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GENERALIZED NEWTON METHODS FOR THE 2D-SIGNORINI CONTACT
PROBLEM WITH FRICTION IN FUNCTION SPACE
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Abstract. The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-
dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It
leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theo-
rem this problem can be transformed into a constrained minimization involving a smooth functional.
A regularization technique for the dual problem motivated by augmented Lagrangians allows to apply
an infinite-dimensional semi-smooth Newton method for the solution of the problem with given fric-
tion. The resulting algorithm is locally superlinearly convergent and can be interpreted as active set
strategy. Combining the method with an augmented Lagrangian method leads to convergence of the
iterates to the solution of the original problem. Comprehensive numerical tests discuss, among others,
the dependence of the algorithm’s performance on material and regularization parameters and on the
mesh. The remarkable efficiency of the method carries over to the Signorini problem with Coulomb
friction by means of fixed point ideas.
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1. Introduction

This paper is concerned with the development and convergence analysis of algorithms for the solution of
2D-contact problems with Tresca and Coulomb friction. The main difficulty of these problems lies in the contact
and friction conditions, which are inherently nonlinear and non-differentiable thus making both theoretical
analysis as well as efficient numerical realization truly challenging.

In contact problems, also known as Signorini problems, one has to detect the contact zone between an elastic
body and a rigid foundation that is a priori unknown. At the contact boundary, frictional forces are often
too large to be neglected. Thus, besides the non-penetration condition, one also has to take into account the
frictional behavior in the contact zone. The predominant friction laws used in literature are the Tresca and
Coulomb law. While the contact problem with Tresca friction leads to a classical variational inequality, the
Coulomb friction problem results in a quasi-variational inequality. This makes proving theoretical results for
Coulomb’s friction difficult or even impossible, e.g., a solution to the quasistatic contact problem with Coulomb
friction exists only if the friction coefficient is sufficiently small, [9, 15].
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Instead of the Coulomb law, frequently the simpler Tresca friction law is used. Moreover, a commonly chosen
approach towards the solution of Coulomb frictional contact problems is to define the solution as a fixed point
of a sequence of solutions to the Tresca problem.

Concerning the numerical realization of Coulomb frictional contact problems, two main approaches can be
found in the literature. First, one may treat the discretized system directly; we refer to [1,6,7,25,28] for Newton-
type methods. A drawback of this approach is that it only applies in finite dimensions and that convergence
results are difficult to obtain. However, the authors of the above mentioned papers report on good numerical
results. The second and more commonly used approach is to utilize a sequence of Tresca friction problems
combined with a fixed point concept (see, e.g., [16, 26, 29, 32]). Thus, the crucial requirement to obtain an
efficient numerical algorithm for Coulomb frictional contact problems lies in a fast and reliable algorithm for
the solution of the Signorini problem with Tresca friction. Besides the fact that frequently the Tresca friction
model itself is used in applications, this motivates the development of fast solvers for contact problems with
Tresca friction.

Early papers concerned with this question are [29, 31]. They utilize a successive overrelaxation method and
the Uzawa algorithm to solve the Tresca friction problem, see also the review article [32]. The authors of the
more recent articles [8,16] use a discrete dual formulation of the problem and quadratic programming methods
with proportioning and projections for the solution of discrete 2D-Tresca frictional contact problems. A different
idea is followed in [26], where monotone multigrid methods are applied to construct an efficient and globally
convergent solver for discrete Tresca frictional contact problems. The implementation of this method is rather
complicated and only few convergence rate results are available.

The present paper is devoted to the development and analysis of algorithms for 2D-frictional contact prob-
lems in infinite dimensional function spaces. A recent generalized differentiability concept in a Hilbert space
framework (see the definitions below) is applied to derive second order methods for elasticity problems subject
to unilateral contact with friction. The approach taken here is to a large extent based on the Fenchel duality
theorem (that we also summarize below) that allows to transform a non-differentiable minimization problem
into an inequality constrained minimization of a smooth functional. This approach is applied to the contact
problem with Tresca friction, which can be formulated as constraint minimization of a non-differentiable func-
tional. Aside from using just the first order necessary conditions of this problem, which are usually the starting
points of the analysis, we additionally use for our investigation alternately the primal and dual formulations
of the problem. Another important aspect in this paper is the use of certain nonlinear complementarity func-
tions that allow to write complementarity conditions as nonsmooth operator equations in function spaces. An
application of the semi-smooth Newton methods as developed in [18, 23, 35] to the (smoothed) set of necessary
optimality conditions leads to new, superlinearly convergent algorithms for the solution of 2D-contact prob-
lems with Tresca friction. The methods turn out to be related to the primal-dual active set strategy as used
for optimal control problems (see, e.g., [4, 18]), and for discrete unilaterally constrained variational problems
and pure contact problems, [19, 21]. The regularization that is used is motivated by augmented Lagrangians
(see [1, 22, 25]). However, in this paper we mainly aim at the generalized Newton method for the solution of
the regularized problem with (possibly) large regularization parameters rather than at (first-order) augmented
Lagrangian algorithms, which are briefly discussed in Section 5 for reasons of completeness.

We now give a formulation of the Signorini contact problem with Coulomb friction in 2D. For this purpose
we consider an elastic body that occupies in its initial configuration the open and bounded domain Ω ⊂ R

2 with
C1,1-boundary Γ = ∂Ω. Let this boundary be divided into three disjoint parts, namely the Dirichlet part Γd,
further the part Γn with prescribed surface loads h ∈ L2(Γn) :=

(
L2(Γn)

)2 and the part Γc, where contact and
friction with a rigid foundation may occur. For simplicity we assume that Γ̄c∩ Γ̄d = ∅ to avoid working with the
space H

1/2
00 (Γc). We are interested in the deformation y = (y1, y2)� of the elastic body which is also subject to

a given body force f ∈ L2(Ω) :=
(
L2(Ω)

)2. The gap between elastic body and rigid foundation is d := τN d ≥ 0,
where d ∈ H1(Ω) :=

(
H1(Ω)

)2 and τN y denotes the normal component of the trace along Γc. Denoting the
linear strain and stress tensors for y by εy and σy as common in plane elasticity (for their definition see Sect. 2),
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the Signorini problem with Coulomb friction is given as follows:

−Div σ(y) = f in Ω, (1.1a)

τy = 0 on Γd, (1.1b)

(σy)n = h on Γn, (1.1c)

τN y − d ≤ 0, σNy ≤ 0, (τN y − d)σNy = 0 on Γc, (1.1d)

|σT y| < F|σNy| on {x ∈ Γc : τT y = 0}, (1.1e)

σT y = −F
|σNy|
|τT y| τT y on {x ∈ Γc : τT y �= 0}. (1.1f)

Above, “Div” denotes the row-wise divergence-operator and we denote by τ : H1(Ω) → H1/2(Γ) :=
(
H1/2(Γ)

)2

the usual zero-order trace mapping. The corresponding scalar valued normal and tangential component map-
pings are denoted by τN , τT : H1(Ω) → H1/2(Γc), i.e., for y ∈ H1(Ω) we have the splitting τy = (τN y)n+(τT y)t
with n and t denoting the unit normal and tangential vector along Γc, respectively. Similarly, using (1.1a) we
can, following [24], decompose the stress along the boundary, namely (σy)n = (σNy)n +(σT y)t with mappings
σN , σT : Y → H−1/2(Γc). Moreover, F : Γc → R denotes the friction coefficient, whose regularity is discussed in
the next section.

There are major mathematical difficulties inherent in the problem (1.1). For instance, (1.1) cannot be
associated to an optimization problem for which standard a priori estimates would guarantee existence or
uniqueness of a solution. Further, in general σNy in (1.1e), (1.1f) is not pointwise almost everywhere defined
which makes the definition of |σNy| and thus a mathematical precise formulation of (1.1) difficult. Replacing
the Coulomb friction in the above model by Tresca friction means replacing |σNy| by a given friction g. Doing
so, the resulting system can be analyzed and the existence of a unique solution can be proved. Furthermore,
a reformulation of the problem can be derived using the Fenchel duality theorem in Banach spaces (see, e.g.,
[10]) that we now recall for the reader’s convenience.

For this purpose let V and Y be Banach spaces with topological duals V � and Y �, respectively. Further let
Λ ∈ L(V, Y ), the space of continuous linear operators from V to Y , and let F : V −→ R∪{∞}, G : Y −→ R∪{∞}
be convex, proper and lower semicontinuous such that there exists v0 ∈ V with F(v0) < ∞, G(Λv0) < ∞ and G
is continuous at Λv0. Then,

inf
v∈V

{F(v) + G(Λv)} = sup
q∈Y �

{−F�(−Λ�q) − G�(q)} , (1.2)

where Λ� ∈ L(Y �, V �) is the adjoint of Λ. The convex conjugates F� : V � −→ R ∪ {∞}, G� : Y � −→ R ∪ {∞}
of F and G, respectively, are defined by

F�(v�) = sup
v∈V

{〈v, v�〉V,V � −F(v)} , (1.3)

and analogously for G�. The conditions imposed on F and G guarantee that the dual problem (i.e., the problem
on the right hand side of (1.2)) admits a solution. Furthermore, the solutions v̄ ∈ V and q̄ ∈ Y � are characterized
by the extremality conditions

−Λ�q̄ ∈ ∂F(ū),

q̄ ∈ ∂G(Λū), (1.4)

where ∂ denotes the subdifferential from convex analysis.
Reformulating the Tresca friction problems by means of the Fenchel duality theorem will motivate the appli-

cation of a semi-smooth Newton method to the resulting system. We conclude this introduction by summarizing
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the main definitions and results for this infinite-dimensional semi-smooth Newton approach, where we follow
[18] (see also [5, 35]).

Let X, Y be Banach spaces and F : D ⊂ X −→ Y be a nonlinear mapping with open domain D. Then, we
call the mapping F Newton differentiable on the open subset U ⊂ D if there exists a mapping G : U −→ L(X, Y )
such that

lim
h→0

1
‖h‖‖F (x + h) − F (x) − G(x + h)h‖ = 0

for every x ∈ U . The mapping G in the above definition is referred to as generalized derivative. Note that G is
not necessarily unique. In [18] it is shown that the pointwise max- and min-operators are Newton differentiable
if considered as mapping between appropriate function spaces. To be precise, let X denote a function space of
real-valued functions on some Ω ⊂ R

n, further max(0, y) and min(0, y) the pointwise max- and min-operations,
respectively. Defining the following candidates for the generalized derivatives

Gmax(y)(x) =

{
1 if y(x) ≥ 0,

0 if y(x) < 0;
Gmin(y)(x) =

{
1 if y(x) ≤ 0,

0 if y(x) > 0,
(1.5)

one can prove the following result.

Theorem 1.1. The mappings max(0, ·) : Lq(Ω) −→ Lp(Ω) and min(0, ·) : Lq(Ω) −→ Lp(Ω) with 1 ≤ p < q < ∞
are Newton differentiable on Lq(Ω) with generalized derivatives Gmax and Gmin, respectively.

Note that Theorem 1.1 requires a norm gap (i.e., p < q) to hold true. In [18] it is shown that the functions
in (1.5) cannot serve as generalized derivatives if p ≥ q. For the Newton-differentiable equation F (x) = 0 we
now consider the Newton step

xk+1 = xk − G(xk)−1F (xk), (1.6)
where G is a generalized derivative in the sense of the above definition. Then, following [5, 18, 35] we have the
following local convergence result that will be used later.

Theorem 1.2. Suppose that x̄ ∈ D is a solution to F (x) = 0 and that F is Newton differentiable in an open
neighborhood U of x̄ and that {‖G(x)−1‖ : x ∈ U} is bounded. Then the Newton-iteration (1.6) converges
superlinearly to x̄ provided that ‖x0 − x̄‖ is sufficiently small.

Let us now briefly outline the structure of this paper. Following this introduction, the Signorini problem
with Tresca friction is analyzed, its Fenchel dual and the corresponding extremality conditions are derived.
In Section 3, we investigate a regularization procedure for the dual problem, derive the corresponding primal
problem and the extremality conditions, and prove convergence of the solutions as the regularization parameters
tend to infinity. In Sections 4 and 5, a semi-smooth Newton and an augmented Lagrangian method for the
solution of the regularized problem are presented and analyzed in a Hilbert space framework and the relation
to active set strategies is discussed. In Section 6, existence of a solution to the smoothed Signorini problem
with Coulomb friction is proved and two fixed point techniques for the numerical realization of this problem
are presented. Section 7 contains our numerical tests of the algorithms for Tresca as well as Coulomb frictional
contact problems. In the concluding Section 8 we draw conclusions and give an outlook on further work.

2. Contact problem with given friction

Due to the above mentioned problems with formulating and analyzing the contact problem with Coulomb
friction, often the contact problem with given friction, also known as Tresca friction problem is considered (see,
e.g., [14, 20]). In this friction law the bound between slip and stick is given a priori and does not depend
on y such as in (1.1e), (1.1f). Then, the problem can be stated as optimization problem, which allows the
application of arguments from convex analysis to argue existence of a unique solution. Moreover, the Tresca
problem can also be utilized to obtain a mathematical precise weak formulation for the contact problem with
Coulomb friction. This formulation relies on a fixed point argument that can also be exploited numerically to
calculate solutions for the model with Coulomb friction.
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2.1. Problem statement

We now give a precise statement of the Signorini problem with given friction. In the sequel we denote by
(· , ·) the L2-products and by 〈· , ·〉 duality products. The set of admissible deformations is defined as

Y := {v ∈ H1(Ω) : τv = 0 a.e. on Γd},

where here and below H1(Ω) := (H1(Ω))2. To incorporate the non-penetration condition between elastic body
and rigid foundation we define the cone

K := {v ∈ Y : τN v ≤ 0 a.e. on Γc}.

As usual in linear elasticity, the linearized strain tensor is ε(y) = 1
2

(∇y + (∇y)�
)
. Using Hooke’s law for the

stress-strain relation, the linearized stress tensor σ(y) := Cε(y) := λtr(ε(y))Id + 2µε(y) is obtained, where λ
and µ are the Lamé parameters. These parameters are given by λ = (Eν)/

(
(1+ν)(1−2ν)

)
and µ = E/

(
2(1+ν)

)

with Young’s modulus E > 0 and the Poisson ration ν ∈ (0, 0.5). Above C denotes the fourth-order isotropic
material tensor for linear elasticity. We now define the symmetric bilinear form a(· , ·) on Y×Y and the linear
form L(·) on Y by

a(y, z) :=
∫

Ω

(σy) : (εz) dx, L(y) =
∫

Ω

fy dx +
∫

Γn

h τy dx,

where “:” denotes the sum of the componentwise products.
For given friction g we assume the regularity g ∈ H−1/2(Γc) and g ≥ 0, i.e., 〈g, h〉Γc

≥ 0 for all h ∈ H1/2(Γc)
with h ≥ 0. Later in this section we will assume that g is more regular, namely g ∈ L2(Γc). However, for the
following discussion we only require that g ∈ H−1/2(Γc), since, for the friction coefficient F : Γc → R we assume
that F ∈ L∞(Γc) and furthermore that F belongs to the space of factors on H1/2(Γc), i.e., the mapping

H
1
2 (Γc) � λ �→ Fλ ∈ H

1
2 (Γc)

is well-defined and bounded. By duality it follows that F is a factor on H−1/2(Γc) as well. In [13], p. 21, it is
shown that, if F is uniformly Lipschitz continuous, it is a factor on H1/2(Γc). Finally, we define the following
non-differentiable functional:

j(y) :=
∫

Γc

Fg|τT y| dx.

After these preparations we can state the contact problem with given friction as minimization of a non-smooth
functional over the set of admissible deformations, i.e., as

min
y∈d+K

J(y) :=
1
2
a(y, y) − L(y) + j(y), (P)

or equivalently as elliptic variational inequality [12]:

{
Find y ∈ d + K such that

a(y, z − y) + j(z) − j(y) ≥ L(z − y) for all z ∈ d + K.
(2.1)

Due to the Korn inequality, the functional J(·) is uniformly convex, further it is lower semicontinuous. This
implies that (P) and equivalently problem (2.1) admit a unique solution ȳ ∈ d + K.
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2.2. Dual problem

To derive the dual problem corresponding to (P), we apply the Fenchel calculus to the mappings F : Y → R

and G : V × H1/2(Γc) → R given by

F(y) :=

{
−L(y) if y ∈ d + K,

∞ else;
G(q, ν) :=

1
2

∫

Ω

q : C q dx +
∫

Γc

Fg|ν| dx,

where

V = {p ∈ (L2(Ω))2×2 : p12 = p21}.
Furthermore, Λ ∈ L(Y,V × H1/2(Γc)) is given by

Λy := (Λ1y, Λ2y) = (εy, τT y),

which allows to express (P) as

min
y∈Y

{F(y) + G(Λy)
}
.

Endowing V × H1/2(Γc) with the usual product norm, it is easy to see that F and G satisfy the conditions for
the Fenchel duality theorem, yielding that (1.2) and the extremality conditions (1.4) hold and characterize the
solutions of primal and dual problem. We now calculate the convex conjugate functions F�,G� corresponding
to F ,G explicitly. Following the definitions of the convex conjugate one derives that F�(−Λ�(p, µ)) equals +∞
unless

−Divp = f , p · n = h in L2(Γn) and pT + µ = 0 in H− 1
2 (Γc), (2.2)

where pT = (n�p) · t ∈ H−1/2(Γc). Further, one derives that

F�(−Λ�(p, µ)) =

{
−〈pN , d〉Γc

if (2.2) and pN ≤ 0 in H− 1
2 (Γc) hold,

∞ else.

Evaluating the convex conjugate for G yields that

G�(p, µ) =






1
2

∫

Ω

C−1p : p dx if 〈Fg, |ν|〉Γc
− 〈ν, µ〉Γc

≥ 0 for all ν ∈ H
1
2 (Γc),

∞ else.

Thus, following (1.2) we derive the dual problem corresponding to (P):

sup
(p, µ) ∈ V × H− 1

2 (Γc)

s.t. (2.2), pN ≤ 0 in H− 1
2 (Γc),

and 〈Fg, |ν|〉Γc
− 〈ν, µ〉Γc

≥ 0

for all ν ∈ H
1
2 (Γc).

−1
2

∫

Ω

C
−1p : p dx + 〈pN , d〉Γc

. (P�)

This problem is a constrained maximization problem of a quadratic functional, while the primal problem (P)
involves the minimization of a non-differentiable functional. Evaluating the extremality conditions (1.4) for the
above problems one obtains the following lemma.



GENERALIZED NEWTON METHODS FOR 2D-FRICTIONAL CONTACT PROBLEMS 833

Lemma 2.1. The solution ȳ ∈ d + K of (P) and the solution (p̄, µ̄) of (P�) are characterized by σȳ = p̄ and
the existence of λ̄ ∈ H−1/2(Γc) such that

a(ȳ, z) − L(z) + 〈µ̄, τT z〉Γc
+

〈
λ̄, τN z

〉
Γc

= 0 for all z ∈ Y, (2.3a)
〈
λ̄, τN z

〉
Γc

≤ 0 for all z ∈ K, (2.3b)
〈
λ̄, τN ȳ − d

〉
Γc

= 0, (2.3c)

〈Fg, |ν|〉Γc
− 〈µ̄, ν〉Γc

≥ 0 for all ν ∈ H
1
2 (Γc), (2.3d)

〈Fg, |τT ȳ|〉Γc
− 〈µ̄, τT ȳ〉Γc

= 0. (2.3e)

Proof. Evaluating the extremality condition −Λ�(p̄, µ̄) ∈ ∂F(ȳ) results in ȳ ∈ d + K and

(p̄, ε(z − ȳ)) − L(z − ȳ) + 〈µ̄, τT (z − ȳ)〉Γc
≥ 0 for all z ∈ d + K. (2.4)

Condition (p̄, µ̄) ∈ ∂G(Λȳ) yields that p̄ = σȳ and the equations (2.3d) and (2.3e). Introducing the multiplier λ̄
for the variational inequality (2.4) leads to (2.3a), (2.3b) and (2.3c). �

Note that, according to (2.2), for the multiplier µ̄ corresponding to the non-differentiability of the primal
functional J(·) we have the mechanical interpretation µ̄ = −σT ȳ. Using Green’s theorem in (2.3a), one also
finds a mechanical interpretation for the above introduced multiplier λ̄ corresponding to the contact condition,
namely, λ̄ is the negative stress in normal direction, i.e.,

λ̄ = −σN ȳ. (2.5)

We now briefly comment on the case that the given friction g is more regular, namely g ∈ L2(Γc). In
this case we can define G on the larger set V × L2(Γc). One can verify that the assumptions for the Fenchel
duality theorem hold, and thus we obtain higher regularity for the dual variable µ corresponding to the non-
differentiability of the cost functional in (P�), namely µ ∈ L2(Γc). This implies that the dual problem can be
written as follows:

sup
(p, µ) ∈ V × L2(Γc)

s.t. (2.2), pN ≤ 0 in H− 1
2 (Γc),

and |µ| ≤ Fg a.e. on Γc.

−1
2

∫

Ω

C
−1p : p dx + 〈pN , d〉Γc

. (2.6)

Utilizing the relation between primal and dual variables, in particular p = σy and (2.5), one can transform (2.6)
into 





− min
λ ≥ 0 in H− 1

2 (Γc)

|µ| ≤ Fg a.e. on Γc

1
2a(yλ,µ, yλ,µ) + 〈λ, d〉Γc

,

where yλ,µ satisfies
a(yλ,µ, z) − L(z) + 〈λ, τN z〉Γc

+ (µ, τT z)Γc = 0 for all z ∈ Y.

(2.7)

Note that problem (2.7) is an equivalent form for the dual problem (2.6), now written in the variables λ and µ.
The primal variable yλ,µ appears only as auxiliary variable determined from λ and µ. Since g ∈ L2(Γc), also the
extremality conditions corresponding to (P) and (2.6) can be given more explicitly. First, (2.3d) is equivalent to

|µ̄| ≤ Fg a.e. on Γc, (2.3d′)
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and a brief computation shows that (2.3e) is equivalent to





τT ȳ = 0 or

τT ȳ �= 0 and µ̄ = Fg
τT ȳ

|τT ȳ| ·
(2.3e′)

By a short calculation one finds that (2.3d′) and (2.3e′) can equivalently be expressed as

στT ȳ − max(0, στT ȳ + µ̄ − Fg) − min(0, στT ȳ + µ̄ + Fg) = 0, (2.8)

with arbitrary σ > 0.

2.3. Weak formulation of the Coulomb friction problem

Having the above results available we can now give a weak formulation of the contact problem with Coulomb
friction that circumvents the problems mentioned in the introduction, namely the lack of regularity of σNy
in (1.1). The formulation given below utilizes the contact problem with given friction g ∈ H−1/2(Γc) and a
fixed point idea. We define the cone of nonnegative functionals over H1/2(Γc) as

H
− 1

2
+ (Γc) :=

{
ξ ∈ H− 1

2 (Γc) : 〈ξ, η〉Γc
≥ 0 for all η ∈ H

1
2 (Γc), η ≥ 0

}
.

Then, we consider the mapping Ψ : H
−1/2
+ (Γc) −→ H

−1/2
+ (Γc) defined by Ψ(g) := λg, where λg is the unique

multiplier for the contact condition in (2.3) for the problem with given friction g. Property (2.3b) implies that Ψ
is well-defined. This allows us, having (2.5) in mind, to call y ∈ Y weak solution of the Signorini problem with
Coulomb friction if its negative normal boundary stress −σNy is a fixed point of the mapping Ψ. In general,
such a fixed point for the mapping Ψ does not exist, i.e., the Coulomb friction problem does not always have a
solution. It is proved in [9,15,20,30] that the contact problem with Coulomb friction admits a weak solution if
the friction coefficient F is sufficiently small.

3. The regularized contact problem with Tresca friction

We now introduce and analyze a regularized version of the contact problem with given friction that allows
the application of the generalized Newton method from Section 1. For that purpose we intend to write the
complementarity conditions (2.3b), (2.3c) and (2.3d), (2.3e) as nonlinear equations using complementarity
functions. This is only possible if λ̄, µ̄ ∈ L2(Γc) and therefore requires proper regularization. Another reason
for the necessity of introducing a regularization can be seen from considering (2.8). Following Theorem 1.2,
for Newton differentiability of the max- and min-function a norm norm gap is required. For the variable µ̄
that appears under the max- and min-functions we cannot expect any smoothing leading to the required norm
gap. Using the regularization technique below, which is motivated by augmented Lagrangians, the explicit
appearance of µ̄ in the max- and min- function can be avoided.

In the sequel we assume g ∈ L2(Γc). Motivated from the above discussion and results in [34], we start our
consideration with a regularized version of the dual problem (2.6) written in the form (2.7). For this purpose,
for γ1, γ2 > 0, given λ̂ ∈ L2(Γc) and µ̂ ∈ L2(Γc) we define the functional J�

γ1,γ2
: L2(Γc) × L2(Γc) −→ R by

J�
γ1,γ2

(λ, µ) :=
1
2
a(yλ,µ, yλ,µ) + (λ, d)Γc +

1
2γ1

‖λ − λ̂‖2
Γc

+
1

2γ2
‖µ − µ̂‖2

Γc
− 1

2γ1
‖λ̂‖2

Γc
− 1

2γ2
‖µ̂‖2

Γc
,

where yλ,µ ∈ Y satisfies

a(yλ,µ, z) − L(z) + (λ, τN z)Γc + (µ, τT z)Γc = 0 for all z ∈ Y. (3.1)
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Figure 1. Illustration of the function h(·, α) as defined in (3.2) and of its derivative h′(·, α).

Now, the regularized dual problem with given friction is defined as

max
λ≥0, |µ|≤Fg a.e. on Γc

−J�
γ1,γ2

(λ, µ). (P�
γ1,γ2

)

Obviously, the last two terms in the definition of J�
γ1,γ2

are constants and can thus be neglected in the optimization
problem (P�

γ1,γ2
). However, they are introduced with regard to the primal problem corresponding to (P�

γ1,γ2
), which

we turn to next. We define the functional Jγ1,γ2 : Y → R by

Jγ1,γ2(y) :=
1
2
a(y, y) − L(y) +

1
2γ1

‖max(0, λ̂ + γ1(τN y − d))‖2
Γc

+
1
γ2

∫

Γc

Fgh(τT y(x), µ̂(x)) dx,

where h(· , ·) : R × R −→ R is a local smoothing of the absolute value function, namely (see also Fig. 1)

h(x, α) :=






|γ2x + α| − 1
2
Fg if |γ2x + α| ≥ Fg,

1
2Fg

|γ2x + α|2 if |γ2x + α| < Fg.
(3.2)

Then, the primal problem corresponding to (P�
γ1,γ2

) is

min
y∈Y

Jγ1,γ2(y). (Pγ1,γ2)

This can be verified similarly as for the original problem using Fenchel duality theory (we refer to [33] for the
detailed derivation). Clearly, both problems (Pγ1,γ2) and (P�

γ1,γ2
) admit unique solutions yγ1,γ2

and (λγ1,γ2 , µγ1,γ2),
respectively. Note that the regularization turns the primal problem into the unconstrained minimization of a
continuously differentiable functional, while the corresponding dual problem is still the constrained minimization
of a quadratic functional. To shorten notation we henceforth mark all variables of the regularized problems only
by the index “γ” instead of “γ1,γ2”. It can be shown that the extremality conditions relating (Pγ1,γ2) and (P�

γ1,γ2
)

are

a(yγ , z) − L(z) + (µγ , τT z)Γc + (λγ , τN z)Γc = 0 for all z ∈ Y, (3.3a)

λγ − max(0, λ̂ + γ1(τN yγ − d)) = 0 on Γc, (3.3b)
{

γ2(ξγ − τT yγ) + µγ − µ̂ = 0,

ξγ − max(0, ξγ + σ(µγ − Fg)) − min(0, ξγ + σ(µγ + Fg)) = 0
(3.3c)
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for any σ > 0. Here, ξγ is the Lagrange multiplier associated to the constraint |µ| ≤ Fg in (P�
γ1,γ2

). By setting
σ = γ−1

2 , ξγ can be eliminated from (3.3c), which results in

γ2τT yγ + µ̂ − µγ − max(0, γ2τT yγ + µ̂ − Fg) − min(0, γ2τT yγ + µ̂ + Fg) = 0. (3.4)

However, compared to (3.4) equation (3.3c) involves the additional variable σ. In [34] it is observed that con-
sidering (3.3c) rather than (3.4) motivates a slightly different algorithm that turns out to give better numerical
results.

Next we investigate the convergence of the primal variable yγ as well as the dual variables (λγ , µγ) as the
regularization parameters γ1, γ2 tend to infinity. For this purpose we denote by ȳ the solution of (P) and
by (λ̄, µ̄) the solution to (P�).

Theorem 3.1. For all λ̂ ∈ L2(Γc), µ̂ ∈ L2(Γc) and g ∈ L2(Γc), the primal variable yγ converges to ȳ strongly
in Y and the dual variables (λγ , µγ) converge to (λ̄, µ̄) weakly in H−1/2(Γc)×L2(Γc) as γ1 → ∞ and γ2 → ∞.

Proof. The proof of this theorem can be found in Appendix A. �

4. A semi-smooth Newton method for (P�
γ1,γ2

)

We now present the semi-smooth Newton method for the solution of the regularized problems (Pγ1,γ2)
and (P�

γ1,γ2
). An explicit calculation of the formal Newton step for system (3.3) using (1.5) leads to an it-

erative strategy that allows interpretation as active set strategy. Related methods were described in [1,6,7,25].
These Newton-type methods are all restricted to finite dimensions. They slightly vary in the formulation of
equations that are linearized and in the differentiability concepts that were employed. In the following presen-
tation of our algorithm we take the active set perspective, the interpretation as generalized Newton method is
discussed later. In the sequel we drop the index “γ” for the iterates.

Algorithm: (SSN)

(1) Initialize (λ0, ξ0, µ0, y0) ∈ L2(Γc) × L2(Γc) × L2(Γc) × Y, σ > 0 and set k := 0.
(2) Determine the active and inactive sets

Ak+1
c = {x ∈ Γc : λ̂ + γ1(τN yk − d) > 0},

Ik+1
c = Γc \ Ak+1

c ,

Ak+1
f,− = {x ∈ Γc : ξk + σ(µk + Fg) < 0},

Ak+1
f,+ = {x ∈ Γc : ξk + σ(µk − Fg) > 0},

Ik+1
f = Γc \ (Ak+1

f,− ∪ Ak+1
f,+ ).

(3) If k ≥ 1, Ak+1
c = Ak

c , Ak+1
f,− = Ak

f,− and Ak+1
f,+ = Ak

f,+ stop, else
(4) Solve

a(yk+1, z) − L(z) + (µk+1, τT z)Γc + (λk+1, τN z)Γc = 0 for all z ∈ Y,

λk+1 = 0 on Ik+1
c , λk+1 = λ̂ + γ1(τN yk+1 − d) on Ak+1

c ,

µk+1 − µ̂ − γ2τT yk+1 = 0 on Ik+1
f ,

µk+1 = −Fg on Ak+1
f,− , µk+1 = Fg on Ak+1

f,+ .
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(5) Set

ξk+1 :=






τT yk+1 + γ−1
2 (µ̂ + Fg) on Ak+1

f,− ,

τT yk+1 + γ−1
2 (µ̂ − Fg) on Ak+1

f,+ ,

0 on Ik+1
f ,

k := k + 1 and go to Step 2.

Note that there exists a unique solution to the system in Step 4, since it represents the necessary and sufficient
optimality conditions for the equality constrained auxiliary problem

min
λ=0 on Ik+1

c ,

µ=−Fg on Ak+1
f,− , µ=Fg on Ak+1

f,+

J�
γ1,γ2

(λ, µ),

with J�
γ1,γ2

as defined in (3.1) that clearly has a unique solution. One can prove the following lemma that
justifies the stopping criterion in Step 3 of Algorithm (SSN).

Lemma 4.1. If Algorithm (SSN) stops, the last iterate yk is the solution to the primal problem (Pγ1,γ2) and
(λk, µk) solves the dual problem (P�

γ1,γ2
).

Proof. The proof relies on the fact that, if the active sets coincide for two consecutive iterations, the iterates
satisfy the complementarity conditions (3.3b) and (3.3c). �

Provided we choose σ = γ−1
2 , the above algorithm can be interpreted as a semi-smooth Newton method in

infinite-dimensional spaces. To show this assertion, we consider a reduced system instead of (3.3). Thereby, as
in the dual problem (P�

γ1,γ2
), the primal variable y only acts as an auxiliary variable that is calculated from the

dual variables (λ, µ). We introduce the mapping F : L2(Γc) × L2(Γc) −→ L2(Γc) × L2(Γc) by

F (λ, µ) =






λ − max(0, λ̂ + γ1(τN yλ,µ − d))

γ2τT yλ,µ + µ̂ − µ − max(0, γ2τT yλ,µ + µ̂ − Fg) · · ·
· · · − min(0, γ2τT yλ,µ + µ̂ + Fg)




 , (4.1)

where, for given λ and µ we denote by yλ,µ the solution to

a(y, z) − L(z) + (µ, τT z)Γc + (λ, τN z)Γc = 0 for all z ∈ Y. (4.2)

Note that for (λ, µ) ∈ L2(Γc) × L2(Γc) we have that τN yλ,µ, τT yλ,µ ∈ H1/2(Γc). Since H1/2(Γc) embeds
continuously into Lp(Γc) for every p < ∞, we have the following composition of mappings (for each 2 < p < ∞):

{
L2(Γc) × L2(Γc) → Lp(Γc)

Θ→ L2(Γc),

(λ, µ) �→ τN yλ,µ �→ max(0, λ̂ + γ1(τN yλ,µ − d)).
(4.3)

Since the mapping Θ involves a norm gap under the max-functional, it is Newton differentiable due to Theo-
rem 1.2, which shows that the first component of F is Newton differentiable. A similar observation holds for
the second component as well, and thus the whole mapping F is Newton differentiable. Hence, we can apply
the semi-smooth Newton method to the equation F (λ, µ) = 0. Calculating the explicit form of the Newton step
leads to Algorithm (SSN) with σ = γ−1

2 . This close relationship between the primal-dual active set strategy
and a specific application of semi-smooth Newton methods, first observed in [18], leads to the following local
convergence result for Algorithm (SSN).
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Theorem 4.2. Suppose that there exists a constant g0 > 0 with Fg ≥ g0, further that σ ≥ γ−1
2 and that

‖λ0−λγ‖Γc , ‖µ0−µγ‖Γc are sufficiently small. Then the iterates (λk, ξk, µk, yk) of (SSN) converge superlinearly
to (λγ , ξγ , µγ , yγ) in L2(Γc) × L2(Γc) × L2(Γc) × Y.

Proof. The proof consists of two steps: first we prove the assertion for σ = γ−1
2 and then we utilize this result

for the general case σ ≥ γ−1
2 .

Step 1. For σ = γ−1
2 (SSN) is a semi-smooth Newton method for the equation F (λ, µ) = 0 (F as defined

in (4.1)). We already argued Newton differentiability of F . To apply Theorem 1.2, it remains to show that the
generalized derivatives have uniformly bounded inverses, which is easy to verify (see, e.g., the proof for Thm. 2.2
in [23] or of Thm. 5.1 in [34]). Clearly, the superlinear convergence of (λk, µk) carries over to the variables ξk

and yk.

Step 2. For σ > γ−1
2 we cannot use the above argument directly. Nevertheless, one can prove superlinear

convergence of the iterates by showing that in a neighborhood of the solution the iterates of (SSN) with
σ > γ−1

2 coincide with those of (SSN) with σ = γ−1
2 . The argumentation for this fact exploits the smoothing

properties of the Neumann-to-Dirichlet mapping for the elasticity equation: first, we again consider the case
σ = γ−1

2 . Clearly, for all k ≥ 1 we have λk − λk−1 ∈ L2(Γc) and µk − µk−1 ∈ L2(Γc). The corresponding
difference yk − yk−1 of the primal variables satisfies

a(yk − yk−1, z) + (µk − µk−1, τT z
)
Γc

+
(
λk − λk−1, τN z)Γc = 0 for all z ∈ Y.

From regularity results for elliptic variational equalities (see [3]) it follows that there exists a constant C > 0
such that

‖τT yk − τT yk−1‖C0(Γc) ≤ C
(‖λk − λk−1‖Γc + ‖µk − µk−1‖Γc

)
. (4.4)

We now show that (4.4) implies
Ak

f,− ∩ Ak+1
f,+ = Ak

f,+ ∩ Ak+1
f,− = ∅ (4.5)

provided that ‖λ0 − λγ‖Γc and ‖µ0 − µγ‖Γc are sufficiently small. If B := Ak
f,− ∩Ak+1

f,+ �= ∅, then it follows that
τT yk−1 + γ−1

2 (µ̂ + Fg) < 0 and τT yk + γ−1
2 (µ̂ − Fg) > 0 on B, which implies that

τT yk−τT yk−1 > 2γ−1
2 Fg ≥ 2γ−1

2 Fg0 > 0 on B. This contradicts (4.4) provided that ‖λ0−λγ‖Γc and ‖µ0−µγ‖Γc

are sufficiently small. Analogously, one can show that Ak
f,+ ∩Ak+1

f,− = ∅.
We now choose an arbitrary σ ≥ γ−1

2 and assume that (4.5) holds for (SSN) if σ was chosen γ−1
2 . Then we

can argue that in a neighborhood of the solution the iterates of (SSN) are independent of σ ≥ γ−1
2 . To verify

this assertion we separately consider the sets Ik
f ,Ak

f,− and Ak
f,+. On Ik

f we have that ξk = 0 and thus σ has
no influence when determining the new active and inactive sets. On the set Ak

f,− we have µk = −Fg. Here,
we consider two types of sets: Firstly, sets where ξk < 0 belong to Ak+1

f,− for the next iteration independently
from σ. And, secondly, if ξk > 0 we have

ξk + σ(µk − Fg) = ξk − 2σFg.

Sets where ξk −2σFg ≤ 0 are transfered to Ik+1
f , and those where 0 < ξk −2σFg ≤ ξk −2γ−1

2 Fg belong to Ak+1
f,+

for the next iteration. However, the case that x ∈ Ak
f,− ∩ Ak+1

f,+ cannot occur for σ ≥ γ−1
2 , since it is already

ruled out by (4.5) for σ = γ−1
2 .

This shows that in a neighborhood of the solution the iterates are the same for all σ ≥ γ−1
2 , and thus the

superlinear convergence result from Step 1 carries over to the general case σ ≥ γ−1
2 , which ends the proof. �

Aside from the assumption that ‖λ0−λγ‖Γc and ‖µ0−µγ‖Γc are sufficiently small, σ controls the probability
that points are moved from the lower active set to the upper or vice versa in one iteration. Smaller values for σ
make it more likely that points belong to Ak

f,− ∩Ak+1
f,+ or Ak

f,+ ∩Ak+1
f,− . In the numerical realization of (SSN) it



GENERALIZED NEWTON METHODS FOR 2D-FRICTIONAL CONTACT PROBLEMS 839

turns out that choosing small values for σ may not be optimal, since this possibly leads to the following behavior:
Points that are active with respect to the upper bound become active with respect to the lower bound in the
next iteration, and vice versa. This in turn may lead to cycling of the iterates. Such undesired behavior can be
overcome by choosing larger values for σ, e.g., σ = 1.

5. Augmented Lagrangian method

There are several possibilities to utilize a sequence of solutions of (Pγ1,γ2) to obtain a solution of (P). Clearly,
one approach consists in letting the regularization parameters tend to infinity. Then, Theorem 3.1 guarantees
that the regularized solution variables converge to the solution of the original problem. A different approach
utilizes the first-order augmented Lagrangian method that is based on an update strategy for the dual vari-
ables. This method was introduced for discretized contact and friction problems in [1]. It is related to the
Uzawa algorithm, a commonly used algorithm for the treatment of saddle point problems. More precisely, the
augmented Lagrangian method can be interpreted as implicit version of the Uzawa method (cp., [22]). The
main advantage of the augmented Lagrangian method compared to the the Uzawa method is its unconditional
convergence for all penalty (or regularization) parameters γ1, γ2 > 0, whereas Uzawa’s method only converges
conditionally, requiring smallness conditions for the parameters γ1, γ2, which may lead to very slow convergence.
The penalty as well as the first order augmented Lagrangian methods require to solve a nonlinear problem in
every iteration step compared to the linear auxiliary problem which need to be solved in the Uzawa algorithm.
These nonlinear problems are exactly of the form (P�

γ1,γ2
) and we can therefore use the strategies presented in the

previous sections for the solution of the auxiliary problems. The augmented Lagrangian approach applies for
the solution of contact problems with given friction in infinite dimensions provided that the solution variables
(λ̄, µ̄) ∈ L2(Γc) × L2(Γc). As shown in Section 2.2, g ∈ L2(Γc) implies L2-regularity for µ̄. Assuming that
this regularity holds, we present an augmented Lagrangian method for the solution of (P) and (P�). We now
specify the algorithm.

Algorithm: (ALM)

(1) Choose (λ0, µ0) ∈ L2(Γc) × L2(Γc) and set l := 0.
(2) Choose γl+1

1 , γl+1
2 > 0, and solve (Pγ1,γ2) with λ̂ := λl and µ̂ = µl, i.e.,

determine (yl+1, λl+1, µl+1) ∈ Y × L2(Γc) × L2(Γc) such that

a(yl+1, z) − L(z) + (λl+1, τN z)Γc + (µl+1, τT z)Γc = 0 for all z ∈ Y,

λl+1 − max(0, λl + γl+1
1 (τN yl+1 − d)) = 0 on Γc,

γ2τT yl+1 + µl − µl+1 − max(0, γ2τT yl+1 + µl − Fg) − min(0, γ2τT yl+1 + µl + Fg) = 0 on Γc.

(3) Update l := l + 1 and go to Step 2.

In the theorem below we denote by ȳ and (λ̄, µ̄) the solutions of (P) and (P�), respectively. Then the following
global convergence result (i.e. convergence from arbitrary initialization) holds true.

Theorem 5.1. For every choice of parameters 0 < γ0
1 ≤ γ1

1 ≤ γ2
1 ≤ . . . and 0 < γ0

2 ≤ γ1
2 ≤ γ2

2 ≤ . . . the iterates
(λl, µl) of (ALM) converge weakly to (λ̄, µ̄) in L2(Γc) × L2(Γc). Furthermore, the corresponding iterates yl

converge strongly to ȳ in Y.

Proof. The proof is given in Appendix B. �

Let us briefly comment on the role of the parameters γl
1, γ

l
2 in (ALM). One may start with moderate values

in Step 2 of (ALM) and increase these values during the iteration. However, the iterates of (ALM) converge
without requiring that γl

1, γ
l
2 tend to infinity which is in marked contrast to pure penalty methods.
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6. The contact problem with Coulomb friction

In this section we discuss a regularized Coulomb friction problem and prove existence of a solution for this
problem. Possible generalizations of the approach for the Coulomb friction problem without regularization are
discussed. Then we propose two fixed point algorithms for the numerical realization of the Coulomb friction
problem that make use of solutions of the contact problem with Tresca friction.

6.1. Regularized Coulomb friction problem

The regularization for the Signorini contact problem with Coulomb friction corresponds to the regularization
in (Pγ1,γ2) and (P�

γ1,γ2
) for the problem with given friction. The variational formulation of the problem to be

considered is

a(y, z − y) +
(
max(0, λ̂ + γ1(τN y − d)), τN (z − y)

)
Γc

− L(z − y)

+
1
γ2

∫

Γc

Fmax(0, λ̂ + γ1(τN y − d)) {h(τT z, µ̂) − h(τT y, µ̂)} dx ≥ 0 (6.1)

for all z ∈ Y, with h(· , ·) as defined in (3.2). Similarly as in Section 2.3 for the original Coulomb friction problem,
one can obtain the solution to (6.1) by means of a sequence of regularized Tresca friction problems. For this
purpose we introduce the cone of nonnegative L2-functions as L2

+(Γc) := {ξ ∈ L2(Γc) : ξ ≥ 0 a.e.} and the
mapping Ψγ : L2

+(Γc) −→ L2
+(Γc) defined by Ψγ(g) := λγ , where λγ is given by λγ = max(0, λ̂ + γ1(τN yγ − d))

with yγ denoting the unique solution of the regularized contact problem with friction g ∈ L2
+(Γc). We now show

that the regularized problem with Coulomb friction (6.1) admits a solution using the fixed point characterization.
In a first step, we investigate the mapping Φγ : L2

+(Γc) −→ Y that maps a given friction g ∈ L2
+(Γc) to the

corresponding solution yγ of (Pγ1,γ2). In the next lemma we state that Φγ is Lipschitz-continuous. For the
technical proof we refer to [33].

Lemma 6.1. For every γ1, γ2 > 0 and λ̂ ∈ L2(Γc), µ̂ ∈ L2(Γc) the mapping Φγ defined above is Lipschitz-
continuous with constant

L =
‖F‖∞c1

κ
, (6.2)

where ‖F‖∞ denotes the essential supremum of F, κ the coercivity constant of a(· , ·) and c1 the continuity
constant of the trace mapping from Y to L2(Γc). In particular, the Lipschitz constant L does not depend on the
regularization parameters γ1, γ2.

We now address properties of the mapping Ψγ .

Lemma 6.2. For every γ1, γ2 > 0 and λ̂ ∈ L2(Γc), µ̂ ∈ L2(Γc) the mapping Ψγ : L2
+(Γc) → L2

+(Γc) is compact
and Lipschitz-continuous with constant

L =
cγ

κ
‖F‖∞,

where c is a constant resulting from trace theorems.

Proof. We consider the following composition of mappings:

L2
+(Γc)

Φγ−→ Y Θ−→ L2(Γc)
Υ−→ L2

+(Γc),
g �→ y �→ τN y �→ max(0, λ̂ + γ1(τN y − d)).

(6.3)

From Lemma 6.1 we already know that Φγ is Lipschitz-continuous. The mapping Θ consists of the linear trace
mapping from Y into H1/2(Γc) and the compact embedding of this space into L2(Γc). Therefore, it is compact
and linear, in particular Lipschitz-continuous with a constant we denote by c2 > 0. Finally, since

‖max(0, λ̂ + γ1(ξ − d)) − max(0, λ̂ + γ1(ξ̃ − d))‖Γc ≤ γ1‖ξ − ξ̃‖Γc (6.4)
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for all ξ, ξ̃ ∈ L2(Γc), the mapping Υ is Lipschitz-continuous with constant γ1. From the fact that Ψγ is the
composition of the mappings Υ, Θ, Φγ , namely Ψγ = Υ ◦ Θ ◦ Φγ , we conclude that Ψγ is Lipschitz-continuous
with constant

L =
c1c2γ1

κ
‖F‖∞, (6.5)

where c1, c2 are constants from trace theorems. Concerning the compactness, we clearly have that the compo-
sition of Θ and Φγ is compact. It remains to show that L2-convergent sequences remain L2-convergent under
the mapping Υ. This follows immediately from (6.4), which ends the proof. �

We can now show that the regularized contact problem with Coulomb friction has a solution.

Theorem 6.3. The mapping Ψγ admits at least one fixed point, i.e., the regularized Coulomb friction prob-
lem (6.1) admits a solution. If ‖F‖∞ is such that L as defined in (6.5) is smaller than 1, the solution is
unique.

Proof. We apply the Leray-Schauder fixed point theorem (see [11], p. 222) to the mapping Ψγ : L2(Γc) → L2(Γc).
Using Lemma 6.2, it suffices to show that λ is bounded in L2(Γc) independently of g. This is clear taking into
account the dual problem (P�

γ1,γ2
). Indeed,

min
λ≥0, |µ|≤Fg a.e. on Γc

J�
γ1,γ2

(λ, µ) ≤ min
λ≥0

J�
γ1,γ2

(λ, 0) < ∞.

Hence, the Leray-Schauder theorem guarantees the existence of a solution to the regularized Coulomb friction
problem. Uniqueness of the solution holds if F is such that L as defined in (6.5) is smaller than 1, due to the
fact that then Ψγ is a contraction. �

6.2. Remarks on the Coulomb friction problem without regularization

Here we briefly discuss the question, which methods utilized in the previous section also apply in the case
of Coulomb friction without regularization and which do not. Firstly, we are interested in an analogue to
Lemma 6.1 in the case without regularization. As observed above, the Lipschitz-constant in Lemma 6.1 is
independent of γ1, γ2, which suggests that the result does not require any regularizing term. To verify this
conjecture we define the mapping Φ : L2

+(Γc) −→ Y that maps a given friction g ∈ L2
+(Γc) to the corresponding

solution y of (P). Lipschitz-continuity of Ψ is stated in the next lemma, for its short proof we refer to [33].

Lemma 6.4. The mapping Φ defined above is Lipschitz-continuous with constant

L =
‖F‖∞c1

κ
,

where ‖F‖∞ denotes the essential supremum of F, κ the coercivity constant of a(· , ·) and c1 a constant from a
trace theorem.

We can now discuss, which parts of Lemma 6.4 and Theorem 6.3 require a regularization and which do
not. Obviously, the mapping Θ appearing in the proof of Lemma 6.2 does not involve any regularization. The
mapping Υ is Lipschitz-continuous with constant γ1, which indicates that the regularization of the contact
condition is required to obtain Lipschitz-continuity. Thus, for Lemma 6.2 the regularization with respect to the
contact condition is essential. However, for proving existence of a solution to the Coulomb friction problem the
regularization of the friction condition is not essential, since neither the mapping Φ nor Θ and Υ involve γ2.
Using this observation and Lemma 6.4, one can verify that both Lemma 6.2 and Theorem 6.3 also hold true
for the case that we apply a regularization only for the contact condition, while leaving the non-differentiability
in (P) unchanged.
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6.3. Algorithm for the solution of the Coulomb friction problem

As mentioned before, the fixed point idea presented in Section 6.1 can be exploited numerically for the solution
of the regularized Coulomb friction problem. This idea and slight modifications of this idea are commonly used
to calculate the solution of the Coulomb friction problem by a sequence of Tresca friction problems (see,
e.g., [16, 26, 27, 29]). The pure fixed point algorithm is given next.

Algorithm: (FP)

(1) Choose γ1, γ2 > 0, λ̂ and µ̂. Initialize g0 ∈ L2(Γc), and set m := 0.
(2) Determine the solution (λm, µm) to problem (P�

γ1,γ2
) with given friction gm.

(3) Update gm+1 := λm, m := m + 1 and, unless an appropriate stopping criterion is met, go to Step 2.

Provided that ‖F‖∞ is sufficiently small, Lemma 6.2 leads to a convergence result for the above algorithm.

Theorem 6.5. Suppose that ‖F‖∞ is sufficiently small, then Algorithm (FP) converges regardless of the ini-
tialization.

Proof. The proof follows immediately from the fact that, provided ‖F‖∞ is sufficiently small, the Lipschitz
constant of the mapping Ψγ is smaller than 1. �

One can consider various modifications of Algorithm (FP). In [16] a splitting type algorithm, based on a
finite dimensional dual formulation of the Tresca friction problem is presented and its numerical performance
is tested. In [26] a Gauß-Seidel-like generalization of (FP) in the framework of monotone multigrid methods is
proposed, and the author reports on favorable numerical results. Here we propose a modification of (FP) that
combines both the first order augmented Lagrangian update and the fixed point idea of Algorithm (FP).

Algorithm: (ALM-FP)

(1) Initialize γ1
1 , γ1

2 > 0, (λ̂1, µ̂1) ∈ L2(Γc) × L2(Γc) and g0 ∈ L2(Γc), m := 0.
(2) Choose γm

1 , γm
2 > 0 and determine the solution (λm, µm) to problem (P�

γ1,γ2
) with given friction gm and

λ̂ := λ̂m, µ̂ := µ̂m .
(3) Update gm+1 := λm, λ̂m+1 := λm, µ̂m+1 := µm and m := m + 1. Unless an appropriate stopping

criterion is met, go to Step 2.

For the following brief discussion of the above algorithm, we assume that a solution to the Coulomb friction
problem as defined in Section 2.3 exists and that the solution variables are sufficiently smooth. To be precise,
we assume that the fixed point λ∗ of the mapping Ψ (for its definition see p. 834) is in L2(Γc). Then, with the
variables y∗ ∈ Y and µ∗ ∈ L2(Γc) corresponding to λ∗, we have for γ1, γ2 > 0 that

a(y∗, z) − L(z) + (λ∗, τN z)Γc + (µ∗, τT z)Γc = 0 for all z ∈ Y,

λ∗ − max(0, λ∗ + γ1(τN y∗ − d)) = 0 on Γc,

γ2τT y∗ − max(0, γ2τT y∗ + µ∗ − Fλ∗) − min(0, γ2τT y∗ + µ∗ + Fλ∗) = 0 on Γc.

As can be seen easily, these conditions are also satisfied by a fixed point of (ALM-FP), i.e., provided convergence
of (ALM-FP) the limit variables are a solution to the original, i.e., non-regularized contact problem with
Coulomb friction.
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Figure 2. Example 1: deformed mesh (deformation multiplied by 20), gray tones visualize
the elastic shear energy density, ν = 0.4, g ≡ 1.5, γ1 = γ2 = 108.

7. Numerical results

Our numerical implementation of the algorithms presented in the previous sections uses the MATLAB-code
published in [2], that uses linear and bilinear finite elements for the discretization of the elasticity equations
without contact and friction. Using (SSN), (ALM), (FP) and (ALM-FP) it has been modified such that it
applies to problems involving contact and friction as well.

In the semi-smooth Newton method (SSN) always σ = 1 is chosen and, unless otherwise specified, the method
is initialized with the solution of the unconstrained dual problem, i.e., the solution of (P�

γ1,γ2
) neglecting the

constraints. Unless otherwise stated λ̂ = 0, µ̂ = 0 for (SSN) and the augmented Lagrangian method (ALM)
is initialized with λ0 = 0 and µ0 = 0. For the problems with given friction we always choose F = 1. The
algorithms for the Coulomb friction problem (FP) and (ALM-FP) are initialized with the solution of the pure
contact problem (and with g0 :≡ 0). As in [26, 29] the outer (i.e., the fixed point) iteration is terminated if

dm
g :=

‖gm − gm−1‖Γc

‖gm‖Γc

≤ 10−7.

7.1. Example 1

For this example the data are as follows: Ω = [0, 3] × [0, 1], Γc = [0, 3] × {0}, Γn = [0, 3] × {1} and the
elastic body is subject to homogeneous Dirichlet conditions with respect to the horizontal displacement and
homogeneous stress-free conditions with respect to the vertical displacement along {0} × [0, 1] ∪ {3} × [0, 1].
Further, f = 0 and

h =

{ (
0
0

)
on [0, 1]× {1} ∪ [2, 3] × {1},

(
0

−20

)
on [1, 2]× {1}.

For our test runs we choose E = 5000 and for the distance towards the rigid foundation
d(x1) = 0.003(x1 − 1.5)2 + 0.001. First we report on tests for ν = 0.4 and given friction g = 1.5, then on
tests with ν = 0.49 and g = 2.5. The geometry of this example allows rigid motions of the complete body in
vertical direction, since the elastic body is nowhere fixed with respect to the horizontal direction. Nevertheless,
from the geometry it is clear that these motions are excluded if the elastic body is in contact with the foundation
on some part of Γc.

We first summarize our testing of (SSN) for the problem with given friction g ≡ 1.5 and ν = 0.4. The semi-
smooth Newton algorithm detects the solution for γ1 = γ2 = 108 on a mesh of 120 × 40 finite elements after
9 iterations. The deformed mesh is depicted in Figure 2, where, for graphical presentation the deformation and
the distance to the rigid foundation is multiplied by a factor of 20 and gray tones are utilized to visualize the
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Figure 3. Example 1, left: dual variable µγ (solid) with bounds ±g (dotted) and tangential
displacement τT yγ (multiplied by 104, dashed). Right: multiplier λγ (solid), rigid foundation
(multiplied by 104, dotted) and normal displacement τN yγ (multiplied by 104, dashed), ν = 0.4,
g ≡ 1.5, γ1 = γ2 = 108.

elastic shear energy density. The dual variable µγ , the corresponding bounds ±g and the tangential displacement
are shown on the left of Figure 3. By inspection of the graphs one can verify that the complementarity conditions
hold. Recall that active sets correspond to parts of the boundary, where the elastic body is sliding in tangential
direction, while inactive sets correspond to sticky regions, i.e., to sets where τT yγ = 0. The main disadvantage
of utilizing the Tresca friction law is that stick may occur on sets where the elastic body is not in contact with the
foundation. This phenomenon also occurs for our example as can be seen from Figure 3, where tangential stick
without contact occurs, e.g., in the interval [0, 0.3]. This is clearly undesirable in modelling realistic physical
phenomena, but it can occur in the Tresca friction model. This phenomenon does not cause any difficulties in
the proposed solution strategies.

Let us now comment on the performance of the algorithm. To obtain convergence of the method independently
of the initialization, it seems crucial to choose the parameter σ large enough, for instance, σ = 1. Setting σ = γ−1

2

as suggested by the interpretation of the algorithm as infinite-dimensional semi-smooth Newton method may
lead to cycling of the iterates unless the initialization is already close to the solution (see also the discussion
at the end of Sect. 4). For σ = 1, the method converges for all initializations and for all choices of γ1, γ2. We
remark that the Newton-type method proposed in [1], which is similar to ours, does not use any additional
parameter σ. Using our notation, this corresponds to the choice σ = γ−1

2 . This choice has the advantage that
points are moved from the lower active set to the upper and vice versa within one iteration. On the other hand
it can be the reason why the authors of [1] observe a cycling of the iterates (cf. [1], p. 369). In general it can
be said that decreasing σ increases the likelihood that coordinates are moved from being active above to active
below in within one iteration.

Since the elastic body is only fixed in horizontal direction, we cannot initialize the algorithm with the solution
of the state equation (3.3a) for µγ = 0, λγ = 0. Doing so would lead to a problem where both, friction and
contact conditions are neglected and thus the body is nowhere fixed in horizontal direction. Therefore, as
initialization we choose the solution of the problem without friction, but with forcing that τN yγ − d = 0 in the
interval [1.25, 1.75]. We tested several other initializations including τN yγ − d = 0 on all of Γc, and found the
algorithm to converge always after at most 12 iterations.

In the iteration process we usually observe a monotonicity of the active sets for the contact condition, namely,
beginning from the second iteration, the new estimate for the active set is contained in the previous one. We
do not observe a similar behavior for the active sets corresponding to the friction condition. Generally, it can
be said that in this example the contact condition strongly dominates the convergence behavior.

From Table 1, which displays the number of iterations for various γ1, γ2 it can be seen that the number of
iterations depends only weakly on γ1, γ2. Next we investigate the speed of convergence of the iterates of (SSN).



GENERALIZED NEWTON METHODS FOR 2D-FRICTIONAL CONTACT PROBLEMS 845

Table 1. Example 1: number of iterations for different values of γ1 and γ2, ν = 0.4, g ≡ 1.5.

γ2

104 105 106 107 108 109

104 6 7 8 8 8 8
105 6 8 8 9 9 9

γ1 106 7 8 12 12 13 13
107 7 8 10 11 11 11
108 7 8 10 11 11 11
109 7 8 10 11 11 11

Table 2. Example 1: values for qk, ν = 0.4, g ≡ 1.5, γ1 = γ2 = 104.

k 1 2 3 4
qk 1.11e-0 8.64e-1 3.00e-1 0

Table 3. Example 1: number of iterations on different grids and for various regularization pa-
rameters for symmetric initialization and non-symmetric initialization (number in parentheses),
ν = 0.49, g ≡ 2.5.

γ1 = γ2

grid 105 106 107 108 109

60 × 20 6(8) 7(9) 9(12) 9(12) 9(12)
120 × 40 7(8) 9(11) 14(16) 13(18) 13(18)
240 × 80 7(9) 9(11) 16(18) 17(21) 17(21)

For this purpose we report, for k = 1, 2, . . . on the discrete analogues of

qk :=
a(yk+1 − yγ , yk+1 − yγ)

1
2

a(yk − yγ , yk − yγ)
1
2

+
‖λk+1 − λγ‖Γc

‖λk − λγ‖Γc

+
‖µk+1 − µγ‖Γc

‖µk − µγ‖Γc

,

where (yγ , λγ , µγ) denote the solution variables and (yk, λk, µk) the iterates. The results are shown in Table 2,
where we observe that qk is monotonously decreasing indicating superlinear convergence of the iterates.

We now report on the number of iterations of (SSN) for differently fine discretizations. We consider the case
g ≡ 2.5 and ν = 0.49 and show in Table 3 the number of iterations for various regularization parameters on
three different grids. Thereby, the first number corresponds to the standard initialization of the algorithm, i.e.,
setting τN y0 = d on [1.25, 1.75]. The number in the parentheses corresponds to the non-symmetric initialization
τN y0 = d on [0, 0.5]. One observes that the algorithm behaves only moderately mesh-dependent and that
for all grids the number of iterations increases as γ1, γ2 increase. For γ1 = γ2 = 105, 106 we can observe
an almost mesh-independent behavior. A possible explanation for this remarkable result is that for small
regularization parameters the convergence region of the continuous method is large, such that we can observe
mesh-independence of the semi-smooth Newton method (as analyzed in [17]).

The above results motivate the application of a continuation procedure with respect to the regularization
parameter to reduce the overall number of iterations. In this strategy we calculate the solution for moderately
large regularization parameters and utilize the obtained solution as initialization for larger regularization pa-
rameters. The outcome for our problem is reported in Table 4. We observe that continuation with respect to γ1

and γ2 can be used to reduce the overall number of iterations especially on fine grids. Moreover, one observes
that the number of iterations is even more reduced for the case that a non-symmetric initialization for (SSN) is
used.
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Table 4. Example 1: number of iterations on different grids using continuation w.r. to γ1, γ2

(2nd and 3th column), the resulting overall number of iterations (
∑

) and the number with-
out continuation strategy (last column). The numbers in parentheses correspond to a non-
symmetric initialization, ν = 0.49, g ≡ 2.5.

γ1 = γ2 γ1 = γ2

grid 105 → 109
∑

109

60 × 20 6(8) +4 10(11) 9(12)
120 × 40 7(8) +5 12(13) 13(18)
240 × 80 7(9) +7 14(16) 17(21)

Table 5. Example 1: tests for (ALM) with inexact solve of the auxiliary problem, #iter
denotes the number of inner iteration, ν = 0.49, g ≡ 2.5.

l 1 2 3 4 5 6

#iterSSN 4 4 3 3 2 3
γ1 = γ2 = 106

dm
λ,µ 6.85e-1 1.45e-1 2.73e-2 1.28e-2 7.85e-3 5.24e-3

#iterSSN 4 4 4 4 2 2
γ1 = γ2 = 107

dm
λ,µ 7.27e-1 1.80e-1 5.26e-2 1.52e-2 1.74e-3 3.39e-4

#iterSSN 4 4 4 2 2
γ1 = γ2 = 104+l

dm
λ,µ 5.22e-1 1.43e-1 2.23e-3 3.15e-5 8.64e-8

Finally, we report on tests of the augmented Lagrangian method (ALM), where we terminate the (ALM)-
iteration as soon as

dl
λ,µ := ‖λ̄ − λl‖Γc + ‖µ̄ − µl‖Γc < 10−4, (7.1)

where for λ̄ and µ̄ we take the solution of the regularized problem with γ1 = γ2 = 1010. Each iteration
step of (ALM) is initialized with the solution variables of the previous iteration. Applying the method with
γ1 = γ2 = 107, 2 (ALM)-iterations and overall 19 iterations of (SSN) are needed to obtain dλ,µ =6.23e-5.
To accelerate the convergence, one can increase the regularization parameters by a factor of, e.g., 10 in every
(ALM)-iteration. Starting with γ1 = γ2 = 106, the algorithm terminates after 2 (ALM)-iterations and overall
16 linear solves with d2

λ,µ =2.71e-5. We now turn to an inexact version of the above method, namely we allow
a maximum of 4 (SSN)-iterations in the inner loop of (ALM), before we update λ and µ. Applying this inexact
strategy for the inner problem in (ALM) may lead to iterates λl, µl that do not satisfy λl ≥ 0 and |µl| ≤ g.
Thus, in our inexact strategy, we apply a projection of the dual variables in order to make them feasible,
before we perform the augmented Lagrangian update. The results for the resulting test runs are summarized
in Table 5, where we also document the values for dl

λ,µ. It can be observed that for the first iterates of (ALM)
with inexact solve of the auxiliary problem smaller regularization parameters lead to better results, which is
due to the smaller ill-conditioning of the auxiliary problem. Thus, additionally to the augmented Lagrangian
update we increase γ1 and γ2, which leads to a fast convergence to the solution of the non-regularized contact
problem with Tresca friction, see the last row of Table 5.

Next we turn to the problem with Coulomb friction, where we consider the case ν = 0.4. The solution
variables for F = 0.3 obtained with (ALM-FP) are shown on the left and in the middle of Figure 4. Note that
the bounds for the variable µγ in Coulomb’s friction problem are given by Fλγ , meaning that these bounds are
not given a priori as in the case of Tresca friction. The convergence behavior of (ALM-FP) is shown in the
table in Figure 4.

In our tests we always observe convergence of both (FP) and (ALM-FP). Recall that, provided the solution is
sufficiently regular, the iterates of (ALM-FP) converge to the solution of the original Coulomb friction problem,
while the iterates of (FP) converge to the solution of the regularized Coulomb friction problem. Both strategies
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m γ1 = γ2 #iter dm
g

0 105 6 1.00e0
1 106 6 5.96e-2
2 107 2 4.43e-3
3 108 2 1.16e-4
4 109 2 2.28e-6
5 1010 2 6.97e-8

Figure 4. Example 1, left: multiplier λγ (solid), rigid foundation (multiplied by 104, dotted)
and normal displacement τN yγ (multiplied by 104, dashed), middle: variable µγ (solid) with
bounds ±0.3λγ (dotted) and tangential displacement yγ (multiplied by 104, dashed), right:
number of inner iterations #iter for γ1 = γ2 for each outer iteration m of (ALM-FP), ν = 0.4.

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3
−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure 5. Example 1 with ν = 0.4, left: variables µγ (solid) with bounds Fλγ (dotted) and
tangential displacement yγ (multiplied by 104, dashed) F = 0.1. Right: same as left, but with
F = 1.

require overall about 20 to 25 linear solves to detect the solution, that is, the computational effort for solving
the Coulomb friction problem is comparable to the effort for the Tresca friction problem. Finally, in Figure 5
we show results obtained by (ALM-FP) for two different friction coefficients, namely for F = 0.1 and F = 1.

7.2. Example 2

In the previous example we could only observe a minor influence of frictional behavior onto the deformation,
in particular onto the actual contact zone. This example has been constructed in order to investigate the conver-
gence behavior of the algorithms for examples where the given friction and the friction coefficient significantly
influences the deformation of the elastic body. We choose the same geometry as for Example 1, but the gap
function d = max(0.0015, 0.003(x1−1.5)2+0.001) and E = 10 000, ν = 0.45. Further, we do not apply a traction
force, rather we prescribe a nonzero deformation along the Dirichlet part of the boundary. As before, the zone
of possible contact and friction is Γc := [0, 3]×{0}, further on Γn := [0, 3]×{1}∪{0}× [0, 0.2]∪{3}× [0, 0.2] we
assume traction free boundary conditions. On Γd := {0} × [0.2, 1] ∪ {3} × [0.2, 1] we prescribe the deformation
as follows:

τy =

{ (
0.003(1−x2)

−0.004

)
on {0} × [0.2, 1],

(−0.003(1−x2)
−0.004

)
on {3} × [0.2, 1].

For γ1 = γ2 = 108 the semi-smooth Newton method detects the solution for given friction g ≡ 1 after 7 iterations.
The corresponding deformed mesh and the elastic shear energy density are shown in Figure 6. As expected, in
a neighborhood of the points (0, 0.2) and (3, 0.2), i.e., the points where the boundary conditions change from
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Figure 6. Example 2: Deformed mesh for g ≡ 1, gray tones visualize the elastic shear energy density.
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Figure 7. Example 2, left: multiplier λγ (solid), rigid foundation (multiplied by 5 × 103,
dotted) and normal displacement τN yγ (multiplied by 5× 103, dashed), Middle: magnification
of detail of the left plot, Right figure: dual variable µγ (solid) with bounds ±Fg (dotted) and
tangential displacement yγ (multiplied by 5 × 103, dashed).

Neumann to Dirichlet, we observe a stress concentration due to a local singularity of the solution. Further, we
also observe a (small) stress concentration close to the points where the rigid foundation has the kinks.

On the left hand side of Figure 7 we depict the rigid foundation, the normal displacement and the corre-
sponding multiplier. Magnifying the contact zone (see the plot in the middle of Fig. 7), one can observe that
the body is not in contact with the rigid foundation in the interval [1.3, 1.7], i.e., in this interval the constraint
on the normal deformation is inactive, which is also reflected in the fact that the corresponding dual variable λγ

is zero. On the right hand side of Figure 7 we show the tangential displacement, the multiplier µγ and the
bounds ±g.

Next we investigate the influence of the given friction onto the deformation of the elastic body. Note that g
directly influences µγ , while its influence on τN yγ and λγ is only due to the connection of the variables by means
of the elasticity equation. The normal displacement and the corresponding multipliers λγ for g ≡ 0, 1, 5 are
compared in Figure 8. For all values of g the algorithm finds the solution after 7 or 8 iterations, which shows a
remarkable stability of (SSN) with respect to the bounds ±g for the dual variable µγ .

We now turn to the Coulomb friction problem and investigate the performance of (FP) and (ALM-FP). In
Figure 9, we depict the normal and the tangential displacement with corresponding multipliers for F = 2, 5, 10.
One observes that the friction coefficient significantly influences the deformation. For instance, in the case
F = 2 the elastic body is in contact with the foundation in the interval [1.4, 1.6], but it is not for F = 5 and
F = 10. The solutions are obtained using (FP) and (ALM-FP). The methods perform comparably well and
require overall between 20 and 25 linear solves to stop with dm

g ≤ 10−7.
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Figure 8. Example 2: rigid foundation, normal displacement τN yγ (both multiplied by 5×103)
and corresponding multiplier λγ for various given friction. From left to right: pure contact
problem, g ≡ 1, 5 and magnification of the contact zone, γ1 = γ2 = 108.
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Figure 9. Example 2, upper row, left: multiplier λ∗ (solid), rigid foundation (multiplied by
5 × 103, dotted) and normal displacement τN y∗ (multiplied by 5 × 103, dashed). Second row,
left figure: dual variable µ∗ (solid) with bounds ±Fλ∗ (dotted) and tangential displacement y∗

(multiplied by 5× 103, dashed) for F = 2. Middle column: same as left, but with F = 5. Right
column: same as left, but with F = 10.

8. Conclusions and outlook

In this paper, primal and dual formulations of 2D contact problems with friction are discussed. The effect of
regularization is investigated for both the primal and dual problems and its relation to augmented Lagrangians
is discussed. Existence of a solution to a smoothed contact problem with Coulomb friction is shown.

An infinite-dimensional semi-smooth Newton algorithm is applied to the regularized problem with Tresca
friction. The method is shown to converge locally superlinear and turns out to be extremely fast and reliable
in numerical practice.

Table 1 shows that the number of iterations increases moderately as the parameters γ1, γ2 are increased,
which motivates a continuation strategy for these parameters. In Table 4, γ1 and γ2 are increased heuristically.
It would be of importance to derive strategies for an automatic choice and increase of γ1, γ2, e.g., similar to
path-following techniques well known in interior point methods.

The algorithms presented in the present work are focused to 2D contact problems with friction. A nu-
merical treatment of frictional contact problems in 3D involves additional difficulties. To be precise, for 3D
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problems with friction the dual variable µ in (2.7) is replaced by a vector function µ = (µ1, µ2)� that satisfies
‖µ‖ ≤ Fg a.e. on Γc, i.e., a pointwise nonlinear constraint must be considered. The generalization of this
paper’s methods and analysis to 3D-problems was partly accomplished in [33] and is subject of present research.
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Appendix A. Proof of Theorem 3.1

Setting z := yγ − ȳ in (3.3a) we obtain

a(yγ , yγ − ȳ) − L(yγ − ȳ) + (λγ , τN (yγ − ȳ))Γc + (µγ , τT (yγ − ȳ))Γc = 0. (A.1)

First we estimate the term (λγ , τN (yγ − ȳ))Γc :

(λγ , τN (yγ − ȳ))Γc = (λγ , τN yγ − d)Γc − (λγ , τN ȳ − d)Γc

≥ γ−1
1 (λγ , λ̂ + γ1(τN yγ − d))Γc − γ−1

1 (λγ , λ̂)Γc ,

where (λγ , τN ȳ − d)Γc ≤ 0 was used. Thus,

(λγ , τN (yγ − ȳ))Γc ≥ γ−1
1 (λγ , max(0, λ̂ + γ1(τN yγ − d)))Γc − γ−1

1 (λγ , λ̂)Γc

= γ−1
1 ‖λγ‖2

Γc
− γ−1

1 (λγ , λ̂)Γc (A.2)

= 1
2γ1

‖λγ − λ̂‖2
Γc

+ 1
2γ1

‖λγ‖2
Γc

− 1
2γ1

‖λ̂‖2
Γc

≥ − 1
2γ1

‖λ̂‖2
Γc

. (A.3)

For the term (µγ , τT (yγ − ȳ))Γc we obtain

(µγ , τT (yγ − ȳ))Γc ≤ (Fg, |τT (ȳ − yγ)|)Γc ≤ c1‖Fg‖Γc‖ȳ − yγ‖Y, (A.4)

with some c1 > 0. Equations (A.1) and (A.2) imply that

a(yγ , yγ) + 1
γ1
‖λγ‖2

Γc
≤ a(yγ , ȳ) + 1

γ1
(λγ , λ̂)Γc + L(yγ − ȳ) − (µγ , τT (yγ − ȳ))Γc . (A.5)

Using (A.4), the coercivity (with constant c > 0) and the continuity of a(· , ·) in (A.5) shows that

c‖yγ‖Y + 1
γ1
‖λγ‖Γc (A.6)

is uniformly bounded with respect to γ1 ≥ 1. Hence, yγ is bounded in Y and λγ in H−1/2(Γc) using (3.3a).
Consequently, there exist (ỹ, λ̃) ∈ Y × H−1/2(Γc) and a sequence γk with limk→∞ γk = ∞ such that

yγk
⇀ ỹ weakly in Y and λγk

⇀ λ̃ weakly in H− 1
2 (Γc). (A.7)

Since |µγ | ≤ Fg a.e. on Γc for all γ1, γ2 > 0, there exists µ̃ and a subsequence γkl
of γk, such that

µγkl
⇀ µ̃ weakly in L2(Γc). Since the set {ν ∈ L2(Γc) : |ν| ≤ Fg a.e.} is convex, also the weak limit µ̃

satisfies |µ̃| ≤ Fg almost everywhere. In the sequel we dismiss the subscript kl with γkl
. Due to the definition

of λγ ,
1
γ1
‖λγ‖2

Γc
= γ1‖max(0, 1

γ1
λ̂ + τN yγ − d)‖2

Γc
.
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As (A.6) is uniformly bounded with respect to γ1, the above inequality implies that

‖max(0, 1
γ1

λ̂ + τN yγ − d)‖2
Γc

→ 0 as γ1 → ∞. (A.8)

Since H1/2(Γc) embeds compactly into L2(Γc), (A.7) shows that τN yγ → τN ỹ almost everywhere on Γc.
Thus, (A.8) implies that τN ỹ − d ≤ 0 almost everywhere on Γc, i.e. ỹ ∈ d + K.

Subtracting (3.3a) for (yγ , λγ , µγ) from (2.3a) for (ȳ, λ̄, µ̄) and setting z := yγ − ȳ yields

a(yγ − ȳ, yγ − ȳ) = −〈
λγ − λ̄, τN (yγ − ȳ)

〉
Γc

− (µγ − µ̄, τT (yγ − ȳ))Γc . (A.9)

For the second term on the right hand side of (A.9) one deduces

(µγ − µ̄, τT ȳ)Γc = (µγ , τT ȳ)Γc − (Fg, |τT ȳ|)Γc ≤ (|µγ | − Fg, |τT ȳ|)Γc ≤ 0.

In order to get an estimation for the term (µ̄−µγ , τT yγ) we distinguish two cases. First, we consider sets where

γ2τT yγ + µ̂ ≥ Fg and thus µγ = Fg.

Then, we have the pointwise estimates

(µ̄ − µγ)τT yγ = 1
γ2

(µ̄ − Fg)
(
(γ2τT yγ + µ̂) − µ̂

) ≤ 1
γ2

{
Fg|µ̂| + |µ̄||µ̂|}.

The same estimate holds on sets where γ2τT yγ + µ̂ ≤ −Fg and µγ = −Fg as well. Let us turn to sets where
|γ2τT yγ + µ̂| < Fg and µγ = γ2τT yγ + µ̂. Then, pointwise almost everywhere

(µ̄ − µγ)τT yγ = (µ̄ − γ2τT y − µ̂) τT yγ ≤ −γ2|τT yγ |2 + 1
γ2
|µ̄ − µ̂|(Fg + |µ̂|).

Combining the above estimates shows that

−(µγ − µ̄, τT (yγ − ȳ))Γc ≤ 1
γ2

K(µ̂, µ̄), (A.10)

where K(µ̂, µ̄) is independent of γ1, γ2. Using (A.3), (A.9), (A.10) and the coercivity of a(· , ·) imply that

0 ≤ lim sup
γ1,γ2→∞

c‖yγ − ȳ‖2
Y ≤ lim

γ1,γ2→∞
{〈

λ̄, τN (yγ − ȳ)
〉

+ 1
γ2

K(µ̂, µ̄) + 1
γ1
‖λ̂‖2

Γc

}

= lim
γ1,γ2→∞

{〈
λ̄, τN ỹ − d

〉 − 〈
λ̄, τN ȳ − d

〉}
= lim

γ1,γ2→∞
〈
λ̄, τN ỹ − d

〉 ≤ 0,

where τN ỹ − d ≤ 0 on Γc was used. From the above estimate it follows that yγ → ȳ strongly in Y and thus
ỹ = ȳ. Passing to the limit in (3.3a) yields that λ̃ = λ̄ and µ̃ = µ̄. Due to the uniqueness of the solution
variables (ȳ, λ̄, µ̄) this implies that the whole family {(yγ , λγ , µγ)} converges as stated in the theorem.
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Appendix B. Proof of Theorem 5.1

Let us denote δl
y := yl − ȳ ∈ Y, δl

λ := λl − λ̄ ∈ L2(Γc) and δl
µ := µl − µ̄ ∈ L2(Γc), where ȳ and (λ̄, µ̄) denote

the solution variables of (P) and (P�), respectively. Since (ȳ, λ̄, µ̄) satisfies (2.3a), we have for l ≥ 1 that

a(ȳ, δl+1
y ) − L(δl+1

y ) + (λ̄, τN δl+1
y )Γc + (µ̄, τT δl+1

y )Γc = 0, (B.1)

and from Step 2 in (ALM) we obtain

a(yl+1, δl+1
y ) − L(δl+1

y ) + (λl+1, τN δl+1
y )Γc + (µl+1, τT δl+1

y )Γc = 0. (B.2)

Subtracting (B.1) from (B.2) results in

0 = a(yl+1 − ȳ, δl+1
y ) + (λl+1 − λ̄, τN δl+1

y )Γc + (µl+1 − µ̄, τT δl+1
y )Γc

= a(δl+1
y , δl+1

y ) + (δl+1
λ , τN δl+1

y )Γc + (δl+1
µ , τT δl+1

y )Γc . (B.3)

Due to Step 2 of (ALM), (2.3b) and (2.3c) and the assumption that λ̄ ∈ L2(Γc) we have

λl+1 = P1(λl + γl+1
1 (τN yl+1 − d)), λ̄ =P1(λ̄ + γl+1

1 (τN ȳ − d)), (B.4)

µl+1 = P2(µl + γl+1
2 τT yl+1) and µ̄ =P2(µ̄ + γl+1

2 τT ȳ), (B.5)

where P1 : L2(Γc) → L2(Γc) denotes the pointwise projection onto the convex set K1 = {ξ ∈ L2(Γc) : ξ ≥ 0 a.e.},
and P2 : L2(Γc) → L2(Γc) the projection onto K2 = {ν ∈ L2(Γc) : |ν| ≤ Fg a.e.}. From the properties of pro-
jections onto convex sets, one gets that

(
λl+1 − λ̄, (λl + γl+1

1 (τN yl+1 − d)) − λl+1) − (λ̄ + γl+1
1 (τN ȳ − d) − λ̄)

)
Γc

≥ 0,

(
µl+1 − µ̄, (µl + γl+1

2 τT yl+1 − µl+1) − (µ̄ + γl+1
2 τT ȳ − µ̄)

)
Γc

≥ 0.

Thus, we obtain

(δl+1
λ , τN δl+1

y )Γc + (δl+1
µ , τT δl+1

y )Γc = (γl+1
1 )−1

(
λl+1 − λ̄, (λl + γl+1

1 (τN yl+1 − d)) − (λ̄ + γl+1
1 (τN ȳ − d)

)
Γc

+ (γl+1
2 )−1

(
µl+1 − µ̄, (µl + γl+1

2 τT yl+1) − (µ̄ + γl+1
2 τT ȳ

)
Γc

− (γl+1
1 )−1(λl+1 − λ̄, λl − λ̄)Γc − (γl+1

2 )−1(µl+1 − µ̄, µl − µ̄)Γc

≥ (γl+1
1 )−1‖λl+1 − λ̄‖2

Γc
− (γl+1

1 )−1(λl+1 − λ̄, λl − λ̄)Γc

+ (γl+1
2 )−1‖µl+1 − µ̄‖2

Γc
− (γl+1

2 )−1(µl+1 − µ̄, µl − µ̄)Γc

≥ 1

2γl+1
1

‖δl+1
λ ‖2

Γc
− 1

2γl+1
1

‖δl
λ‖2

Γc
+ 1

2γl+1
2

‖δl+1
µ ‖2

Γc
− 1

2γl+1
2

‖δl
µ‖2

Γc
. (B.6)

Utilizing (B.3), (B.6) and γl
1 ≤ γl+1

1 , γl
2 ≤ γl+1

2 yields that

1

2γl+1
1

‖δl+1
λ ‖2

Γc
+ 1

2γl+1
2

‖δl+1
µ ‖2

Γc
≤ 1

2γl
1
‖δl

λ‖2
Γc

+ 1
2γl

2
‖δl

µ‖2
Γc

− a(δl+1
y , δl+1

y ).

This shows that a(δl
y, δl

y) → 0 as γ1, γ2 → ∞, and thus yl → ȳ strongly in Y. From Step 2 of (ALM) it follows
that λl → λ̄ and µl → µ̄ weakly in L2(Γc), as desired.
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