,p>gq > 1,suchthat

(F'(u) — F'(v), w —v) > K|lu— v}, (17)
IF'(u) — F')lv: < Lilu— )%, (18)

forall u,v € V, and (-, -) is the duality pairing between V and its dual space V'. .
We show that equations (17) and (A18) are satisfied by the reduced functional J (up), =
J(yn(up), up);, considered here with J'(uy), given by

J'(up)n = vg'up) — pa(up) and  pyluy) = =N A u + z).

Here u;, € L2(Q2), where L2 denotes the discrete L2 space of grid functions defined on £2;,.
For grid functions u;, and v, defined on 2;, we use the discrete L?-scalar product

(up, vy = hz Z uy (X) vy (%),

XEQ/,
. . 1/2
with associated norm ||uy ||, = (uy, Un) s -
K h
Now consider equation (17). We have

(j/(uh)h "f,(vh)h, Up — Vp)p = (Vg,(u/z) — puun) — vg/(v;,) + pr(vp), wy — vy

v(g (un) —&'(n), un —vidn —(Pa(un) — pu(vp), un —vpdn

V(g (un) — &' (W) un — V)i + (A *(un — Vi), un — Van

v

V8 lun — vall}.
The next step is to show equation (18), as follows

1" ) = T ndalln = V8" un) — paun) — vg'(wn) + pa(vm)lla
”v(g,(uh) - g,(vh)) - (ph(“h) - ph(vh))”h

vllg' (un) — & Willn + 1A, wn — vi)lln
= (‘)V + C) ”“h — Uy ”’h

A

A

where ¢ > 0 is defined by the inequality ||A;2u,,||,, < cl|luplln [see ref. 9]. Therefore, the
smoothing iteration (9) provides a minimizing sequence.

Next, we show that the FAS coarse-grid correction provides a descent direction in the sense
that

ve'un) — pu I uy — B u))n <0,

unless uy = f,f’ uy, occurring at convergence.
Starting from an initial approximation and after a few pre-smoothing steps the resulting
triple (yx., un, pi) satisfies the optimality system up to residuals (d}, d?, d})), i.e.,

—Apyy —up = d/& s
—Appntyn —zn = d;%, 19)
vg'(up) — pr = dj.
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For the coarse-grid process, we take [} = I/ where 1 is the full-weighting restriction
operator. For / ,’;, we choose bilinear interpolation which is the adjoint of the restriction operator
just defined in ref. (8], i.e., (1 uy, vi)y = (up, I},00)n. We define zy = I}'z,. With this
setting, we obtain the following coarse-grid FAS equations

~Apyn —un =L Awyn — Ayl yu,
—Appu+yu —zn =1 Awpn — Ayl py, (20)
vg'(uy) — pu =0.
As usual in two-grid convergence analysis, we assume that this coarse system of equations is

solved exactly. From the first equation of (20), and using the corresponding equation in (19)
we obtain

ug — Lup = —DpGw — 1 yn) + 11 d). 1)

Combining the fine and coarse adjoint equations, we have
pr = I pn = 85w = I y) + A5 1 d}. (22)
Let us assume that
(&' i) = 1 8' )y v — I o) = 8 ow — 17 w1, (23)

for some 8’ > 0 independent of v, and vy. Note that equation (23) is satisfied, for example,
if g’ is linear or if 7} is strict injection and g is strictly convex.

With these preparations, we are ready to show that the update step of the FAS coarse-grid
correction follows a descent direction

g (up) — pu, Iy (uy — L up))n
= (I, (vg'(un) — pu)sun — I up)y
= w1, g (up) — I poouy — 1 uy)
= I g"(uwn) = pr+ AR Om — L' yw) + AR uy — 1wy
= —v(g () — 178" wun), up — I un)y + (A5 u — 1 yu) + A7 11 d2,
— ApQu — I )+ 1 d))y
= —v(g'un) — I g un), ury — 1w — 0w — I yu yu — 1 yidu
+ (A G =Ly I dyw —(AF Y Ay (on — 1y + (A5 17 a2, 1 d)yy
< —o(g/ ) = 118/ ), oy = [T+ 5 (U8 TP + 187 1421,
+ Iyl + Y 5

/ 1 — -
< —v8'lluy — L upll3, + E(IIAH' L5+ A LG + 1173 + 1A d2)2).
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Therefore

wg'up) — pu, Iy — Iy, <0,

if equation (23) holds and the residuals d; and d? are sufficiently small.

Finally, we show that the coarse-grid correction step does not produce over-shooting in
the sense that (J Wn, J ;™)) = 0. We consider the case where g’(1) = u. We have the
following

(", j,(uzew)”)" = (vun — pu, vun + Iy — I up)) — (pr + 1w — 1 pi)s
= lvun = pally + un = pu, 510 Gn = 1un) = (pw = 1 p)Di
= v — palli, = 1 un = p)llg; = 0,

where we use ||7/7]] < 1.

6. A power method approach

To establish the existence and to compute the negative eigenvalue of H with largest absolute
value, we use a power method-based scheme [see for example ref. 17]. This choice is suggested
by the particular structure of the reduced Hessian as given in (6) and by the fact that the power
scheme requires only H times vector multiplication as described in the following.

Suppose A € R™™" is diagonalizable (recall that symmetric matrices are diagonalizable)
and that X'AX = diag(y,, ..., va) with X =[x, ..., x,] the matrix of eigenvectors of A
and |y1| > |y1] > -+ > |yul. Given v©@ € R”, the power method defines a sequence v as
follows

fork=1,2,...
Z(k) = AU(k_l)
k k) k) k
y® = 2" where 12| = 12%[|max (24)
(k)
= B
y®
end

If the starting vector is a linear combination of eigenvectors of A, v©@ = Y7, a;x; with
ay # 0, then v® — x; and y® — y, fork — oo.

We apply the power method twice. First, we take A = H and compute an estimate of the
eigenvalue of largest absolute value of the reduced Hessian, denoted by ji. If fi < 0, it is
the sought eigenvalue and the corresponding eigenvector is used for the globalization step.
Otherwise, we take A = —H + i I and use the power method to get —u + & where y is the
smallest eigenvalue of H.If v < 0, it is the negative eigenvalue with largest absolute value,
which will be used for the globalization step (16). If 4 > 0, no globalization is required.

To illustrate the procedure described earlier and at the same time clarify limitations posed by
the discretization, we discuss the following example. Consider problem (1) where e(y, u) =
—Ay — u, with Dirichlet boundary conditions, u € L>(R), Q C R?, h(y) = %Ilyllsz(Q),
and g(u) = [|u||L woy T ||u||L 2y With this setting, the reduced cost can be expressed
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as J(y(u), u) = %II - A_II.AHZL?(Q) + V(72 + 14l1}2g)) and the reduced Hessian at
(y(u), u, p(u)) with u = 0 is given by

H(y,u,p)=—-2vI+A"" A", (25)

The eigenvalues u; of H(y,u, p) and A; of —A with Dirichlet boundary conditions are
related by

1
=2+ . (26)
A'l

It follows that u = 0 is a local maximum provided that v > 1/(2Af), where A is the smallest
eigenvalue of —A.

Notice that in a discrete setting the largest eigenvalue of the negative Laplacian is finite and
of order Ayax * ¢/ h%. Therefore equation (26) shows that, on a given grid, if v < 1/ (2}‘121,mux)
then w; > O for all /, which not only misses to detect the maximum, but in fact characterizes
a local minimum at 4 = O for the discretized cost. This occurrence has no correspondence in
the continuous case where for any small v there exists I such that w < 0forl > 1.

In a multigrid context, these considerations suggest that a sufficiently fine mesh for the
coarsest grid must be chosen in order to properly represent optimal control problems of the
type considered here. To further illustrate the problem of estimating correctly the smallest
eigenvalue of H on coarse grids, consider the problem related to (25) defined on Q2 = (0, 1) x
(0, 1), discretized by finite differences on a uniform grid with mesh size . We report in table 1
the value of the smallest eigenvalue u for different choices of the mesh size 4 and of the weight
v. Negative values of u indicate that 4 = 0 is not a minimum. This expectation can fail if the
mesh is too coarse.

From equation (6) we note that each iteration step of the power method requires to solve
two problems of the type e,(y,u)v = f. For example, with H given by equation (25)
we need solve two Poisson problems. Namely, for the first step in (24) we have the
following

L&D wkD = (Z Ay~ k=D s®=D = (CA)yLypt-D

20 = _oypk=D 4 (k=D

The solution of the intermediate boundary value problems can be obtained using any iterative
scheme. Because we solve eigenvalue problems only on coarse grids, it suffice to use sim-
ple SOR iteration with optimal relaxation parameter @ = 2/(1 + sinh) [see for example
ref. 16].

Table 1. The smallest eigenvalue u of equation (25).

v h=1/4 h=1/8 h=1/16 h=1/32

1072 —1.99 x 1072 —1.99 x 1072 —1.99 x 1072 —2.00 x 1072
104 —1.16 x 1074 —1.95 x 1074 —1.99 x 10~ —1,99 x 1074
10~6 8.17 x 1073 2.12 x 1073 —1.75 x 1073 —1.99 x 1073

108 8.37 x 1072 4.10 x 1073 2.23 x 1070 —5.02 x 107
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7. An example

To illustrate the effectiveness of the globalization strategy presented in the previous sections,
consider the following optimal control problem

. 2
“n;l]]g 5”)’ - Z“LZ(Q) + vg(u),
—Ay =Duin Q, @7
y =00n3%Q,

where z € L?(2) is a desired target function. Here, the control space consists of a two-
component vector ¥ = (i, u3) and the operator D is defined by

ulin Q]
Du= . ’
Uy 1m QQ,

where @ = (0, 1) x (0, 1), ) = {(x(, x2) € Q:x; < 1/2},and Q, = 2\ 2. The optimality
system corresponding to problem (27) is as follows

—Ay = Du,
—Ap=-(y—2), (28)
vg'(u) — D*p =0,
where g’'(4) = (gu,, £4,) and D* is the adjoint of D. The reduced Hessian is

H(y,u, p) =vg"(w) + D*(—A) "' (=A)'D

where g//(u) = (gu,»u,)-
We choose the cost function g(«) to be the following triple-well potential
(uf + u%)2 (u? - 3u1u%)
10 10 '

glu,u) =1 — (ul +ud) +

see figure 1. This function possesses one maximum, three minima, and three saddle points
reported in table 2.

For the purpose of clear illustration, we formulate the optimal control problem in such a
way that its extremal points coincide with those of g. This can be achieved by defining z as the
(numerical) solution of —Az = D u with u chosen in table 2. Starting at the extremal points,
the multigrid scheme without globalization step stagnates on these points which are solutions
of the optimality system. When using the globalization step and starting from the maximum or
from any of the saddle points, the multigrid algorithm provides a fast iteration converging to
a minimum. To show this fact, we report in table 3 information on the convergence history of
the multigrid scheme starting from an extremal point which is not a minimum. We denote with
(u?, ug) the initial value of the control. Moreover z is defined as the solution to —Az = Du
with u = (49, u9). In table 3, the solution and the values of the tracking functional given
in terms of the discrete L?(£2) norm, ||y — z||,z2, are presented. With py, p, we denote the
multigrid convergence factors as the ‘asymptotic’ value of the ratio between the discrete
L2-norm of the residuals of the state and adjoint equations resulting from two successive
multigrid cycles [see for example ref. 8]. The results of table 3 demonstrate convergence to
a minimum with typical multigrid convergence factor. The computational work used for the
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Figure |. Contour plot of the triple-well potential.

globalization step involves power method iterations which in turn require to solve two Poisson
problems on a 8 x 8 mesh at each iteration step. This is less work than required by one step
of the smoothing iteration at the finest level. We remark that starting away from extremal
points, the multigrid scheme converges towards a minimum without need for a globalization
step.

The example above has the advantage that we know the character of its extremal points.

We tested the proposed algorithm for optimal control of semilinear elliptic partial differential
equations with sever nonlinearities, including Bratu’s problem. In all the cases that we tested,
the multigrid algorithm found a local minimum without use of the globalization step.

In the smoothing algorithm, the gradient update of « given by descent scheme (9) can be
accelerated by a Newton step applied to (8). This is properly done by performing Newton
steps followed by the evaluation of J. If the value of the cost functional is not reduced the
gradient update follows. We remark that close to a maximum the Newton step may provide
an update towards the maximum, that is, it does not reduce the value of J. On the other hand,

Table 2. Extremal points of g.

Maxima 0.0) = =
Minima (—1.32115, —2.28829) (—1.32115.2.28829) (2.64229, 0)
Saddle points (—1.89229, 0) (0.94614, —1.63878) (0.94614, 1.63878)

Table 3. Convergence behavior of multigrid iteration with globalization step, v = 1072,
Results after 10 V(2, 2)-cycles, coarsest mesh 8 x 8, finest mesh 256 x 256, M = 6.

@ u) (11, ua) Iy —zll2 Py. Pp

(0,0) (—1.271, —2.228) 7.25 x 1072 0.14,0.15
(—1.89229, 0) (—1.300, —2.249) 4.12 x 1072 0.12,0.24
(0.94614, —1.63878) (2.628, —1.121 x 107%) 6.85 x 1072 0.14,0.15
(0.94614, 1.63878) (2.631, 1.651 x 1072) 2.74 x 1072 0.11,0.18
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Table 4. Rosenbrock function. Convergence behavior of
multigrid iteration.

v 102 100 102

Dy»> Op 0.19,0.14 0.11,0.15 0.14,0.15

close to minima the Newton step accelerates convergence. This may be advantageous when
solving optimal control problems having flat minima. For example, consider the Rosenbrock
function

guy, uz) = 100(uz — ud)* + (1 — u))?,

which possesses a minimizer at u = (1, 1). Choosing the desired target function such that
—Az = D(1, 1) and v sufficiently large, the optimal control problem (27) has a minimum at
u = (1, 1). In this case there are no maxima or saddle points and the globalization step is not
activated. In fact the smallest eigenvalue of H results always positive in the multigrid process.
As starting value for the multigrid iteration we take 4° = (19, 49) = (10, 10). In this case,
the Newton-based multigrid smoothing requires fewer iterations than the one based on the
pure gradient smoother. The resulting convergence factors are similar to that reported for the

previous example and the local minimum is attained with high accuracy. This fact is shown in
table 4.

8. Conclusions

We presented the combination of a globalization step and a multigrid scheme for the solution of
optimal control problems having multiple extremal points. The globalization step was applied
at the coarsest grid of the multigrid process to detect directions of negative curvature which
were used to escape undesired maxima and saddle points.
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Appendix A: Implementation details of the smoothing procedure

In the following, we give implementation details regarding the smoothing procedure discussed
in section 4. For this purpose, we take the problem defined in section 7 discretized by finite
differences on a uniform grid €2, with mesh size 4. The negative Laplacian with homogeneous
Dirichlet boundary conditions is approximated by the five-point stencil and is denoted by —A,,.

Consider the optimality system (28) at x € 2, where x = (ik, jA) and i, j =1,..., N
index the grid points. We have

—ictj + Yierj + Yijot + i j+1) + 4yij = B2 (Dyudij, (AD)
—(pic1j + Pivtj + Pijor + pija1) +4pij + Ry = h'z;, (A2)
vg'(uij) — Dy pij = 0. (A3)

The neighboring variables are considered constant during the smoothing step at x. Therefore,
define the following two functions of i, j, treated as constants at this grid point,

Cyij = Qi-1j +Yir1j +yijo1 +yij+1) and  Cppy = (pi1j + piv1j + pij-1 + pi j41)-

Inserting Cy;; and C,;; in (A1) and (A2), respectively, we obtain y;; and p; ; as functions of
u;; as follows

(Cyij + h? (Dyu)ij)

Yij(uip) = 7 , (A4)
and
pijuy) = 00 = " Criy +146h2 4j = 1 Dy (A5)
Next, consider (A3) and replace p;; by (A5) to obtain
168y, () + h* uy = D} (4Cpij — h* Cyij + 4 h2z;)), (A6)
and
16V8u, () + h* uy = D} (4Cpij — h* Cyi; + 4 h°2i)), (A7)

where u = (41, up) and D;(-);, [ = 1, 2, represents numerical integration of the quantities in
parenthesis on £2;,, and €2, respectively.
Now, we give a formal description of the smoothing algorithm used in the multigrid scheme.
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Al Smoothing algorithm

(i) Compute f; = D} (4Cp;; —h*Cyij +4h2 7)1 = 1,2.
(i1) Gradient update of u
Form=1,...,10

u = ul'"' = B(16vg, W)+ htl T — £y, [=1,2,

if Jy@™), ™) > J(y@™ "), u™ "), set u = u™! and goto step (iii); otherwise set
u = 4™ and continue.
(iii) Gauss—Seidel update of y and p
Fori,j=1,...,N
Cyij = i1y + Yix1j + Yij—t + Yi j+1)

(Cyij + B (Dpu)ij)
Yij = 2

Cpij = (Pi-1j + Pit1j + Pij—1 + Pije1)

_ (4Cp —h2Cyiy +4h% zi; — h* (Dyu)ij)
- 16

Pij

To evaluate the cost functional during the gradient step of the smoothing algorithm we use
2

ry 2
" h C_\-,'_J: -+ ."I“(D,f,!'f'")r'_;' "
T, u"y = = ; ( . —z) +vgu™).
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