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Abstract

Parabolic variational inequalities are discussed and existence and uniqueness of strong as well
as weak solutions are established. Our approach is based on a Lagrange multiplier treatment. Exis-
tence is obtained as the unique asymptotic limit of solutions to a family of appropriately regularized
nonlinear parabolic equations. Two regularization techniques are presented resulting in feasible and
unfeasible approximations respectively. Monotonicity results of the regularized solutions and conver-
gence rate estimate are established. The results are applied to the Black—Scholes model for American
options. The case of the bilateral constraints is also treated. Numerical results for the Black—Scholes
model are presented and prove the practical efficiency of our results.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Des inégalités variationnelles paraboliques sont discutées et 1’existence et 1’unicité des solutions
fortes faibles sont établies. Notre approche des solutions utilise une méthode de multiplicateur de
Lagrange. L’existence est obtenue comme limite asymptotique unique des solutions a une famille
d’équations paraboliques non linéaires convenablement régularisées. Deux techniques de régularisa-
tion sont présentées ayant pour résultat des approximations acceptées ou rejetées. Des résultats de
monotonie des solutions régularisées et d’évaluation de taux de convergence sont établis. Les résul-
tats sont appliqués au modele Black—Scholes pour des options américaines. Le cas des contraintes

* Corresponding author.
E-mail address: kito@math.ncsu.edu (K. Ito).
! Research in part supported by the Fonds zur Forderung der wissenschaftlichen Forschung under SFB 03
“Optimierung und Kontrolle”.

0021-7824/$ — see front matter © 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.matpur.2005.08.005



416 K. Ito, K. Kunisch / J. Math. Pures Appl. 85 (2006) 415449

bilatérales est également traité. Des résultats numériques pour le modele Black—Scholes sont présen-
tés et prouvent I’efficacité pratique de nos techniques.
© 2005 Elsevier SAS. All rights reserved.

Keywords: Parabolic variational inequalities; Lagrange multipliers; Feasible and unfeasible regularization;
Black—Scholes

1. Introduction

In this paper we discuss parabolic variational inequalities in the Hilbert space H =
L2(£2) of the type,

d
(d—y*(t)—Ay*(t)—f(t),y—y*(t)) >0, y*'(necC, (I.D
t H

for all y € C, where the closed convex subset C of H is defined by:

C={yeH: y<vy},

A is a closed elliptic operator in H, §2 denotes a bounded domain in R”, and y < ¢ must
be interpreted in the pointwise a.e. sense. In [4,7] existence of strong and weak solutions
is established using elliptic regularization techniques with respect to the operator % + A.
If the solution satisfies y* € L%(0, T;dom(A)) N HY(0, T; H), then (1.1) can equivalently
be expressed as variational inequality of the form:

Ly* (@) — Ay*(t) — f(1) = —2*(1) <0,

(12)
@O <y, @)=y, A*(t)g =0, ae.inz>0.

The Black—Scholes model for America options, see [14,16] for example, can be formulated
as (1.2) (see Section 3).

Our objective is to construct solutions to (1.1) and (1.2) as the asymptotic limit of so-
lutions to regularized problems based on a Yosida—Moreau approximation of (1.1), see
Section 2. Hence it is distinctly different from the techniques used in [4,7,13] and fol-
lows the abstract treatment in [9], and the treatise of elliptic variational inequalities in [10]
and [11]. For fixed A € L2(0, T; H) satisfying A(f) > 0 a.e. and ¢ > 0, we consider the
family of nonlinear parabolic equations:

d -
g7 e @ — Ave(®) + max (0, A(1) + ¢ (ye(t) = ¥)) — f(1) =0, (1.3)

where the max operation is defined pointwise a.e. in £2. The motivation for introducing
the term A(r) is twofold. First we show that under appropriate assumptions the choice
A(t) > max(0, Ay + £(¢)) (in the variational sense) guarantees that A.(¢) = max(0, A (1) +
c(ye(t) — W) — A*(t) in L*(0,T; H), y.(t) — y*(t) as ¢ — oo and (y*, 1*) is the
solution to (1.2). In particular, this choice of A guarantees the existence of a Lagrange
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multiplier. Here y.(#) denotes the solution to (1.3). Secondly, for the above choice of A (ap-
propriately modified if Ay is a distribution) the approximate solutions y.(z) are feasible,
i.e., y.(t) < v, as well as monotone with respect to ¢, i.e., we have:

ye(t) < ye(r) < y*(1)
and the bound
0 < Ae(t) < AD)

holds for all 0 < ¢ < ¢. An analogous result was established for elliptic variational inequal-
ities in [10].

For the penalty method case where A = 0, see also [4], we can establish monotonicity
of the family of solutions y,:

Je(t) 2 Je() = y* (1),
but no upper bound on A.(¢) can be obtained. In conclusion:

Ve(?) < y* (1) < Je(0).

Moreover, for second order elliptic operators A we establish in Section 4 the convergence
rate estimate:

M

|)’c(f)_y (t)|Loc(_Q)s|yC(t)_y (l‘)|L°O(.Q)< c

For elliptic regularization method square root convergence with respect to the regulariza-
tion parameter was proved in [4]. These convergence results are particularly important for
the Black—Scholes model for American options since the free surface S(¢t) = {y*(¢) = ¥}
defines the optimal stopping time [14,16]. That is, we can approximate S(¢) with the rate
1/c by letting:

Se@) = {re()=0} or S.(1)={Jc=v}.

The paper also contains a discussion of weak solutions and in particular a new result on
the uniqueness of the weak solution is obtained in Section 2.3. While most of the paper con-
centrates on the case where the obstacle is independent of 7, we also treat time-dependent
constraints ¥ (¢) in Section 2.4. Section 3 is devoted to some aspects related to the Black—
Scholes equation. Convergence rate estimates with respect to ¢ are the subject of Section 4.
In Section 5 we discuss the case of bilateral constraints, i.e., the case when:

C={yeH:¢<y<vy}

As in the unilateral case again our treatment depends, in an essential manner, on an appro-
priate choice of A. Lastly, in Section 6 we report on a numerical result for the solutions to
a one-dimensional Black—Scholes model.
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2. Strong and weak solutions, and existence of Lagrange multipliers

We discuss parabolic variational inequalities in the Hilbert space H = L?(£2). Let X be
a Hilbert space that is densely, compactly embedded into H and let V be a closed linear
subspace of X endowed with the norm of X. For ¢ € H let C be the closed convex set in
V given by:

C={yeH:y<y}nV,

where we assume that v is such that C is nonempty. The problem that we shall investigate
consists in finding y*(¢) € C such that for a.e. t € (0, T),

(Ey*@), y(6) — y* (1)) +a(y* (1), y(t) — y*(1)) — (f (), y(t) — y* (1)) > 0
forall y € C, 2.1

y*(0) = yo,
where yg €C, f € L2(0, T;V*),and a(-,-) is a bounded bilinear form on X x X, i.e.,
la(y. ®)| <M |ylx|olx. y.¢€X,
which is coercive on V:
a(@.9) > wlply — Pl PEV,

with o > 0 and p > 0. Here (-,-) denotes the inner product on H and (-,-) = (-,-)y* vy

stands for the duality pairing between V and V*. While we frequently set p = 0 for the sake

of simplicity of presentation, but we indicate the dependency on p when it is necessary.
Let us define A € L(X, V*) by:

—(Ay, v)yxxy =a(y,v) foryeX,veV.
Then the restriction of A to V is a closed linear operator in H with,
dom(A) = {y € V: there exists ay such that ‘a(y, ¢)| < aylg|y forall ¢ € V},
and dom(A) is a Hilbert space equipped with the graph norm of —A.
Definition 1 (Strong solution). Given yg € C and f € L?*(0,T; H), a function y* €
H'(0,T; HYNC(0,T; V) is called strong solution of (2.1) if y*(¢) € C and (2.1) is satis-
fied fora.e.r € (0, T).

Note that if the strong solution satisfies y* € L?(0, T: dom(A)), then (2.1) can equiva-
lently be written as a variational inequality of the form:

Ly*(t) — Ay*(t) — f(t) = =1 () <0,

(2.2)
V@) <v, @)=y, A(t)g =0, forae.r>0.
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Remark 1. (1) Let @ be the convex functional on H defined by:

0 ify<yae,
oo otherwise.

P(y)= {
Then (2.2) can be written as

d
—ay*(t) +AY () + f(1) €30 (y (1)),

where 9@, the sub-differential of @. Equivalently this can be expressed as A*(r) €
d® (y*(t)). In this sense A*(¢) is the Lagrange multiplier associated to the constrained

y<.
(2) The family of the regularized problems that we shall utilize in this paper is given by:

($y(0). 9) +a(y(0), ¢) + (max(0, A(1) + c(y(1) — ¥)). ) — (£ (1), $) =0,
forall¢ € Vandae.r € (0,7), 2.3)
y(0) = yo,
with ¢ > 0, it is based on the Yosida-Moreau approximation [9] of the complementarity
condition A*(¢) € 9® (y*(y)). Different choices for A will be used.

(3) If there exits a Lagrange multiplier A1) € L2(0,T; H) satisfying (2.2), then y*(¢)
is a solution to (2.3) with A = A*(¢). In fact, 1*(¢) satisfies the complementarity condition,

A5 (1) = max (0, A*(t) + c(y* (1) — v)), (2.4)

for each ¢ > 0. It is shown in [9] (and can also be checked easily by a direct computation)
that 1*(¢) € 0@ (y*(¢)) if and only if (2.4) is satisfied for some ¢ > 0.

2.1. Strong solution

In this section we prove existence of strong solutions to (2.1) by means of a finite dif-
ference approximation scheme.

Theqrem 1. We consider the regularized problem (2.3) with f € L2(0,T; V*), yo € H,
and ) € L*(0, T; H). Then for each ¢ > 0O there exists a unique solution y. in W(0,T) =
HY0, T; VYN L20, T; V) to (2.3) and we have the estimates:

1
N N 1
[ye() = [}, +/(w|yc<s> —v[y+ ;Iwﬂi) ds
0
t

. 2AM? | . 2
<vo—9)7+ ’T|w|2v+f(5|f(s)

0

1.-
2+ - |x(s)|i1> ds, 2.5)
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for all 1} € C, where Ac(t) = max(0, A(t) + c(yc(t) —¥)), a.e.on (0, T).
If in addition for some M > 0,

Milylvig¢la  forally,¢ €V, (2.6)

a(yvff’)_a(fﬁ,)’)‘ <
) S

©Mt)=xeH, yoeV and f € L*(0,T; H), then y. € H'(0,T; H) N C(0,T;V) N
L2(0, T; dom(A)) and we have the estimate:

2
ds
H

t t | d
a(yc( )5 Ye( )) +/’ayc(s)
0

b +
<y0—w+—>
c

on [0, T], where M> > 0 is independent of ¢ > 0.

2 t
< Mz(lyol%/ +c + /|f(s)\2 ds), 2.7
H
0

Proof. Consider the finite difference approximation of (2.3):

yRFL ik .
(T, ¢> +a(y*1, ¢) + (max(0, AF + c(y"T — ), 0) — (£, ¢) =0,

forallp € V, 2.8)

. k+1)A by k+1)At
with 0 = yo € H, f& = L 0D riyar, 3k = L 05D 50y dr, Ar =

k=0,1,.... Note that

and

=~

yeH— max(0, A +c(y—y)) e H
is Lipschitz continuous and monotone. Hence, since B : V — V* defined by,
B(y) = Alt — Ay +max(0, 2 + c(y — ¥)),
is coercive, monotone, hemicontinuous [2] for all sufficiently small Az > 0 independently

of ¢ > 0, (2.8) has a unique solution y**1in V for every k.
We let AXT!1 = max(0, A% + c(y**! — ). Then for all ¥ € C:

X ik .M
()»k+l,yk+l—1/f)=<)»k+l,?+yk+l—lﬁ-i-lﬂ—w—?)

1 2 1 - 1 2 | )
2 E})"k+1|H _ ;()\‘k-i-],)\‘k) > Z’)"k+l|]_] _ Z|)"k|H

Setting ¢ = y¥*t1 — 4 in (2.8), we obtain for k =0, 1, ...
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1 ~ 12 A2 2 A2
Z_At(‘ka_IHH_|yk_W|H+|yk+l_yk|H)+w|yk+l_‘p|v
) A A 1 2 I - 2
=Y =y = MY =G [y W = S
<|fk|v*|yk+l_1/}|v

and thus

k
~ . ~ 1, . . .
!f—¢ﬁ+2x@w—¢ﬁ+jW@Mﬁﬂf—V”&)
i=1

1,-

et —|xi! |i,> At, (2.9)

Cc

k 2
A 2M~ |~ 2,
<= b+ (2l + 2
i=1

fork=1,2,.... We let:

t — kAt

o (0 =0 on[kAn (k+ Dad].

Va0 =Y+
Then from (2.8), (2.9) the family y{) is bounded in W(0,T) = H'(0,T;V*) N

L2(0, T; V) and from the Aubin lemma, see, e.g., [6,12] it has a subsequence that con-
verges to some y. weakly in W (0, T') and strongly in L2(0, T; H). Moreover for,

y(AZ,) ) =y**" on (kAt, (k+ 1)At],

we have:
[ 2 AtN 5
1 2 .
/}y(At)(t)—y(At)(l”Hd[:?E :|yk—yk 1 2 0
0 k=1

as At — 0. Hence without loss of generality the subsequence of y(Azt) converges to the same
y. weakly in L%(0, T; V) and strongly in L>(0, T; H). Thus the limit y, satisfies (2.3) and
estimate (2.5) holds.

Uniqueness. Note that for y € W(0,T) we have &|y(1)[%, = 2($y(1). y(1)) for
a.e. r. Let y; € W(0, T) denote solutions to (2.3) with initial condition y;(0) € H and
fi € L>(0,T; V*),i=1,2. Then

2
v

d 1
SO =yl + ol =20 =200 =2l < A1) = L0

This implies the existence of M1 > 0 such that
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t
@ - »n®, + w/|y1<s> o) ds
0

t

1
<M, (|y1 ©) = n)7, +f IIORNAOI ds),

0

for all ¢ € [0, T']. Uniqueness of the solution to (2.3) follows.
Strong solution. Define the symmetric part a; of a by:

a(y,¢) +a(g.y)

as(y1¢): 2

+p(y,®)g fory,¢cV,

and set

y
'lfc(y)=/ f max(O,X(x)—i—cs)dsdx.

£2 %/

. K1k
We shall use (2.8) with ¢ = *—~ and observe that

2as(yk+1’ yk+1 _ yk) =ay (yk'H, yk+1) _ a_q(yk, yk) +a5(yk _ yk+1, yk+1)
_ as(ka, yk _ yk+1) + ay (yk+1 _ yk, yk+1 _ yk).

Using monotonicity of y — W,.(y), we obtain:

YLy 2 1 K1kl k ok 1k k1 ok
= H+2—At(as(y V) —ag (05 ) +a (T = 5 =)
1
+ A—t(svc(y"+l — ) = (* —v))
k+1 k k+1 k k+1 k
kvl Y Y ket | Y Y k| (Y T
<’P<y s At >H+M1|y |V At ‘H+|f |H At
1 yk+1_yk 2 3 5 2 2
<A | F R M ).
Hence,
yi_yi—12 . . . .
Z( = At+ag(y =y y - y’_1)> +ag (5, ) + (v~ )
X H

i=1



K. Ito, K. Kunisch / J. Math. Pures Appl. 85 (2006) 415-449 423

Thus y(Alt)(-) is bounded in H'! (0, T; HYNC(0, T; V) and converges weakly in Hl(O, T;H)
and weak™ in L*°(0,T; V) to y.. Moreover, since y. satisfies % Yo — Ay, = f with
f =max(0,x + ¢(ye — ¥)) — f € L%, T; H) and y(0) = yo € V we have y. €
C(0,T;V)NL%*0,T;dom(A). O

Theorem 2. Assume that yy €C, [ € L%, T; H) and that (2.6) holds. Then (2.1) has a
unique strong solution y* € H'(0, T; H), t — y*(t) is right-continuous, and the estimates
hold

t t
. . R 2wM? . 2
v 0 = 0% + [ oy ) = ds <y =P+ |G+ [ 2156
w w
0 0

2
v ds

for all 1} € C, and moreover

t t
d 2
a(y* (1), y* 1) +/‘5y*<s> ds < M2(|yo|2v + /!f(s>|i,ds>. (2.10)
H
0 0

Proof. Let A = 0. Since from (2.7) y. is bounded in H! 0, T,H)NC(0, T; V), there exists
a subsequence that converges to y* weakly in H 1(0, T; H), weakly star in L>°(0,T; V)
and strongly in L2(0, T; H) as ¢c — o0.

From (2.5) we further deduce that

T
/|max(0, Yelt) = ¥)|3,dr =0
0

as ¢ — 00, and consequently y*(¢) < ¥ a.e. Since,

(max (0, c(yc(t) — %)), y — ye(®)) = (max(0, c(ye (1) —¥)), vy — ¥ — (ve(®) —¥)) <0
forall y € C,

y* satisfies (2.1).

We turn to the a priori estimates. Since y. converges to y* in L?(0,T; H) as ¢ — oo
there exists a further subsequence, denoted by y; that converges pointwise a.e. to y* in H.
Due to (2.7) the family {|ys(¢)|v}s~0 is bounded for every ¢ € [0, T]. Hence, for each
t € [0, T] there exists a subsequence of {yz(¢)} and y(¢) such that yz(r) converges to y(¢)
weakly in V. We claim that y(z) = y*(¢) for a.e. t € (0, T) and hence the whole family
{ye(t)}s-0 converges to y*(¢) weakly in V. This follows from the fact that if a sequence
{z,} converges strongly in H to z and weakly in V to Z then z = Z. In fact, let 7 : V — V*
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denote the Riesz isomorphism and let dom J = {h € V: Jh € H}. For every h € dom J
we have:

0= lim (z, —z,h)y = lim (2, — 2, Th)y,y== lim (z, — 2, W)m = (2 —Z,h)H.
n— 00 n—oo n—oo

Since dom J is dense in H, and & € dom 7 is arbitrary, we have z = Z, as desired (see,
e.g., [1, pp. 65, 108]). Now, using weak lower semi-continuity of lower semi-continuous
convex functionals, we can pass to the limit with respect to ¢ in (2.5) to obtain the first a
priori estimate in Theorem 2. The second follows from (2.7).

Next we show that + — y*(¢) is right-continuous from [0,7) to V. Since y* €
C(0,T; H) and y*(r) € V for every t € [0, T] by (2.10), we can consider an initial value
problem of the type (2.1) with initial condition y*(t) at + = t. Proceeding as in the last
step of the proof of Theorem 1, we have:

2
ds
H

t
d
a(yc(t), YC(t)) + 6/‘53’&8)

t

<a(y*(0), y*(1) +3/(p2|yc(S)|i, +Mi|y®)|} + [ f)]5) ds.

T

Now we can proceed as in the first part of the proof of Theorem 1 (see (2.5) with
¥ =y, and A = 0) to ascertain the existence of a continuous function p;:[7,T] - R
with p; (t) =0 (depending on f € L%(0,T; H), and yo € V) such that

2
ds <a(y*(r), y*(r)) + p: ().
H

t
d
a(ye(®), ye(®)) + / ‘ayc(w

Passing to the limit w.r.t. ¢, we have:

2

ds <a(y* (), y* (1)) + p: (0).
H

t
* * i *
a(y*(),y (r))+f‘dsy ()

This implies that

limsupa(y* (1), y* (1)) < a(y*(z), y*(1)).

t—tt

Since y* € C(0, T; H) and {y*(#)};c[o,7] is bounded in V, it follows that y*(t) — y*(1)
weakly as ¢t — t and, hence

a(y*(r). y*(0)) <liminfa(y* (1), y* (1)).
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Consequently lim,_, .+ a(y*(¢), y*(t)) = a(y*(r), y*(r)). Combined with w-lim;_, ; y*(¢)
= y*(7) this implies lim,_, .+ y*(t) = y*(7).

Uniqueness. If yi and yJ are two solutions, with possibly different initial conditions
and inhomogeneities, then from (2.1),

d
(E(yi“ — ¥y — yé‘) +a(yf =3, 7 —y3) < (fi() = f2(0), y] = ¥3)

and thus

t t
1
yi@) =i, +w/|y?‘<s) — e[y ds < <|y;“(0) — 3O}, +~ /If(t) - ds>,

0 0

on (0, T'], which implies that the strong solution is unique. O

The following corollary shows that the strong solution is continuous with respect to the
function ¢ € H which defines the convex set C.

Corollary 1. In addition to the hypotheses of Theorem 2 assume that Y1 — Y2 € V and let

yi,i = 1,2, denote the strong solutions to (2.1) corresponding to the closed convex sets
Ci={yeV:y< i}, i=1,2, respectively. Then,

t
Vi) =1 — (@O — W) |3, + w/|yi‘(s) — )|y ds < Mslyr — val},
0

on [0, T].

Proof. From (2.1) with C; we find:

d
<Ey?‘(t), V>t + Y1 — v — yi"(t)) +a(yf (), y3@) +v1 — 2 — yi(1)
—(fO, Y5O +¥1 — 2 — yi(1) >0,

and similarly,

d
<§y§‘(t), V@) +v2 =y — yi"(t)) +a(yf @), y{ @) +v2 — 1 — y5 (1)
— (f@. YT @) + Y2 — ¥1 — y5(1)) = 0.

Adding these inequalities implies,
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d
(a(yik(t) =91 = (30 = ¥2)), 7 () = ¥1 = (3 (1) — 1//2))
+a(yf () = y3(0), 7 (@) = y3 (1) = (Y1 = ¥2)) <0,

and thus
t M2
Vi) = v1 = (G0 — )|, +w/|y1“(r> — 0[5 dr < — I - il O
0

The following two results are corollaries to the first part of Theorem 1.

Corollary 2 (Monotonicity). Let > = 0 in (2.8) and assume that a(y, y*) > 0 forally € V.
Thenyf 2)}2‘ and y. > ysforc <candallk=1,2,....

Proof. The proof is given by induction. The case k = 1 will follow from the arguments
given below. Suppose that yé‘ > yéf for ¢ < ¢. Then by (2.8),

1 - _
_(yigﬂ _ yéchl’ (yf—H _ yéchl) )—i—a(yf—H _ yéchl’ (yf+1 _ yif“) )

At
+ (max(0, e(ye ! = v)) = max(0, 607 = v)). (vt = 35")7)
= (A%(yf — 5 (i - yﬁf“)‘)) >0.
Since
(max (0, e(ye ™! = ) = max(0, (" = v)). (v = ")) <0,

for At > 0 sufficiently small | (y**! — yif“)’l%{ <0 and thus y*+1 > yé‘“ for ¢ < ¢. The

last assertion follows from the fact that y(Azt) converges strongly to y. in LZ(O, T; H), as
At—0t. O

Corollary 3 (Perturbation). Let i, 1} € H and denote by y. and y. the corresponding
solutions to (2.6) with . =0 and ¢ > 0. Assume that (y — y)* € V for all y € V and
y=20a(l,90)=0forall ¢ >0, and a(y,y") >0 forall y € X with y© € V. Then for
o =max(0, sup, , (¥ — 1})) and B =min(0, infy , (Y — 1})), we have:

A

ﬂgyc_yc

N

a.
Proof. On {y. > ¥} N {J. > ¥} we have:

max (0, c(ye — ¥)) —max(0, c(§e — %)) = c(ve — vo) —c(¥ — %) = (v — Fc — ),

and hence
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(max(0, c(ye — ¥)) —max(0, ¢($e — ¥))) (ve — e —a)* 20,
(max (0. ¢(ye = ¥)) — max(0, ¢(ve = ¥))) (e = e = )~ <0,

On {ye > ¥} N {F < ¥} we have max(0, c(ye — ¥)) — max(0, c(Fe — ¥)) = c(ye — ¥),
and hence

(max (0, c(ye = ¥)) — max(0, ¢(Je = ¥))) e = Je =)™ >0,
(max (0, c(ye — ¥)) — max(0, ¢(ye — ¥))) (ve — $e — B)~ =0.

On {y. < ¥} N {Fe > ¥} we have max(0, ¢(ye — ¥)) — max(0, c(Fe — ¥)) = —c(Fe — V),
and hence

(max(O, c(ye — 1//)) — max(O, C(yc — 1/})))()% — Ve — o)t =0,
(max (0, c(ye — ¥)) — max(0, ¢(ye — ¥))) (ve — $o — B)~ < 0.
Therefore, we have on £2:
(max (0, c(ye — ¥)) — max (0, ¢($e — ¥))) (e — Fe —e)* >0, o)
(max (0, c(ye — ¥)) — max(0, c(vz — ¥))) (ye — e — B)~ <0. '

We proceed by induction and assume that yf — ﬂ? < «. Then, from (2.8),

1 A
(R = ), (R — 3k

At
+ (max(0. (6 — ) - max(0, (55— ). (5 - 55— ))

1 - A
— (0t =3t —a). 0 =58 —a)) <o

sk+1 —a)+) —{-a(yif“ _ );échl’ (yf“ _ )A]échl _a)+)

From the assumptions on the bilinear form a and (2.11) it follows that |(yf+1 — &f“ —

a)T13, <0 and thus y**! — $%¥1 < o ae. Analogously one shows, using g < 0 that

yi?“ - &f“ > B. The claim now follows from the fact that y(Azt) converges strongly to

yein L2(0,T; H) as At — 0. O
2.2. Existence of Lagrange multipliers

In this section we prove that for appropriately chosen A the sequence A.(f) =
max (0, A(¢) + c(yc(t) — ¥)) converges to the Lagrange multiplier A*(¢) in L%0,T; H)
associated to the constraint y < v as ¢ — o0.

Throughout this subsection we assume that
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veXand(y—y)t eV forallyeV,
AeL?0,T;H), 2 >0, and A(t) = Ay + f(r) forae.rt, (2.12)

a(y,yt)>0 forallye X withyt e V.
In (2.12) the condition A(7) > Av + f(t) must be interpreted in the sense that for a.e. 7,
(A= (AY + f@©).9) >0, forallpeV, ¢ >0

Theorem 3. If (2.12) holds and yg € C, then the solution to yé‘ to (2.8) satisfies yf € C for
each ¢ > Oandyf < yéfforc <cforallk>0.

Proof. For k > 0 define )J; > 0 by:
AkH = max(O FLEE c( k1 w))

where yé‘ is the solution to (2.8). We first show that yé‘ € C for all k. The proof is given by
induction. For yé‘ € C, we have from (2.8):

LA =y OE = 9) ) el — v (4 - 9))
(A4 7+ R =) ) = O - 0F - ) <0
where

(—(Aw + 75 + 28 O =) ) = e 6 =) [

since Ak — (A + %) > 0. Hence for At > 0 sufficiently small |(y*T! — y)T|2, <0 and
thus y¥+! € C. Similarly, for y* < yif and ¢ < ¢,

1
~ (y£c+1 ylf+1 (y£c+1 y]f+l) )+a(yf+l ylf+1 (yf“ y]f+1)+)

1
A+ (AR AT (T =T )—(E(yf yE (T — T )><0,

where
()»’CH'I _ Ag“ (yé<+1 y]f+1)+) >0.

Hence for Az > 0 sufficiently small |(y*+! — yif“)*l%_, < 0 and thus y**! < yif“ for
c<é. O
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Corollary 4. If in addition to the assumptions of Theorem 3, (2.6) holds and f €
L0, T; H) then y.(t) =limy\) € H'(0, T; H) N L%(0, T; dom(A)) N C(0,T; V) as
At — 0T, (2.5) is satisfied and

%yc(t) — Aye(t) + max(0, A(t) + ¢(ye () = ¥)) = f(@). (2.13)
Moreover y(t) € C for each for ¢ > 0, y.(t) < ya(t) for ¢ < ¢, and
0 < Ae(t) =max(0,A(1) + c(ye(®) —¥)) SA(1) aein(0,T)x 2. (2.14)
Proof. From Theorem 3 we deduce that
0 <A = max (0, s c(yf+1 —v¥)) < A ae.

and A’L‘.H monotonically nondecreasing as ¢ increases to co. From the proof of Theorem 1
it follows that y.(¢) = lim y(Alt) strongly L%(0,T; H) and weakly in W (0, T), and y,. satis-
fies (2.13) and (2.14). The regularity property y.(¢) € H'0,T: H)N LZ(O, T;dom(A))N
C(0,T; V) follows from the estimates developed in the part on strong solutions in Theo-
rem 1 with f replaced by f=f—2€L*0,T;H)and ¥.=0. O

Theorem 4. If in addition to the assumptions of Theorem 3, (2.6) is satisfied and
fe L2(0,T; H) then (2.1) has a unique strong solution y* € HY0,T; HYyn L%, T;
dom(A)) N C(0, T; V) and there exists a Lagrange multiplier .* € L%(0, T; H) such that

d
Ey*(t) —Ay*(t) = f(1) +27() =0,

(2.15)
A¥(1) =max (0, A*(1) + (y* (1) — ¥)).

Moreover, y.(t) 1 y*(t) a.e. pointwise as ¢ — 0Q.

Proof. From Corollary 4 it follows that {y.}.>1 is bounded in W (0, T'). Hence there exists
a subsequence and y* € L2(0, T'; H) with y*(0) = yg such that y. — y* weakly in W and
strongly in LZ(O, T; H). Since y. < ¢ for all ¢ > 0, we have y* < . Moreover A.(¢)

is bounded in L2(0, T; H) and consequently there exists 1*(¢) € L%(0, T; H) such that
A*(t) =2 0 a.e. and a subsequence of A.(7) converges weakly to A* in L2(0,T; H). Since

T T
1.
0< /(Ac(t), (ve(®) =) + ;/\(t)) dr — /(k*(t), y @) —y)de,
0 0

T
/(k*(t), y () — ) dr =0,
0
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and thus (y*(7), A*(¢)) satisfies the complementarity condition. Taking the limit in

d
<Eyc(t)» ¢> +a(ye(0), ) + (Ae(), d) = (f (1), ¢) =0,

forall ¢ € V and a.e. t € (0, T], we have:
<%y*(r>, ¢> +a(y (), ¢) + (A1), 9) = {f(1),¢)=0,
and hence
<%y*(t), y— y*(t)> +a(y* @),y —y*(®) —(f(®).y —y*®)=0,

for all € V and ae. ¢t € (0,T]. Moreover %y*(r) — Ay*(t) — f(t) =0 in V¥,
where f: A* — f. Since f € L2(O,T; H) and yg € V, we have y* € H](O,T; H)N
L%(0, T; dom(A)NC(0,T;V). O

Corollary 5. In addition to the assumptions in Theorem 4 assume M1)€ LP((0,T) x £2),
2< p<oo.Then \* € LP((0,T) x £2).

2.3. Weak solutions
In this section we consider weak solutions to (2.1).
Definition 2 (Weak solution). Assume that yo € H and f € L2(0, T, V*). Then a function

y*e L*(0,T; V) satisfying y*(f, x) < ¥ (x) a.e. in (0, T) x £2 is called weak solution to
(2.1)if,

d
[<5y(t), y(t) — y*(r)> +a(y* @), y(0) = y* @) = (f®). y@) — y*(t))] dr

S—

1 2
+§|y(0)—y0|H>0 (2.16)
is satisfied for all y € IC, where
K= {y eW(@O,T): yt,x) <v¥(x)ae.in (0,T) X Q}

If y is a strong solution, then

T
d
/Rai(ﬂ, y(@) — i(t)> +a(¥@0), y®) =) = (f@©), y(0) — i(ﬂ)} dr >0,
0
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for all y € K. Setting y =y in (2.16) and y = y* in the above inequality we have
a(y —y*,y — y*) =0 for a.e. t. Consequently, if (2.1) admits a strong solution then it
is a weak solution and the weak solution is unique. We have also the following stronger
result.

Theorem 5. Assume that yo € H and f € L*>(0, T, V*). Then there exists a unique weak
solution to y* to (2.1).

Proof. For each ¢ > 0, let yf = yk be the unique solution to (2.8) with A = 0. From (2.9)
it follows that for each k > 1 the families |yc |y and cl(yc W)+| are bounded in ¢ > 0.

Thus there exists a subsequence of {yc} that converges to some y* e V, weakly in V and
strongly in H as ¢ — 0o. Moreover |(y* — ¢) |y = 0 and hence y* € C. Since

(max (0, c(yf =), y = yt) = (max (0, ¢(vi = ¥)),y =¥ — (v: —¥)) <O
forall y € C,

we obtain from (2.8) that yk, k > 0, satisfies,

yk+1_yk
(T’y k+1>+a( k+1,y—yk+1) (f y— yk+1> 0, 2.17)

for all y € C. Moreover it follows from (2.9) that

N
Z(’yk - yk—lﬁi + ‘ykﬁ/Al‘) is bounded, (2.18)
k=1

with respect to N, where N At = T. Thus it follows from the proof of Theorem 1 that there

exist subsequences of y(Alt), y A) (denoted by the same symbols) and y*(t) € L>(0,T; V)
such that

(Y] (2) : 2 . . 2 .
Yo, (0, ya; () = y*(t)  weakly in L=(0, T; V) and strongly in L=(0, T; H),
as At — 0. Note that

d ) yk-H _ yk

= kAt, (k+1)At)].
dlyAl At n( ( + ) ]

Thus we have from (2.17) for every y € K,

d
<dtyy yfl)>+a(yft),y YY) = (5 y =)

d ) d @
+<dtyA, )Y VA 20, (2.19)

a.e.in (0, T). We have:
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d o) d @
A’ T gl T Y

<;y§t) - %y, y - y(AlZ> + <§ty(Al,) ;ty, y(Al,) - yf,)> (2.20)
where
T
f@yﬂﬁ Tyy- y‘;)> 20—yl 2.21)
and
T
/ <dt YA Y = (2)> Zly . (2.22)
0
Since,

T T

*(#), y*(1)) dt < liminf )t (2)t
[ab 0.y @) <timint [ (R0 0)ar
0 0
it follows from (2.19)—(2.22) that every weak cluster point y* of y(Azt) in L2(0,T; V) isa
weak solution.

Uniqueness. Let y* be a weak solution. Setting y = y(Alt) eKin(2.16)and y =y*(t) € C
in (2.17), we have:

T
/R Vais Yl y*>+ (" v8) =) = (f. v — )}dt)O,
0

T

d g ) ) X i
/Rdty(m)’y _y(At)>+ (i v =) = (Fy* =y} [de > 0.
0

Summing up these inequalities, and using (2.22) implies that

T
[ab =58 = {758 =5
0

T

N
1
>§Z|y"—y""li+/ (v = vl " =R dr
k=1 0
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Letting At — 0% we obtain 0 > a(y*(¢) — $(¢), y*(£) — $(¢)) a.e. on (0, T), for every weak
cluster point y of y(Azt) in L>(0, T; V). This implies that the weak solution is unique. O

2.4. Time dependent obstacles

In this subsection we discuss the extension of the previous sections to the case that the
obstacle depends on 7.
() Ify € L?(0,T; H) and

K={yeWw@©,T): y(t,x) <y x)ae in(0,T) x 2}

is nonempty, then (2.3) has a unique solution y.(#) in W(0, T') for each ¢ > 0 and there
exits a weak solution y* € L2(0, T; V) to (2.1) satisfying y* < ¥ (¢). Here C in (2.1) has
to be replaced by C(t) ={h € H: y < ¥ (¢t)} NV for a.e. t. For the proof we consider the
modified finite difference approximation from the proof of Theorem 1:

k1 _ Lk
y -y T
(T’ ‘f’) +a(yh9) + (max(0.25 + (! —v)). 9) — 5. ¢) = 0.
forall¢ € V, (2.23)
with y0 = yo € H and y*t! = % k(gj'l)ml//(s)ds. If we replace ¥ by y<t! =

L [UFDAT G (5)ds for ¥ € K and let,

)»kH :maX(O, Xk +c(yk+1 _ wk+l))7
in the proof of Theorem 1, we obtain for k =0, 1, ...

1 A A A N
2—Az(|yk+l _ wk+1|3{ _ iyk _ wkﬁ{ + |(yk+1 _ wk+1) _ (yk _ wk) 2)

A A 1
+w|yk+1 _ wk+1|%/ —p\ka _ lﬁkﬂﬁq + Z|)\k+l|§1

1 - o
< Z|)‘k‘2+|yk+l _wk-Hka

V*

G _ gk

+|yk+1_l/}k+1|v<M|1/}k+1‘v+' -

V*>7

where 1}0 = 1}1. Here we used the fact that
(a—b)(a—6)=§|a—6| —Elb—dl ~I—§|(a—c‘)—(b—d)| +(@—c)(c—d).

The previous estimate implies the analog of (2.9) for #-dependent obstacles:
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. a L 1, . o . .
= 0 0 (ol =071+ LT Jar+ 67 =9 = 7 =) )
i=1

2M

. k 2 1, 2, .
< |yo—w<0>|i,+z(7|w—l|2v N PR Vi
i=1
4| — i
+5‘ Al V*>At' (2.24)

Proceeding as in the proof of Theorem 1 we obtain the existence of a unique y. € W (0, T)
satisfying (2.3) with v replaced by ¥ (¢), and

t
R ~ 1
|ye() = ()3, +/<w|yc<s> )y + ;!xc(s)ﬁ,) ds
0
F2M? 1 4
<ho-PO + [(Tms)\zv + ;|A(s>|§, + ;|f(S)|%/*
0

2
) ds, (2.25)
V*

L4
p GlSW(S)

where Aq(r) = max(0, A(¢) + c(ye(t) — ¥ (1)) for every 1@ € K. The existence of a
weak solution to (2.1) is verified as in the proof of Theorem 3, replacing C by C¥*! =
{y e V: y <y 1} and (2.9) by (2.24).

Note that by means of the transformations § =e™?'y* f =e™#' f and { =e 'y the
variational inequality is transformed into:

(§30,y =) +a(@), y = 30) + p($@), y = 3O — (f 1),y = (1)) >0,
y(0) = yo.

for all y € V with y < I/A/(Z‘). Here the bilinear form a(-,-) = a(-,-) + p(-,-)y satisfies
a(p,¢) > lgl3 forallp e V.

2)If %W € L?(0, T; V), then Theorems 1 and 2 remain valid with appropriately mod-
ified a priori estimates. In this case ¥ € C(0, T; H) and hence in the estimates in (1)
above the values for ¥* can be defined by v (kAr) and analogously g@k = g@(kAt), for

k=0,1,....Setting ¢ = X =¥ =0"VD ¢ v in (2.8) we find,

k+1 _ k|2

- M (as (ka,ka) —as (yk, yk) +a (yk+1 _ yk, yk+1 _ yk))

i Wc(ykﬂ _ 1/jk+1) _ Wc(yk _ 1/,k)

1

2

Y

+_
u  2Ar
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< ‘p<yk+l’ (yk+l _ lpk-l—l) _ (yk _ wk))'

At
(yk+l _ wk-i—l) _ (yk _ 1pk)
+M] yk-‘rl
’ ’V At H
‘ yk+1 _ yk 1’bk+1 _ wk 1 wk+l _ wk
“1r, ; g+ L=
At H At H 2 At H
N ﬂ |yk+l|2 N .(//k+1 _ wk 2
2 v At v
1 yk+1 _yk 2 o ) 2 ) wk+1 _ wk 2
<= C +1 M2 k+1 k Yy —v i
2 |, T A MY+ L |

for some constant C independent of ¢ and k. Hence y(Alt) is bounded in H 1(0, T;H)N
C(0,T; V), and the conclusion of the second part of Theorem 1 remains valid with (2.7)
replaced by:

2
ds
H

t
d
a(yc(t)’ yc(t)) + /'a)’c(s)
0

7N+
<yo—¢0+&>
c

2
)ds), (2.26)
v+
on [0, T'], with M> > 0 independent of ¢ > 0.
As in the proof of Theorem 2 we now obtain the existence of a strong solution
y*e HY(0,T; H)NC(0, T; V) satisfying:

9 t
d
<Mz<|yo|zv+c +f(!f(s>|i,+’d—w<s>
H S
0

t
v ) = F @), +/w|yc<s> —J(s)|} ds

0

Y c oM , 4 2
<|vo — ¥ (0)] +/<—|1ﬂ(S)|V+—|f(S) >ds, (2.27)
w w Vv

0

2+ 245
L ——Y(s
v w|ds
and

2
ds
H

a(y* ),y (t))+/’ay (5)
0

2
) ds> : (2.28)
V*

t
d
< M2<|yo|’é + /(|f(s)|i, + ‘awm)
0
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) If y € H'(0, T; H) N L*(0, T; dom(A)), yo € V, yo < ¥(0), and

(y—v®) eV forallyeV, ands€[0,T],
_ i} _ d
AeL?0,T;H), >0, and A(t) = Ay (1) + f(1) — mAY for a.e. ,

a(y,y") >0 forall ye X satisfying y* € V, (2.29)

then Theorems 3 and 4, and Corollary 4 hold. In fact, for k =0, 1, ... define fk =
L [&FDAT £ (5)ds, y* =y kA1), and

At JkAt
(k+1)At (k+1)At
=L / A(s)ds — 1 / Ay (s)ds + AyFtL,
At At
kAt kAt
Then by (2.29):
k+1 _ 1k
K> v oV = v + AykHt 4k

Let y* denote the solution to (2.23) and define A > 0 by:
)‘];H — max(O, 2k + c(yk"H _ 1}ﬁk+1))_
As in the proof of Theorem 3, we can show by induction that yf“ <Ykt since

1
E(ykJrl _ gk (yk+l _ wk+l)+) +a(yk+] _ gk (yk+1 _ wk+l)+)

i <_(Al/fk+1 4k K”kHAt_ ‘/’k) Ak (yk+1 _ 1//k+1)+>

— Ai(yk _ ¢k7 (yk-i-l _ 1/fk+1)+) <0.
t

Similarly, it follows that yi?*l < yif“ for 0 < ¢ < ¢. Now the same arguments as in the
proofs of Corollaries 4 and 5 can be used to extend these results to case of 7-dependent .

4) If y € C(0, T; H) is nondecreasing and concave, then the weak solution to (2.1)
is unique. In fact, we can repeat the argument in the proof of Theorem 5 with (2.8), (2.9)
replaced by (2.23), (2.24), C replaced by Ck+! = {y € V: y < y/*+1}, where y¥ = ¢ (kAr).
Then the uniqueness argument remains applicable since y(Alt) € K due to concavity and
since y*(t) < ¥**t1 on (kAt, (k + 1) Ar).
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3. Black-Scholes model for American options

We consider the Black—Scholes model for American options, which is a variational
inequality of the form:

d 2
—u(t, 8) + Z-SPugs + (r — ) Svs —rv <0 L (t,8) = (S,
dr 2 (3.1

u(T, 8) =¥ (S)

for ae. (¢,5) € (0,T) x (0,00), where L indicates that both inequalities are satis-
fied with at least one of them holding as equality for a.e. (¢, S). For the put option
¥ (S) =max(0, K — §) and for the call ¥ (S) = max(0, S — K). Here S > 0 denotes the
price, v the value of the share, » > 0 is the interest rate, § models the influence of dividends,
o > 0 is the volatility of the market and K is the strike price. Further T is the maturity date
and ¢ the pay-off function. Note that (3.1) is a backwards equation with respect to the
time variable. The complementarity system (3.1) has the following interpretation [14,16]
in mathematical finance. The price process S; is governed by the Ito’s stochastic differential
equation,

dSt = rSt dr ‘I‘US[ dBt,
where B; denotes Brownian motion and the value function v is represented by:

v(t, S) = sup E"* [e_r(f_’)w(Sr)], over all stopping times 7 < T. (3.2)
T

To express (3.1) in variational form, we define,

Smax 2
a(v,¢) = f <<%52vs +(r—58-— 02)Sv>¢s +(2r -8 — az)vqb) ds, @3.3)

Smin

for v, ¢ € V, where V is the completion of the space:

!d) € H: ¢ is absolutely continuous on (Smin, Smax),

Smax
/ Sz|¢>5|2dS <ooand ¢(S) - 0as S — Syax and § — Smin}

Smin
under the norm

Smﬂx
67 = / (S21s 2 + 1612) ds.

Smin
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We have the following estimates:

2
o
a@w,®) < —lvlvigly + Ir—o? = s|lvlulgly +|2r —o? = 8||vluldlu

and
o’ 2 3 5 2 2
a,v) > —vly +( 2r = J0% =38 vy — |r —o® = 8[Jvlv vlu
2 2 2
o 2 3, (r—o“—9) 2

where H = LZ(Smin,Smax). The solution to (3.1) satisfies v — ¢ € V. Setting
(@, 8) =v(T —t,S) — ¢ we arrive at

(%y*(f), y(@O) =y @) +a(y* @), y) —y* (@) —a, y(@) — y* (1)) =2 0
forall y e C, (3.4)

¥y*(0, S) = yo,

where C = {y € H: y > 0}, or in strong form:

FYH(0) — Ay (1) — Ay >0,
¥¥(0, 8) = yo.

where Ay = "TZSZvSS + (r — §)Svs — rv. Note that compared to (2.2) the sign is reversed.

Let us briefly comment on the call and put cases. For the call case with § =0 we have
(AYr, ¢) > 0 for all ¢ € C and hence it can argued that European options (i.e., the varia-
tional inequality in (3.1) is replaced by a parabolic equation without constraints) coincide
with American options. Turning to the case with dividends we note that (3.1) has the equi-
librium solution,

_ K+S, §=8,
V= _ 3.5)
Se, NEG\
where
S Ky _(5+62/2—r)+\/(8+02/2—r)2+2(72r
_y_ly V— 0_2 .

The equilibrium solution (V; = 0) satisfies the Cauchy—Euler equation,

o2

7szuss +(r —8)Svs — rv =0,
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on (0, S’) and thus has the form:
V(S)=CSY,

where y must satisfy "72)/()/ —1)(r —§8)y —r = 0: This equation admits the solution y > 1
given above. Since v € H 2(0, o0) we must have:

U(S'):S'—K:CS'V, vS(S'):CyS"”l:l,

which yields (3.5). It can be verified that v (¢, S) < Sforall r < T and S > 0 and hence in
the call case with dividends one can choose Smax = S, while Spin = 0.

For the put case (0, c0) can be replaced by (S, 00). In fact (3.1) with § = 0 has the
equilibrium solution of the form:

— (v >S
5 (K=", §=58, (3.6)
(K =29, §<S,
where
2r - Ky
Y =" S=—.
o 1+y

The equilibrium solution satisfies the Cauchy—Euler equation,

0,2
2
75 USS+I"SUS-}"U=O,

on (S, 0o) and thus can be written as
v(S) =C 5" + C, 5%,

where 51, 57 satisfy
o (s—1+ o +r)s—1)=0
—_— —_ rs —r = _— r — = .
5 s(s s 5 s s

That is, s = —y and s = 1. Since v — 0 as § — oo, we have v = C;S™7. Since
v e H%(0, 00) we must have:

v(S)=K -3,  vs(8)=(k - 5)‘_§V =1,

which yields (3.6). It can be argued that v(z, §) < v(S) forall 7 < T and v(z, ) — v(S)
monotonically as t — —oo, for all § > 0. Hence in the put case we can choose Spin = S,
which allows to avoid the singularity at 0, while Spax = 00.
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4. Convergence rate

In this section we study the convergence of the solutions y. of the regularized problem
(2.3) to the solution y* of (2.1) as ¢ — 0. We assume that the bilinear form a is:

a(y,¢) = /[aijaxiyax,¢ + (bidy,y +dy)¢] dx,
2

fory,pe X=H 1 (£2), where we use the summation convention. The leading differential
operator is assumed to be uniformly elliptic, all coefficients are in L°°(£2) and d > 0.
Moreover we assume that

dom(A) C C(R). 4.1

This is the case, for example, if V = HO1 (£2), where 2 is a polyhedron or it has a C L1
boundary, and a;; € WhP(R), p>n,b; e LP, p>n,deLP, p>max(p,4)/2.

Our objective is to prove convergence of y. to y* in L°°((0,T) x £2) with rate
1/c, provided certain regularity conditions are satisfied. Some preliminary considera-
tions are required. Let K = {v € V: v >0, a.e. in £2}, and let K* = {v* € V* = H~1(2):
(v*,v) > 0forall v € K} denote the dual cone. Then V* is a Hilbert lattice with re-
spect to the ordering induced by K*, and every v* € V* can be uniquely decomposed
as v* = (V)T — (v*)~ with (v*)T/~ € K* [3,15]. We say that v* € K* is bounded above
by the constant |v*|s € [0, 00), if

(!v*}oo — v, U)v*,v >0 forallveKk.

We say that v* € V* is bounded by a constant if (v*)* and (v*)™ are bounded above by
constants and we set:

| = max(|(v7)*

) )-

For example, consider the case 2 = (—1, 1), let ¥ (x) = |x| and Ay € V*, where
A:V — V* is the Laplacian with Dirichlet boundary conditions. Then |(Ay) "] = 00
and [(AY) " |oo = 0. If v* € L®(2) C V* then |(v) T |eo = [(v)F|L(@), (1) |0 =
[(V*) 7 |Lo(2) and [v* oo = [V¥| L ().

We assume throughout this section that

E :

o]

eV, y<v., veX, |[(Ay+f0)|,eL>0.7),

“4.2)
feL*0,T; H),

and that

yteV, y=—v) eV, forallyeV, and
“4.3)
a(y,y™) >0, forallye X satisfying y™ e V.
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With these conditions satisfied, Theorems 1 and 4, with A = [(A¥ 4+ f(-))T|eo imply
the existence of y. € H'(0,T; H) N L?(0, T; dom(A)), y* € H'(0,T; H) N L?(0, T;
dom(A)), and A* € L2(0, T; H), which are solutions to (2.3) and (2.15), respectively.
Moreover, using (4.1) we have:

ye € L*(0,T; C(£2)) N H'((0,T) x £2) and
_ (4.4)
y e L*(0,T;C(2))NH'((0,T) x ).

We require a technical lemma which we describe next. For this purpose let Q denote a
non-cylindrical open subset of (0, T) x §2 and define £2; = {x: (t,x) € Q},fort € (0, T),
and 29 = {x: (0,x) € Q}, Q7 ={x: (T,x) e Q}. Let (-,-)g, denote the standard inner
product on £2;. The restriction of a to H 1 (£2) x H 1 (£2;) will again be denoted by a.

Lemma 4.1. Assume that Q = {(t,x): t € (0, T), x € §2;} is a sub-domain of (0,T) x §2
with Lipschitzian boundary, with g€ L*°(0, T’; H~Y($2))) with ess SUP;(0,7) |8(")]oo,02, <O,
and that a(1,¢1) >0, a(¢,pt) >0, for all ¢ € H' (§2;),1 € (0, T). Let ¢ > 0, and as-
sume that y € Y ={y € H'(Q): y(t,x) =0fort € (0,T), x € 982} satisfies y(0,-) =0
a.e. in $2¢, and

t

d
/[(d—y(s),qb(s)) +a(y(s), () +c(y(s), ¢(9)) o
S Q N

0 s
— (g, ¢(s))H71(QS),HOI (QS)] ds =0, (4.5)

forallt €[0,Tland p €Y. Then y € L*°(Q) and forall t € [0, T]:

1 1
——esssup|g(t)™| < y(t,x) < —esssup|g() | forae x €.
C 1e(0,T) C 1e(0,T)

Proof. Let g = esssup,c( 7)|8(t) 00,2, Set ¢ = (y — g/c)™ and observe that ¢ € Y.
Below we shall use repeatedly that for y € Y, the traces y(1) = y(z, ) € LZ(.Qt) for each
te€[0,T], and y(¢,-) € H'(£2,) for ae. t € (0, T). Since a(l, ¢(t)) = 0, it follows from
(4.5) that

t
d 7 t g t 7
“(©-5)60) +[a(yo-200)+e [(y0-L00)
S C -Qt C C Q
0 0

s

0

t

< / (865 = & B)-1 0 11 ) <O
0
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and thus by Green’s formula [8]:

-\ +2 ! . -\ +
%‘(y(t)—g) +[a<y(S)—§,<y(s)—§> )dsgo.
C 2 C c

0

Since by assumption a (v, vT) > 0forve H! (£2;), this implies that for each ¢ € [0, T'], we
have:

y(t,x) <esssup|gt ()] .
te(0,T)

for a.e. x € £2;. The estimate from below can be verified analogously. O
Let us introduce the active and inactive sets associated to the solution y* of (2.1):
A ={(t,x) €(0,T) x 2: y*(t,x) =y (1)},
7" ={(t,x) € (0, T) x 2: y*(t, x) <y (x)},
with boundaries 9.4* and 0Z*, respectively.

4.1. Casel

Here we consider the case when A = 0. Recall that by the monotonicity result Corol-
lary 2 we have:

*

YOS Ye < e

for 0 < ¢ < ¢ < 00. Define
Ae={,x) €(0,T) x 2: ye(t, x) > ¥ (x)}.

Then for 0 < c < ¢ < 00

A" Cc A; C A..

This inclusion holds in the a.e. sense. If ¥ € C(£2), then due to (4.4) we have that for a.e.

t the inclusion A*(r) = {x € 2: y*(t,x) > Y (x)} C A:(t) = {x € 2: y.(¢t,x) > ¥ (x)}
holds for all x € £2.

Theorem 4.1. Assume that (4.1)—(4.3) hold, that € C(2) and that A* and A, ¢ > 0,
are domains in R"! with Lipschitz continuous boundaries. Then, for every ¢ > 0 and

tel0,T],

1
[5e(t) = 3 (0)] o) < ~ esssup| (AY + £(O)) T .
€ 1e(0,T)
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Proof. We recall the regularity properties (4.4) as well as that A* C A, for every ¢ > 0.
From the definition of A., we have:

d .
g e =A0e—¥) —che—¥) + Ay + f(1) in Ae,

Ye—¥ =0 ondA\{(T,x)e A}
From the proof of Lemma 4.1 with Q = A, and g = Ay + f, we find:

1
sup |)’c(t) - w’LoO(Q[) g — €88 Sup|(A1/f + f())+‘oo 2
tel0,T] C te(0,T) ’

1
< —esssup|(Ay + FO) T .. (4.6)
C te(0,T)

where 2, = {x: (¢, x) € A¢}.

We turn to the estimate on Z*. Let X = {(¢,x) € 9Z*: t € (0, T)} denote the lateral
boundary of Z* and set X; = {x: (¢,x) € X'}. Note that X, is defined in the pointwise
everywhere sense for a.e. t € (0, T), since y*(t) — ¥ € C(£2) forae. t € (0, T). For a.e.
t we have y.(t,) — ¥ = 0 on X;. Therefore o = ess SUP,e(0,7) |ye(t, ) — Y|,y and
Ve —y*=y.— ¥ >0a.e. on dZ* are well defined. Note that

1
a< eSSSUP}Yc(L ) - I/f|Lo<>(A ) < _|maX(O3 Al/f + f)|L°°(Q)’
t€(0,T) “ ¢

where A.; = {x: (¢,x) € A.}. On T* we have:

$Ge =y —AQye —yH+=21*—1,<0, onZ*
Ye =Y =y.—v¥ >00n0Z* y.—y*=00n{(0,x)eZ*}
and therefore y = y, — y™* satisfies (4.5) with c =0, g = A* — A, <0 and Q = 7*. Setting

¢ = (y(t) —a)T €Y in (4.5), it follows with the arguments as in the proof of Lemma 4.1
that for all r € [0, T']:

1
[ye() = Y* ()] joo gy < < = esssup|(A¥ + £()) 7] . .7
! € 1e(0,T)

where Z;" = {x: (¢, x) € Z*}. Combining (4.6) and (4.7) implies the desired estimate. O

4.2. Casell

We choose A(1) = |(Ay + £ (1)) |oo and note that by (4.2) we have A € L>(0, T). The
monotonicity result Corollary 4 implies that y. < yz < y*, for 0 < ¢ < ¢ < 00. Define

Ac={(t, %) €0, T) x 2: 2.(t,x) >0},
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where A.(t) = max(0, A(t) + c(y.(t) — ¥)) < max(0, A(¢)). Then A. C A*.

Theorem 4.2. Assume that (4.1)—(4.3) hold, and that A* and A, are domains with Lip-
schitz continuous boundaries. Then

1 +
Ye =Y < —esssup|(AY + f() :
| c |L (0.T)x2) S, .1 |( ) |oo
Proof. On A. we have A + c(y. — ¥) >0, y* = ¢ and y. < ¥ a.e. Hence

* 1=
|y - yC|L°°(AC) < EMLOO(O,T)'
Note that o := esssup(, y)ero (4, [¥* (1, X) = ye(t, X)| = esssup(g 1) [y*(1) = ye ()| L= (2))»
where £2; = {x: (¢,x) € A}, and that y*(¢) — y.(t) € C(£2), for a.e. t € (0, T'). Conse-
quently, for a.e. t € (0, T'), we have:
Y70 = 3| o 5y <[ O =y O], <

where X, = {x: (t,x) € X} and ¥ ={(¢t,x) € 0Z*: t € (0, T)}. On Z* we have:

Ly —y) — A  —y) =he—A* <0 inT,,
Y —ye200n0Z, and y*—y.=0o0n{(0,x):Z}.

Taking the inner product with ¢ = (y* — y. — «)™ implies that
* l-
’y - yv|L°°(L) Sas ;MLOO(O,T)' U
Remark. If Ay € L®°(£2), then Theorem 4.2 holds when A(f, x) = max(0, Ay (x) +
f(t,x)), when max defined pointwise a.e. in £2.

5. Bilateral constraints

In this section we consider (2.1) with bilateral constraints, i.e., the closed convex set C
is given by:

C={yeH:p<y<y}inV,

and it is assumed to be nonempty. We assume that f € C([0, T']; H), and that ¢, ¥ € X
satisfy Ap e H, Ay € H,

Si()y={xe2: Ay + f() >0} NS2(1) = {x € 2: Ap+ f(1) <O} isempty, (5.1)
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for all # € [0, T'] and that there exists a c¢o > 0 such that
—AW —@)+ o —¢) >0 ae.in 2. (5.2)

In (5.1) the inequalities must be interpreted in the a.e. sense with respect to x € £2. Let
A(t) € H be defined by:

Ay + f(1), xeSi@),
r)y=1{ Ap+ f(1), xeSH1), (5.3)
0, otherwise.

We consider the regularized finite difference equations:

yk+1 _yk
(T,¢> +a(y*, ¢) + (W5 9) — (f5.¢) =0, forallpeV, (5.4)

where y0 = yo, f¥ = f((k + 1)Ar), and
A = max (0, A + c(y¥! — ¢)) + min(0, AF + (! - ¢)), (5.5)
with A¥ to be defined below. Then we have:

Theorem 5.1. Assume that ¢,y € X satisfy (5.1)~(5.3), (y — )", (y — @)~ €V for all
yeVand

a(y,y") >0 forallye X withyt eV.
If yo € C, then the solution yi? to (5.4) with

AV + 5 if Ay + fF >0,
MW=1 Ap+ 5, ifAp+ fF <o,

0, otherwise,
defined a.e. with respect to x € §2, satisfies yf € C foreach ¢ >0 and all k > 0.

Proof. Since y — max(0, \* +c(y — ) +min(0, A* +c(y —¢)) € H is Lipschitz contin-
uous and monotone, existence of a solution to (5.4) follows with the same arguments as in
the proof of Theorem 1, provided that At is sufficiently small. We now show by induction
that yk € C for all k. For yk € C, we have:

1

A_t(ka —, (yk+1 _ W)+) —}—a(ka —, (yk+1 _ W)+)
1

+ (—(AW + fk) + )Llcc—H’ (yk-H _ 1p)+) — E(yk —, (yk+1 _ I/f)+) <0.
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On the set {x: y¥+1 > ¥} we have pointwise a.e.:
If 2*(x) > 0, then

—(AY + ) 2k = (T —y) >0,
if 2%(x) =0, then
—(AY + )+ At (T ) >0,
if AK(x) < 0, then (Ay + f%)(x) <0 and
—(AY + ) + 25 > min(0, — AW — @) + c(¥ —9)) >0,

for ¢ > co. Thus (—(AY + £%) + 251 (%1 — y)*) > 0 and for Az > 0 sufficiently
small, [(y**! — y)*[2, <0 and thus y**! < . Similarly, one can prove that y**! > ¢
a.e. in £2 by choosing the test function as (y**! — )~ € V, and thus y**1 eC. O

Theorem 5.2. If the assumptions of Theorem 5.1 and (2.6) hold, then y. = lima;—.0 y(Alt)
weakly in W(0, T) as At — 0, y. € H' (0, T; HYN L*(0, T; dom(A))NC(0, T; V), and

d
Eyc(t) — Aye(t) + A () = f(t), with y.(0) = yo, (5.6)
where

Ae() =max (0, (1) + c(ye(t) — ¥)) + min(0, A(t) + c(yc () — ¢)).

ve(t) €C forall c >0 and t € [0, T]. Moreover, y* = lim.—¢ y. weakly in W(0, T), and
A =lime_,0Ae weakly in L*>(0, T; H), satisfy y* € H' (0, T; H) N L*(0, T; dom(A)) N
C(0,T; V) satisfy:
() — Ay* (1) + 25 (1) = f(1),  ¥*(0) = o, 57
A*(t) = max(0, A*(¢) + c(y*(t) — ¥)) +min(0, A*(t) + c(y* (1) — ¢)). '

Proof. From (5.5) and Theorem 5.1 it follows that |)Jj.+1| < |A%| ae. in £2 for all k.
Thus we can proceed as in the proof of Corollary 4 and obtain the existence of a
unique y.(t) € HY0,T; H)N L2(0, T; dom(A)) satisfying y.(t) € C for each for ¢ > 0
and r € [0, T']. Moreover,

|Ae()| < |A(@)| forae.te(0,T).

Proceeding as in the proof of Theorem 4 we obtain y* and A*, with the specified regularity
properties and such that the first equation in (5.7) is satisfied. Moreover y. — y* strongly
in LZ(O, T; H) and A, — A* weakly in L2(O, T; H) as ¢ — oo. It remains to verify the
complementarity conditions.
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Without loss of the generality y. converges to y*(¢) a.e. in (0,T) x £ and hence
y*(t) € C, since y.(t) € C, for all ¢t € [0, T]. Moreover A.(¢) > 0 a.e. on S{(¢) for a.e. ¢

implies that A*(¢) > 0 a.e. on S1(¢) for a.e. ¢. Thus fOT A* @), y*() — V) 25, (1)) dt < 0.
Since

T
dt — /(K*(t),y*(f)—W)L%Sl(z» dr,
L2(Sl(l)) 0

T
1-
0< /(xc(t), (ve®) =) + ;k(ﬂ)
0

it follows that

(W0, ¥ ) =) 25,y 4 = 0.

St~

Similarly, we have:

T
f (@), Y5 (0) = 9) 25,0y A = 0.
0

Hence (y*(¢), A*(t)) satisfies the complementarity condition. O

6. Numerical result for Black—Scholes model

In this section we present a numerical result for the Black—Scholes model for the Amer-
ican put option. We let 0 = 0.3, » = 0.06, § = 0 and K = 10. For these parameter choices
we have S ~ 5.7 according to Section 3 and thus we take [5, 00) as our computational do-
main. In order deal with the semi-infinite domain we use a decomposition technique. That
is, on [5, 15] we use the original coordinate and on [15, co) we employ the coordinate
transform § = e*. The resulting transformed equation is:

d o?

av—}—?vxx—{—rvx—rvzo, (6.1)
on x € (log(15), 00). An advantage of the equation in transformed coordinates is that it
allows to effectively treat the far-field condition. As boundary condition we use:

o2
Tvx+rv=0, x=X,

for sufficiently large X. This boundary condition is satisfied asymptotically by the as-
ymptotic solution v in Section 3. We use the central difference schemes space-wise with
uniform grids on [5, 15], and with non-uniform grids (successively doubling the step
lengths towards infinity) for (6.1). For time discretisation the Crank—Nicolson scheme is
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Fig. 1.

used and thus the method is second-order in time and space. We implement the feasible
approximation method and which leads to solving nonlinear equations of the form:

V—AV4min(0,A+c(V—y))=F, withi=-rKk, (6.2)

on [5, X). The semi-smooth Newton method [5,11] is used to solve (6.2). As expected it
converges in finite step. In Fig. 1 the value function v and the free curve S(¢) based on

Ae(t) =min(0, 2 + c(V (1, S()) — ¥))

are shown.
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