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Abstract

A brief introduction to selected topics of suboptimal strategies for numerical realisation
of large scale optimal control problems is given. Receding horizon strategies, reduced
order modelling methods as well as suboptimal methods to solve certain Hamilton—Jacobi—
Bellman equations are discussed.



1 Introduction

We survey some of the techniques developed and modified within the last decade on nu-
merical realisation of optimal control problems governed by large scale partial differential
equations. Large scale is a vague term, of course, depending on the available resources in
manpower, hard— and software. What may appear to be large scale at a certain instance
of time can become quite tractable soon thereafter. The study of suboptimal techniques,
nevertheless, is a viable one. First because as resources increase, the models become in-
creasingly more complex. Second the interest in suboptimal strategies is not only motivated
by making large scale problems feasible, but also by reducing computing time for smaller
problems and by systems—theoretic questions which go beyond optimal control, be it open
or closed loop control.

In Section 6 we state a model problem from fluid dynamics which serves both as moti-
vation and as reference in the following sections. Section 2 is devoted to the instantaneous
control technique which can be considered as a specical case of a receding horizon strategy.
Reduced order techniques are the subject of Section 3. We address both order reduction
by proper orthogonal decomposition and by the reduced basis method. In Section 4 we
give a very brief account of methods that can be utilized to obtain suboptimal solutions
to the Hamilton—Jacobi—Bellman equation.

The fields of suboptimal strategies and of optimal control of fluids are growing rapidly.
We have not made an attempt to give complete lists of methods let alone authors who
contributed to these topics. We hope, however, that the interested reader will find many

relevant issues and that the references serve as an adequat introduction to the topics
addressed.

2 A model problem

To explain some of the concepts for suboptimal control we shall repeatedly return to a
model problem in fluid mechanics. For this purpose let € be a bounded domain in R?, let
T >0, and set Q = (0,7) x Q, ¥ = (0,T) x 09, where 92 denotes the boundary of 2.
We consider the controlled unstationary Navier—Stokes equations

[ w(t) — 7 Ay(t) + (y(t) - V)y+ Vp(t) = Bu(t) in Q,

—divy(t) =0 in @Q,
(2.1) {
y(07 ) =% in Q?

[ y(t,-) =g(t) on X,
where Re > 0, g € Wh2(0,T; Héﬂ(aQ)), and yo € L*(Q), div yo = 0, are given, B €

LU, L*(2)) and u € L?(0,T;U). Here U denotes the control space, which is assumed
to be a Hilbert space with inner product (-,-)y. Further y(¢) = y(¢t,z) € R* and ((y -
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= Zyz ) Y, J = 1,2, and Hé/z((?Q) = {pec H'?(09): / ¢ -ndr =0}, where
onN

n denotes the unit outer normal to 9€2. For a function space treatment of (2.1) we refer to
[CF, GR, T], for example. Associated to (2.1) we consider the optimal control problem

") min J(y, u / / y)drdt + & /OT]u(t)\QUdt

u(t) € U,  subject to (2.1),

where F' is a smooth real-valued functional that is bounded from below. Typical choices
for F are

Fy(t,x)) = 3ly(t, z) — 2(t,2)]
and
F(y(t,x)) = 3lcurl(t, z)[?,

where z is a fixed control target. Let us assume that (P) admits an optimal control u* € U
with associated velocities and pressure (y*,p*) = (y(u*),p(u*)). To formally derive the
optimality condition for (P) it is convenient to introduce the Lagrangian

T
Ly, pou,,7) = / Fly)deds + 2 / ()t
Q 0

(2.2)
+/ ((yt - ﬁAer (y-V)y+Vp) — Bu(t)) Edxdt — / 7w div y dx dt.
Q Q

Here y(0,:) = yo in Q is kept as explicit constraint. Setting the partial derivatives of L
with respect to y, p, and u equal to zero we obtain the equations for (£, 7):

—&— 7 AL+ (Vy) e —(y-V)E+Vr=—F'(y) in Q,

—divé =0 in Q,
(2.3) X
ET,-)=0 in Q,
[ £€=0 on X,
(2.4) Bu(t)=B*¢(t) in Q.

Equation (2.3) is refered to as the adjoint equation, (2.4) is the optimality condition.
Combined (2.1), (2.3), (2.4) are called the optimality system.
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Due to the forward-backward nature of the primal equation (2.1) and the adjoint
equation (2.3), as well as the strong coupling of the primal variables (y, p, u) and the adjoint
variables (£, ) the efficient numerical solution of the optimality system is a challenging
task. If (P) is posed in 3-D or if it involves further coupling e.g. with thermal, chemical
or mechanical processes [KTB, LT, LT1] then it may become an almost impossible task to
efficiently solve the optimality system directly. This is one of the reasons why suboptimal
strategies are important. Another motivation is the reduction of computing time. We shall
address suboptimal schemes in Sections 2—4.

It will be useful to characterize the gradient of J at a control w in direction du. This can
be achieved efficiently by means of the Lagrangian. Let us proceed formally by expressing

(P) as
min J(u) = F +§ Tut?]dt

v () =P+ [ o)

u(t) € U, subject to e(x) =0,

where z = (y,p,u) and F(y) = / F(y)dQ. Here e(x) = 0 represents the equality con-
straint given by (2.1). We have ¢

(2.6) J'(u)ou = (e + Bu, 0u) 2010,

where \ satisfies

(2.7) ey = —F'(y).

Here e, denotes the derivative of e with respect to u, e} stands for the adjoint of e, and
analogous notation is used for e;. The Lagrangian associated to (2.5) is given by

L@, ) = B(y) + 2o + (v e(2)),
with (-, -) the inner product in the range space of e. The condition f/y = 0 is equivalent to
L,= eyA + F'(y) =0,
which is (2.7), and further
Ly(u)du = (eXX + Bu, ou) L2 (0,130) -
Hence by (2.6) we have
(2.8) J'(u)du = Ly (u)du.
Applying (2.8) to (2.2) we find for the Riesz representation of the gradient of J in (P)
(2.9) J' (u) = pu — B*¢.
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The functional analytical framework for optimality systems related to optimal control of
flow phenomena such as (P) has been investigated in several papers: we refer to [AT, GM1,
GM2] and the references given there.

If the distributed control term in (2.1) is replaced by boundary control

y(ta ) = Bu<t) on X,
then (2.4) becomes

(2.10) 6u—|—B($—n—7rn)—O on X

and
J'(u) = Bu+ B*(3 5 —mn).

The correct functional analytic setting of boundary control problems requires time—derivative

bounds for the controls, see [GM2], for example. In our case this could be realized by
T

choosing 2 / (Ju(®)[% + |24 u(t)|})dt as control-cost. This would result in the extra term

0
—6(%)%(7&) plus boundary conditions in (2.10). An alternative approach, approximating

Dirichlet by penalized Neumann boundary conditions was pursued in [HR].

3 Instantaneous control-receding horizon control

To explain the approach let m > 1 be fixed and set 6t = T/m, t; =i 6t, for i =0,--- ,m
As a first step in the presentation let us consider the case where the Navier—Stokes equations
(2.1) are approximated by a Crank-Nicolson scheme. At the i-th level of the instantaneous
control method one solves the following stationary optimal control problem, where the
variables (y, p,u) correspond to (y(t;), p(t;), u(t;)):

.

min J(u) = /F(y)dx + 2l
Q

over u € U, subject to

(3.1) %y#—%(y-V) 2ReAy+Vp R+ Bu in (Q,
—div y=0 in €,
[ ¥y =10 on 082,
where

R = é y(ti—1) + 2Re Ay(ti-1) — ;(y(tifl) V)y(tiz1) + f(tiz1y2),

is a known forcing term. Let uw; = wu(t;) denote a solution to (3.1) and set (y;,p;) =
(y(u;), p(u;)). Then (y;, pi,u;) satisfy the optimality system for (3.1) consisting in the
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equality constraints in (3.1), together with the adjoint equations:
56 — g A&+ 5(Vu) 6 — 54 - V)& + Vm = —F'(y;,-) in Q,
(3.2) —div & =0 in Q,
& =0 on 09,
and the optimality condition
(3.3) fu; = B*¢; in €.

Note that y; enters into (3.2) through F' as well as through the linearization terms. Even
though F' may depend on y only in a subdomain QcQ corresponding to locations where
observations are available, (3.2) requires y; throughout © due to the contribution of the
linearized convection terms. If instead of the semi—implicit scheme an explicit Euler scheme
is used we have

min J(u) = /QF(y)dx + 2ul?,

over u € U, subject to

(34) % _ﬁAy—'—Vp:R—'—BU in Q,
—div y =0 in Q,
y=0 on 61,

\

where R = % Yie1 — (Wie1 - V)yio1 + f(t;). In this case information from time level ¢;_;
is passed to t; solely through the inhomogeneity R. Let u; denote a solution to (3.4) and
as before set (i, p;) = (y(u;),p(u;)). Then the optimality system for (3.4) consists of the
equality constraints in (3.4) together with

Le— LAG+Vp = —Fy) in Q

(3.5) —div & =0 in Q,
& =0 on 09,
and
(3.6) fu; = B*¢; in .

In the optimality system for (3.4) the coupling between primal and adjoint equations occurs
only through F'.



The instantaneous control strateqy considered as open loop control consits in iteratively
solving (3.4) (or (3.1) or some variation thereof) for optimal controls w; and associated
states (y;,p;). - The feedback use and interpretation of instantaneous control consists in
evaluating F'in (3.5) on the basis of data available from the real system, solving (3.5) for
(&, m;), evaluating the optimal control at time level ¢; via (3.6), applying it to the system
to obtain the new observation and the continue on the next time level. The instantaneous
control approach replaces (P) by a sequence of stationary optimal control problems. Clearly
it cannot be claimed that a solution to (P) is obtained by this technique and its justification
therefore needs to be addressed. - In the context of control of fluids the instantaneous
control technique was probably first discussed in [CTMK] and utilized and refined in several
papers thereafter, see e.g. [CHK] and the references given there.

One justification for the instantaneous control strategy is its success in achieving the
control objective in numerical tests for diverse control problems in fluid mechanics, we refer
to [B, CHK, CTMK] and the references given there. Further frameworks for the analysis
of the instantaneous control strategy are discussed next.

(i) In [IK1] the connection between instantaneous control and receding horizon control
was pointed out. Receding horizon control is a well-known technique in optimal con-
trol of nonlinear ordinary differential equations, see e.g. [CA] and the references given
there. To briefly explain some concepts we follow [IK1] and consider the infinite—
horizon optimal control problem in finite dimensions:

inf/ fo(z(t),u(t))dt over u
0
subject to

o) = fx(t),ut)), t>0

z(0) =z, z(t) € R, u(t) € R™,

\

where f°: R" x R™ — R and f: R” x R™ — R™. Next (3.7) is replaced by a sequence of
finite horizon problems. Let T" > 0 denote the so—called prediction horizon, let G denote a
continuous mapping from R"™ to R, and consider

( (k+1)T
inf/k Fo((t), u(t))dt + Gla((k + 1)T)), over u

T

(3.8) subject to




where Zj, denotes the solution on [(k—1)T', kT which is assumed to exist. Let Z denote the
function defined on [0, 00) which arises from concatenation of the solutions Zy, k =2, -,
to (3.8) which are assumed to exist. So far the replacement of (3.7) by the sequence of
problems (3.8) has almost exclusively been justified by means of the asymptotic stabiliza-
tion property for (3.7), which can be guarenteed under appropriate assumptions on f and
G and/or additional explicit constraints on the state x in (3.7). The framework that best
fits the application to the discretized Navier—Stokes equations uses the concept of closed
loop dissipativity.

Definition 3.1 Problem (3.7) is called closed loop dissipative, if there exist a feedback law
u=—K(z) and a > 0 such that

flz,—K(x))-ax+ f(z,—K(x)) <0 forall z€R"

Examples for closed loop dissipative systems are given in [IK1]. Assume henceforth that

(3.7) is closed loop dissipative, and set G(z) = $|z[§.. We define for T > 0

Vr(x) = inf {/0 fola(t),ut))dt: Ga(t) = f(z(t),u(t)),(0) = 33}

and analogously V: R" — R denotes the minimal value functional for (3.7). Then for
0 < T < T it can be shown that

(3.9) V(z) < Vp(x) < Vip(z) < G(x) = §afn forall z e R™

Therefore, a longer prediction horizon results in a better estimate of V(x). Moreover, if

(3.10) Vr(z) < prG(z) = %L |z]3 with pr < 1,
then
(3.11) Z(kT) |3 < ph|z(0)[3,., forall k> 1,

and hence Z(kT) — 0 for k& — oo. Estimate (3.10) holds, for example for f°(z,u) =
Bi|z]* + Bolul?. - If (3.7) is not necessarily closed loop dissipative, then similar results
can be obtained if GG is chosen as a control-Liapunov function. Related results are also
available for discrete—time systems. The instantaneous control strategy is an extreme case
with only one discrete time predication horizon step.

(ii) Another analysis for the receding horizon optimal control concept applied to the
Navier-Stokes equations was proposed in [HY]. To briefly explain the approach we
consider



(3.12) min J(y,u) = %/ /|y—Y]2dxdt + g/ / lu — U|*dw dt,
o Ja 0o Jo

subject to (2.1) with B = I and Y, U given. The infinite horizon problem (3.12) is replaced
by a sequence of finite horizon problems

B (k+1)T (k+1)T
(3.13) min Ji(y,u) = g/ ly — Y|2dx dt + g/ lu — U|*dx dt,

2
kT kT

subject to (2.1) with initial condition y(kT,-) = yx(kT, -), where gy, is the solution to (3.13)
on [(k—1)T,kT]. Let y denote the function constructed from {y}%2, by concatenation.
The main assumption for the analysis in [HY] are

(C1) U=4y - LAY + (Y- V)Y

(C2) T, a];‘ZQ , Re ( relative to [|Y|| 1o (0,00;21(2)) are sufficiently small.

According to (C1) the optimal control body forces w in (3.12) should be "close” to the
body forces U corresponding to the desired flow field Y. With (C1), (C2) and appropriate
technical assumptions holding, it can be shown that there exist constants M > 0 and x > 0
such that

15(6) =Y ()l @2 < M e™™[ly(0) = Y (0)[[72qp, for ¢ >0.

(iii) In [HV] the authors analyze an instantaneous control strategy based on an implicit
time stepping scheme. They consider optimal control of Burgers equation

oo T
(3.14) mmJ@m):%/ /My—d%xﬁ4—§/ym%xﬁ,
0o Jo 0
subject to u € L*(0,T; L*(Q2)) and
i y(t) = vAy(t) + y(Hya(t) = Bu(t) in Q,
y(t,0) =y(t,1) =0, t >0,

y(07 ) =% in Qa

where > 0, v > 0 and z are given, and Q2 = (0,1). Let A denote the negative Laplacian,
b(y) = yy, and let h > 0 stand for the step size. Given {ug}?2, and setting 2z, = z(tx) we
consider the algorithm

1.k=0,t=0



2. Solve for (y, \):

(I + hA)y = yr + hb(yx) + Buj,
(I +hA)X=—(y — z).

3. Set VJ(y(ug),us5) = fus — B*\.

4. Given p > 0 set upy = u, — p V.J(u).

5. Solve (I + hA)yrs1 = yx + hb(yx) + Bug1.
6. Set tyy1 =t +h, k=k+ 1 and return to 2.

The two equations in 2. are readily seen as primal and adjoint system of a discrete—time
linear—quadratic optimal control problem. Accordingly an optimal step length for p in 4.
can easily be computed. Under the assumption that B = I and u} = 0, for all k, the
determination of ¥, in the above algorithm is equivalent to

(3.15) (I +hA)Yei1 =y + hb(yr) — pSi(yr — z) — b p Sp(b(ys) — Azi, Y = ¢,

where S, is the solution operator to v — v hv” = f, with homogenous Dirichlet boundary
conditions. If h is sufficiently small and appropriate technical assumptions are satisfied,
then there exists x € (0, 1) such that

Yk — 2] 22(0) < K |yo — 20| 22(0),
and hence |y — zx|2(q) for k — oo.

(iv) In a recent paper [H2| the close connection between instantaneous control, the mul-
tiple shooting approach, well-known as numerical method in optimal control for
ordinary differential equations, and the Gauss-Seidel method applied to a discrete—
time reformulation of continuous time optimal control problems is pointed out. It is
shown that certain instantaneous control techniques coincide with the first step of
a forward Gauss—Seidel iteration applied to the discrete time problems. The anal-
ysis in [H2], which is carried out for linear quadratic problems, can be extended to
certain nonlinear problems and will be instrumental to improve numerical aspects of
instantaneous control and receding horizon strategies.

4 Reduced order methods

A powerful and structurally completely different possibility to solve optimal control prob-
lems for complex systems is the use of reduced order methods. The underlying idea consists
in projecting the partial differential equation onto some lower—dimensional state—space, to
project the cost—functional accordingly and to solve the resulting lower—dimensional prob-
lem. A popular method for obtaining reduced order methods is based on proper orthogonal



decomposition (POD). An alternative is given by reduced basis methods. We shall explain
these two techniques and turn to POD first.

Let X denote a Hilbert space with inner product (-,-)x. In the case of (2.1) it could
be the closure of {v € C§(Q)?: divv =0} in L*(Q)? or H'(Q)?, so that elements of X
are divergence—free. For given n € N let

O=to<t1 <---<t,<T,

denote a grid in the interval [0,7]. Let {y;}}—, denote the velocity—components of the
solution (y;,p;) to (2.1) at the grid points {t;} corresponding to some fixed reference
control. POD does not address the question how these solutions, which are referred to as
snap shots, are obtained. They must be available from an independent numerical technique
or from experimental data. Let usset V = span {y;}/_; and d = dim V. If {¢;}_| denotes
an orthonormal basis for ¥ then each member of V can be expressed as

d

(41) Y; = Z(yjaqu)i)X ¢i7 ]: Oa N2

=1

The method of POD consists in choosing an orthonormal basis such that for every ¢ €
{1,---,d} the mean square error between y;,j = 0,---,n and the corresponding ¢-th
partial sum in (4.1) is minimized on average:

n l
min Z ly; — Z (yj, Vi) xil%
(42) {wz i=1 j=0 =1

subject to (1;, ;) = 6;; for 1 <id,j < L.

The solution {1;}{_, to (4.2) is called POD basis of rank ¢. It is characterized by a
necessary optimality condition. We introduce the bounded linear operator J: R**! — X

by
Yuv= Z VY.
=0
Its adjoint Y*: X — R"*! is given by

Viz=({z,y0)x, " <Zayn>X)T, for z € X.
It follows that R = YY" and K = Y*Y are given by

R = Z (Y xy; and (K)y = (yj, vi) x,
7=0

respectively. Using a Lagrangian framework the optimality condition for (4.2) is given by
Ry = \.
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Note that R is bounded, selfadjoint, non—negative, and since it has a finite dimensional
range it is also compact. By Hilbert—Schmidt theory there exists an orthonormal basis
{1 }ien for X and a sequence {\;};en of non—negative real numbers so that

Ripy = Nhi, Ay >+ 2> X >0, \; =0 for i >d,
and V = span {1;}% . Setting
Uzzﬁy*d)l; 221,d7

we find R v; = N4 and (v;,v;)gner = &;;. Thus {v;}%, is an orthonormal basis of

eigenvectors of R for the image of R. Conversely, {1;}&, can be obtained from {v;}¢,

by means of ; = \/%\» Vv, i = 1,---,d. The sequence {1;}¢_; solves (4.2). Note also

that due to orthonormality of {¢;}/_; the "min-expression” in (4.2) can be replaced by
n l

D im0 2im 1 Yi) x|

If {¢);}¢_, is the POD basis of rank ¢ < d then we have the following error formula:

n ¢

(4.3) Z ly; — Z <ijwi>X¢i|§( = Z Ai

j=0 i=1 i=0+1

For computations the spatial variable must be discretized as well. Then both R and IC
are matrices and the computation of the POD basis will be carried out by whichever matrix
has smaller dimension. In finite dimensions, moreover, the close connection between POD
and singular value analysis becomes quite obvious.

The question about the choice of £ is certainly a critical one. It is commonly resolved
by defining the relative information content

4 n
I =Y M/> A

If a basis is required that contains d% of the total information then ¢ is determined ac-
cording to

(4.4) ¢ = argmin {I(m): I(m) > ¢}.

The reduced dynamical system is obtained by a Galerkin approximation applied to (2.1);

i.e. one makes an Ansatz
1

y'(t) = Z ;i (t) ¥i,

i=1

and the coefficients a;(t) are determined from
(Wi (8), 0) + 7 (VY (), Vo) + (0" - V', v) = (Bult), ), 1< <,

yZ(O) = szm

(4.5)
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where P* denotes the projection onto span {t;}¢_;. In (4.5) the inner products are in L?(2)
and for simplicity we assumed g = 0 in (2.1). Note that the divergence—free condition is
incorporated in the basis elements and hence it does not explicitly enter into (4.4). Making
a further Ansatz for the controls:

L

u(t) = ),

(4.5) can be expressed as
alt) + Aa(t) + n(alt) = B(),

(4.6)
a(0) = ap,

with A and B matrices and n a nonlinear mapping. Inserting the expressions for y* and u’
into J(y, u), the model problem (P) can be expressed as finite dimensional control problem
of the form

. min/o ;E(a(t))dt+§/0 YT () Q ~(t)dt

over v € L?(0,T;RY), subject (4.5).
Differently from a generic approximation the POD-based system reduction leading to (P)
has the property that its basis elements are related to the structure of the dynamical system
(2.1). The basis elements, however, are computed for a reference control, which does not
represent the optimal control for (P,). Hence the problem of unmodelled system dynamics

occurs. It can partially be compensated by repeatedly adapting the POD basis leading to
the following

Algorithm

1. Initialize the snapshot set {y}}7_,, and set i = 0.

=0’
2. Compute ¢ according to (4.4) with n replaced by n(i + 1).
3. Compute the POD basis and solve (P,) for ~*.

4. Compute the state y* according to u'(t) = ¥ 7}(t)1;, add resulting snapshots {y}}7_
to existing snapshots.

5. Check stopping criterion, set i =7 + 1, goto 2.

The above algorithm was suggested in [AH]. An alternative adaptive POD-based strategy
combined with a trust-region approach was proposed in [AFS]. - For a general treatment
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of POD application to dynamical systems we refer to [BHL| and the references there. -
The use of POD-based system reduction in optimal control recently attracted a significant
amount of attention, we refer to [AK, HK3, KTB, KV1, LT, LT1], for example. In some
of these references the complexity of the system is such that without system reduction (or
some alternative suboptimal technique) the problems could not be solved within reasonable
computing and/or manpower time. - Closing our discussion on POD-approximation we
mention a recent result in [Z] on the relation between POD and balanced truncation for
linear systems, and an error estimate for the POD approximation in the H,—norm. Con-
vergence rate estimates for Galerkin-POD approximation of nonlinear dynamical systems
are given in [KV2, KV3].

Let us now turn to the reduced basis method, which was first proposed for system
reduction in structural problems and which was utilized for optimal control of fluids in
[IR, IS]. Consider a stationary parameter—dependent equation formally expressed as

(4.7) E(x,A\)=0 for x € X and X €A,

where X stands for the state-space of the differential equation and A for the parameter
space. In applications of the reduced basis method to control problems, A denotes the
control variable. Order reduction by means of the reduced basis method proceeds in two
steps. In the first one the reduced basis subspace Xrp C X is determined. In the second
step linear combinations of Xg called reduced basis function are determined which properly
accomodate the boundary conditions of the differential equation.

1. Taylor Subspace: In this case the reduced basis functions are linear combinations
of Taylor basis functions generated by computing the Taylor expansion of x(\) at a
reference value \*. The reduced basis subspace is

Xp = O =0 M
r= span {z; = o5 oxe: § =0, M},
where M € N. Equations for %f, j = 1,--- M are obtained from the implicit

function theorem applied to (4.7), e.g.

E(x(N), a1 = —Ex(z(V), V).

2. Lagrange Subspace: Here the reduced basis functions are linear combinations of basis
functions generated by solving the nonlinear system(4.7) at various parameters A;.
The reduced basis subspace is

Xpr = span {z; =z(N\;):j=1,--- , M}

3. Hermite Subspace: Here X is a combination of the Taylor and Lagrange subspaces.
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Let us illustrate one possibility of obtaining Lagrange subspace reduced basis functions
by a procedure which suggests itself for boundary velocity control on I'. C 9€). We define
the reduced subspace as

Vr = span {yi: yiloq = viT, i =1,--+ , M}
where y; satisfies
—ﬁAyi + (Wi V)yi+ Vpi = f in Q
(4.8) —divp; =0 in
y; =b on OO\I'., y; =v;7 on T,

with {v;}}, given boundary velocities, b fixed and 7 the unit tangent vector to 9. Let yo
denote the solution to (4.8) with v; = 0. Then reduced basis functions {¢;}7; are defined
as

i =ym + ay; + ciyo, 1 =1,---, M,
where the constants a; and ¢; are chosen such that homogenous boundary conditions are
enforced on 0f). A reduced order solution

Yy (t) = @o + Z a;(t)g;

to the time-dependent version of (4.8) can be obtained by means of a Galerkin procedure
with test functions {¢;},. In an optimal control problem with u = Zle Bi(t)viT, £ < M,
as boundary control, and {3;(t)}{_, as control parameters, an appropriate Ansatz would
be

M ¢
y"(t) = o + Z a;(t)pi + Z Bi(t)y:,

i=0+1

with test functions {p;}, ; for the Galerkin scheme. The details to obtain the finite
dimensional optimal control problems are given in [IS].

5 Comments on suboptimal closed loop methods

So far we focused on open loop methods. In this final section we briefly survey some of
the concepts developed for suboptimal feedback computations and partially follow [BTB]J.
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To explain the ideas it will be convenient to consider a variant of (3.7):
4 o
min / (z"Qz +u" Ru)dt
0

(5.1) subject to

z(0) = xo,

\
where g: R™ — R"™ is a nonlinear function and B is an n x m matrix. The optimal feedback
control for (5.1) is known to be of the form

(5.2) u*(z) = -1 R BT V,(2),

-2

where V' is the solution to the Hamilton—Jacobi-Bellman equation

(5.3) Vi(x)f(z) =1 VI(z)BR' BTV, (2) + 2" Qz = 0.
In case ¢ is linear and g(z) = Az with A an n x n—matrix, V,(x) in (5.2) is replaced by
ITx with II the positive definite solution to

(5.4) MNA+AD-TOBR'B'I+Q =0.

The necessity of resorting to suboptimal strategies stems from the fact that it is rather
difficult to numerically realize the Hamilton—-Jacobi-Bellman equation unless n is small.

One possibility of obtaining a suboptimal feedback solution is to linearize g at a nominal
solution z and to utilize a Riccati feedback controllers based on A = g,(Z). An alternative
is to use a power series expansion for the value function, i.e. V(z) = >~ V,(z), where
Vi(z) = O(2™"?%) and the associated expansion

fl@)=Agx+ > falz) with f,(x) =O(z") in (5.3).

The resulting equation for n = 0 is the Riccati—equation (5.4). A third possibility is to use
" state-dependent Riccati-equations”. The idea is to write the nonlinear term in (5.1) as
g(x) = A(x)z and to consider

(x) A(z) + AT (2)[(2) — H(z) BR'B ' (2) + Q = 0,

and to procede by using a power series expansion for II(x).

We mention three further possibilities of obtaining suboptimal feedback solutions which,
unlike the previous ones, do not utilize the Riccati equation. As allready described in
Section 3, the instantaneous control method with explicit time stepping has a natural
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interpretation as feedback control method. We now describe, how interpolation of two-
point boundary value solutions provides a feedback mechanism. For this purpose we recall
that the optimality condition for (5.1) is given by

o L0(t) = ga(t) — L BRBTp(),  2(0) — a4
| (1) = —gT(@(O)p(l) — 2Qu(t), Ty p(t) — 0.

The relation to the open—loop control is given by

(5.6) u(t) = =1 R7'BTp(t).

2
For numerical realization the terminal condition for the adjoint equation in (5.5) is replaced
by p(T) = 0 for large T. For the following arguments it is convenient to indicate the
dependence of p on z, so that p(t) = p(¢,z(t)). Assuming that 7" is large with respect to
t, (5.6) is approximated by

(5.7) u(t) = —1 RT1BTp(0, 2(t)).

The practical interpretation of (5.7) is the following: When the system has reached the
state Z(t) the corresponding feedback control is set —3 R~*B”p(0, Z(t)) where p(0, Z(t)) is
the second component of the solution to (5.5) evaluate at t = 0, and the initial condition
in (5.5) is set to x(0) = z(¢). This feedback strategy can be realized by precomputing the
solutions to (5.5) with initial conditions x(0) = z;, with {z;}_, chosen in a neighborhood
of the expected optimal trajectory. The feedback solution at state Z(t) is then obtained
by proper interpolation of the values {p(0,z;)}i,.

The last suboptimal strategy that we describe here is especially well suited for control
synthesis of systems arising in fluid mechanics. We consider the controlled system

La(t)+ Ax(t) + F(z(t)) = Bu(t)
(5.8)
z(0) = xo,

where A is a nonnegative selfadjoint operator in a Hilbert space, F' is a locally Lipschitz
nonlinear operator satisfying

(5.9) (F(x) — F(z.),x —xe)g =0, forall z € dom A,

where z. is an equilibrium solution to (5.8), and B is of the form

m

Buzz u; b;.

i=1
Note that (5.9) is satisfied e.g. for the convection term arising in the Navier—Stokes equa-
tion. For () a nonnegative selfadjoint operator we consider

win 3 [ ((@(t) = e (4 + Q)al0) — 5 + fult) )
(5.10) 0

subject to (5.8),
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and seek feedback solutions of the form
(5.11) w; = —;(t){b;, x(t) — xe)m, vi(t) > 0.

Under some technical assumptions it can be shown that the closed loop system (5.8), (5.11)
is closed loop dissipative. The optimal feedback control (i.e. the optimal choices for ~;)
can again be characterized by a Hamilton—Jacobi-Bellman equation which, however, differs
somewhat from (5.3) due to the constraints 7; > 0. The structure of this equation suggests
that ¢(x)(x —x.), with ¢ a real-valued function, is an appropriate Ansatz for V.. The value
of ¢(x) can be obtained from the Hamilton-Jacobi-Bellman equation. The details of this
approach and numerical examples are given in [IK].

6 Conclusions

We addressed selected suboptimal stategies for optimal control of partial differential equa-
tions with emphasis on examples in fluid dynamics. The impact of such methods, we hope,
will be a significant one, since they provide a means of solving practical problems which
may otherwise be quite untractable. The reader will have noticed that many interesting
questions for the methods we presented still need to be answered. Also many additional
systems—theoretical aspects may become numerically feasible for large scale problems by
suboptimal techniques. We mention robust control, the theory of dynamical observers, es-
timators and compensators. While we focused on suboptimal strategies here, this is not to
indicate that exact methods would not be of equal importance and require further research.
Second order methods, [H1, HK2, L], and numerical methods for constrained problems, for
example, present interesting challanges.
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