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Abstract. A multigrid scheme for the solution of constrained optimal control problems discretized by finite
differences is presented. This scheme is based on a new relaxation procedure that satisfies the given constraints
pointwise on the computational grid. In applications, the cases of distributed and boundary control problems
with box constraints are considered. The efficient and robust computational performance of the present multigrid
scheme allows to investigate bang-bang control problems.
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1. Introduction

There is large theoretical and experimental evidence that multigrid methods [13, 21] solve
elliptic problems with optimal computational complexity. This is also true for multigrid
methods applied to unconstrained optimal control problems [2–5, 9, 12, 20]. Furthermore,
it was demonstrated that multigrid methods are robust with respect to changes of the weight
of the cost.

In case of optimal control problems with constraints on the control much less is known
regarding the implementation and the analysis of multigrid schemes. By reformulating the
presence of constraints as a nonlinear equation relating the control to the adjoint variable, it
is possible to solve constrained optimal control problems using nonlinear multigrid methods
[5]. The resulting multigrid scheme shows typical multigrid efficiency for sufficiently large
values of the weight of the cost of the control. For small values of the weight the convergence
of the multigrid iterations deteriorates, showing a lack of robustness of this approach.

In this paper we propose a different technique where the constraints are enforced at each
grid point in the smoothing procedure. This procedure appears to be robust with respect
to changes of the value ν of the weight of the cost and, in particular, it allows the choice
ν = 0. The present approach applies to distributed as well as to boundary optimal control
problems. In all cases, for moderate values of the weight, the resulting multigrid iteration
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shows typical multigrid convergence factors which are mesh independent. For very small
values of ν down to ν = 0 new features can arise. In the case of bang-bang-type controls,
multigrid efficiency is retained. If chattering phenomena take place, the computational
performance of the multigrid scheme worsens. This typically arises in the case of local
attainability of the objective function.

These facts make our multigrid algorithm a useful tool for investigating bang-bang type
control phenomena for elliptic problems, which has not received much attention in the
literature on optimal control problems apart from some non recent contribution as in [10, 11]
where some theoretical and numerical results on the bang-bang principle for parabolic
boundary control problems are given.

In the following section we introduce and analyze our model problem with distributed
control. In particular, we consider the case where the control acts only in a part of the whole
domain.

In Section 3, the accuracy of the finite difference approximations to the solution of
the optimal control problem is considered. While finite element approximations are well
investigated [1, 17–19], much less results are available for finite difference methods. Thus,
before presenting our multigrid approach, we discuss convergence of finite differences
deriving some sub-optimal estimates. On the other hand, results of numerical experiments
demonstrate that finite differences provide optimal accuracy as it is proved in [19] in the
context of finite elements.

In Section 4, the multigrid scheme is formulated in the framework of nonlinear multigrid
methods. This approach is appropriate in order to implement the inequality constraint at all
levels of the multigrid process. We introduce a new relaxation scheme obtained by solving
at each grid point the optimality system under the constraints imposed on the control
function. Numerical experiments follow to demonstrate the ability of our algorithm to solve
constrained optimal control problems also in the limit case of bang-bang control.

In Section 6, the extension of our algorithm to solve boundary control problems is pre-
sented and validated with numerical experiments. A section of conclusion completes the
exposition of our work.

2. Constrained optimal control problems

We consider the optimal control problem






minu∈Uad J (y, u),

−�y = Bu + g in �,

y = 0 on ∂�,

(1)

where � is a open bounded set in R2, with boundary ∂� and u ∈ Uad ⊂ L2(�). We assume
that � is convex or that ∂� is C1,1 smooth. The cost functional J is of the tracking type
and is given by

J (y, u) = 1

2
‖y − z‖2

L2(�) + ν

2
‖Bu‖2

L2(�), (2)
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where g ∈ L2(�), z ∈ L2(�) is the objective function, and ν ≥ 0 is the weight of the cost
of the control. The set of admissible controls is the closed convex subset of L2(�) given by

Uad = {u ∈ L2(ω) | u(x) ≤ u(x) ≤ ū(x) a.e. in ω ⊂ �}, (3)

where u and ū are elements of L∞(�) and ω is a subset of �. The extension operator
B : L2(ω) → L2(�) is defined as follows

Bu =
{

u in ω,

0 in � \ ω.

Existence of a unique solution to (1) and its characterization are well known. For com-
pleteness we give a short derivation. Let y(u) denote the solution of the equality constraints
in (1) as a function of u. The mapping u → y(u) from L2(�) to H 1

0 (�)∩ H 2(�) is affine and
continuous. Let us denote its first derivative in the direction δu by y′(δu). It is characterized
as the solution to

−�y′(δu) = B δu in �,

y′(δu) = 0 on ∂�. (4)

The second derivative of u → y(u) is zero.
Define Ĵ (u) = J (y(u), u). The mapping u → Ĵ (u) is twice Frechet differentiable and

its second derivative is given by

Ĵ ′′(u)(δu, δu) = ||y′(δu)||2L2(�) + ν||Bδu||2L2(�).

It follows that u → Ĵ (u) is uniformly convex if ν > 0. This implies existence of a
unique solution u∗ to (1). For ν = 0 the y-coordinate of the solution is unique. Since
u → y(u) is injective, the solution u∗ is again unique. The solution to (1) is characterized
by Ĵ ′(u)(u∗, δu) ≥ 0 and consequently

Ĵ ′(u∗, v − u∗) = (y(u∗) − z, y′(v − u∗))L2(�) + ν(Bu∗, B(v − u∗))L2(�) ≥ 0,

for all v ∈ Uad .
Introduce p∗ ∈ H 2(�) ∩ H 1

0 (�) as the unique solution to

−�p∗ = −(y∗ − z) in �,

p∗ = 0 on ∂�, (5)

where y∗ = y(u∗). Then by (4) and (5) we have

Ĵ ′(u∗, v − u∗) = −(p∗, B(v − u∗))L2(�) + ν(Bu∗, B(v − u∗))L2(�)

≥ 0 for all v ∈ Uad ,
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which constitutes the necessary and sufficient optimality condition for the given optimal
control problem.

Summarizing, the solution to (1) is characterized by the following optimality system

−�y = Bu + g in �,

y = 0 on ∂�,

−�p = −(y − z) in �, (6)

p = 0 on ∂�,

(νu − B∗ p, v − u) ≥ 0 for all v ∈ Uad ,

where B∗ denotes the adjoint of B.
Notice that the last equation in (6) giving the optimality condition is equivalent to (see

[16, 17])

u = max

{

u, min

{

ū,
1

ν
p(u)

}}

in ω, ν > 0. (7)

For the analysis that follows we need to define the operator Q : L2(ω) → L2(ω) given
by

Q(·) = max

{

u, min

{

ū,
1

ν
p(·)

}}

,

when ν > 0. Equation (7) can thus be written as u = Q(u). Further, we introduce the
operator K : L2(ω) → L2(ω) by K (u) = u − Q(u).

Recall that for φ ∈ H 1(�) we have max{0, φ} ∈ H 1(�) as well. Hence from (7) we
obtain the following regularity result.

Lemma 1. If ν > 0 and u, ū ∈ H 1(�) then u ∈ H 1(�).

This regularity result will be used for the analysis of finite difference approximations of
the optimality system that we discuss in the next section.

We complete this section discussing the solution to (1) with ν = 0. It is simple to argue
that the unique solution u satisfies

−�y = Bu + g in �,

y = 0 on ∂�,

−�p = −(y − z) in �, (8)

p = 0 on ∂�,

p = min{0, p + u − u} + max{0, p + u − ū} in �.

We are interested in solutions for which the inactive set I = {x : u < u < ū} is small.
For the construction of test examples the following lemma is useful.



MG FOR CONSTRAINED OPTIMAL CONTROL PROBLEMS 313

Lemma 2. If z(x) �= y(x) a.e. in �, with y the optimal state, then the inactive set I
contains no interior points.

Proof: Proceeding by contradiction assume that J is an open set in I. Then p = 0 on I
by the last equation in (8) and hence z(x) = y(x) on J which contradicts our assumption.

To verify the non-attainability assumption of Lemma 2 the following result can be used
[8].

Lemma 3. Let f ∈ L∞(�), φ ∈ L∞(∂�), and let w be any function in C2(�) satisfying

−�w ≥ | f |∞ in �,

w ≥ |φ|∞ on ∂�.
(9)

Then |v(x)| ≤ w(x) for all x ∈ � and v satisfying −�v = f in �, v = φ on ∂�.

Lemma 3 allows to construct tracking functions z which are not attainable by any u ∈ Uad .
For example, if � is the unit square, we set um = max{|u|, |ū|} and define

w(x1, x2) = um

4
[x1(1 − x1) + x2(1 − x2)].

Then if |z(x)| > max |w| = um/8 a.e. in �, we have

|y(u)(x)| < |z(x)| for all x ∈ � and u ∈ Uad .

Consequently the inactive set I cannot contain interior points.
Sufficient conditions for the more restrictive requirement meas(I) = 0, i.e. that the

control is bang-bang, appear to be an interesting open problem.
The following example is defined based on the estimate given above. It is computed using

finite difference discretization and the multigrid scheme discussed in later sections. Assume
u = −8 and ū = 8, then um = 8. Take

z(x1, x2) = 1.1 sign{sin(4πx1) sin(4πx2)}.

Clearly |z|∞ > max |w| = 1. The numerical solution of (1) for this setting is depicted in
figure 1.

3. Finite difference optimality system

In this section accuracy of finite difference approximations to (6) is investigated in the
framework given in [14]. It is assumed throughout that ν > 0.
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Figure 1. Numerical solution with z = 1.1 sign{sin(4πx1) sin(4πx2)} and ν = 0. The state (left) and the control
(right); 513 × 513 mesh.

Consider a sequence of grids {�h}h>0 defined by

�h = {x ∈ R2 : xi = si h, si ∈ Z} ∩ �.

We assume that � is a rectangular domain and that the values of h are chosen such that the
boundaries of � coincide with grid lines.

Define ωh = �h ∩ ω and introduce a binary grid operator which is the discrete analog of
the operator B defined above:

Bhuh =
{

uh in ωh,

0 in �h\ωh .

The negative Laplacian with homogeneous Dirichlet boundary conditions is approxi-
mated by the five-point stencil and is denoted by −�h .

For grid functions vh and wh defined on �h we introduce the discrete L2-scalar product

(vh, wh)L2
h
= h2

∑

x∈�h

vh(x) wh(x),

with associated norm |vh |0 = (vh, vh)1/2
L2

h
. We require as well the discrete H 1-product given

by

|vh |1 =
(

|vh |20 +
2∑

i=1

|∂−
i vh |20

)1/2

,

where ∂−
i denotes the backward difference quotient in the xi direction and vh is extended

by 0 on grid points outside of �; see [14]. The spaces L2
h and H 1

h consist of the sets of grid



MG FOR CONSTRAINED OPTIMAL CONTROL PROBLEMS 315

functions vh endowed with |vh |0, respectively |vh |1, as norm. For the definition of H 2
h we

refer to [14], as well.
Functions in L2(�), H 1(�), and H 2(�) are approximated by grid functions defined

through their mean values with respect to elementary cells [x1− h
2 , x1+ h

2 ]×[x2− h
2 , x2+ h

2 ].
This gives rise to the following restriction operators; see [14] p. 232 for more details:

The restriction Rh : H 2(�) ∩ H 1
0 (�) → H 2

h where

(Rhv)(x, y) = 1

h2

∫ h/2

−h/2

∫ h/2

−h/2
v(x + ξ, y + η) dξ dη.

In the following, this operator is also used as mapping Rh : H 1 → H 1
h .

For L2 functions, we have the restriction operator R̃h : L2(�) → L2
h where

(R̃hv)(x, y) = 1

h2

∫ h/2

−h/2

∫ h/2

−h/2

∫ h/2

−h/2

∫ h/2

−h/2
v(x + ξ + ξ ′, y + η + η′) dξ dξ ′ dη dη′.

The following properties can be proved using the Newton-Leibnitz formula.

|R̃hv − Rhv|0 ≤ ch |v|H 1(�) for all v ∈ H 1(�). (10)

|R̃hv − Rhv|0 ≤ ch2 |v|H 2(�) for all v ∈ H 2(�). (11)

Here and below, c denotes a positive constant which does not depend on h.
Now consider the discrete optimal control problem

{

min
1

2
|yh − R̃hz|20 + ν

2
|uh |20,

−�h yh = Bhuh + R̃h g,
(12)

where uh ∈ Uad h = Uad ∩ L2
h .

Let u∗
h denote the unique solution to (12) and set y∗

h = yh(u∗
h). The optimality system

related to (12) is found to be

−�h y∗
h = Bhu∗

h + R̃h g,

−�h p∗
h = −(y∗

h − R̃hz), (13)

(νu∗
h − B∗

h p∗
h) · (vh − u∗

h) ≥ 0 for all vh ∈ Uad h .

The optimality condition can be reformulated as

u∗
h − max

{

u, min

{

ū,
1

ν
ph(u∗

h)

}}

= 0 in ωh, (14)

which is equivalent to u∗
h − Qh(u∗

h) = 0 where

Qh(·) = max

{

u, min

{

ū,
1

ν
ph(·)

}}

.

The discrete counterpart of K is the operator Kh(uh) = uh − Qh(uh).
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To investigate the accuracy of the solution to (13) we use the approach of [17] extended
to the present finite difference framework. In the remainder of this section we require
u, ū ∈ C0,1(�).

From Lemma 1.1 of [17] we have that

|u∗
h − R̃hu∗|0 ≤ γ |Kh(u∗

h) − Kh(R̃hu∗)|0,

where γ is a positive constant independent of the mesh size. The proof in [17] uses a finite
element setting which can readily be adapted to the present finite difference framework.
Due to the fact that |u∗

h |0, |R̃hu∗|0, |yh(u∗
h)|0 and |yh(R̃hu∗)|0 are uniformly bounded with

respect to h, conditions (A.4)–(A.6) in [17] are satisfied.
Since Kh(u∗

h) = 0 and K (u∗) = 0 it follows that Kh(u∗
h) = Rh K (u∗). Consequently we

obtain

|u∗
h − R̃hu∗|0 ≤ γ |Kh(u∗

h) − Kh(R̃hu∗)|0 = γ |Rh K (u∗) − Kh(R̃hu∗)|0
≤ γ (|R̃hu∗ − Rhu∗|0 + |Rh Q(u∗) − Qh(R̃hu∗)|0).

Notice that the solution u∗
h does not appear in the right-hand side of this inequality. From

Lemma 1 and (10) we have |R̃hu∗ − Rhu∗|0 ≤ ch.
To estimate the second term on the right-hand side we use the fact that p(u∗) ∈ C0,1(�);

see, e.g., [15] pg. 237, and consider the following chain of inequalities

|Rh Q(u∗) − Qh(R̃hu∗)|0
=

∣
∣
∣
∣Rh max

{

u, min

{

ū,
1

ν
p(u∗)

}}

− max

{

u, min

{

ū,
1

ν
ph(R̃hu∗)

}}∣
∣
∣
∣
0

≤
∣
∣
∣
∣Rh max

{

u, min

{

ū,
1

ν
p(u∗)

}}

− max

{

u, min

{

ū,
1

ν
p(u∗)

}}∣
∣
∣
∣
0

+
∣
∣
∣
∣ max

{

u, min

{

ū,
1

ν
p(u∗)

}}

− max

{

u, min

{

ū,
1

ν
Rh p(u∗)

}}∣
∣
∣
∣
0

+
∣
∣
∣
∣ max

{

u, min

{

ū,
1

ν
Rh p(u∗)

}}

− max

{

u, min

{

ū,
1

ν
ph(R̃hu∗)

}}∣
∣
∣
∣
0

.

≤
∣
∣
∣
∣Rh max

{

u, min

{

ū,
1

ν
p(u∗)

}}

− max

{

u, min

{

ū,
1

ν
p(u∗)

}}∣
∣
∣
∣
0

+ 1

ν
|p(u∗) − Rh p(u∗)|0 + 1

ν
|Rh p(u∗) − ph(R̃hu∗)|0.

Since |ph(R̃hu∗) − Rh p(u∗)|0 ≤ ch2 and because of the approximation property of Rh

(see [14]) the last two terms in the above inequality are of order h2. The final estimate

∣
∣
∣
∣Rh max

{

u, min

{

ū,
1

ν
p(u∗)

}}

− max

{

u, min

{

ū,
1

ν
p(u∗)

}}∣
∣
∣
∣
0

≤ ch |p(u∗)|C0,1(�),
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follows from [14], pg. 233, where we use the fact that max{u, min{ū, 1
ν

p(u∗) }} ∈ C0,1(�).
It follows that |u∗

h − R̃hu∗|0 ≤ ch. Therefore, using (10), we have

|u∗
h − Rhu∗|0 ≤ ch. (15)

Now we consider the state equation. Denote by ȳh the solution to

−�h ȳh = R̃h Bu∗ + R̃h g.

We have that |ȳh − Rh y∗|0 ≤ ch2. Furthermore we have |y∗
h − ȳh |1 ≤ c |u∗

h − R̃hu∗|0 and
|y∗

h − ȳh |0 ≤ c |y∗
h − ȳh |1. Using these estimates and (15) in |y∗

h − Rh y∗|0 ≤ |y∗
h − ȳh |0 +

|ȳh − Rh y∗|0 we obtain

|y∗
h − Rh y∗|0 ≤ ch. (16)

From this estimate and (13) the following estimate results

|p∗
h − Rh p∗|0 ≤ ch. (17)

Estimates (15), (16), and (17) are sub-optimal in the sense that H 2(�)-regularity of y∗ and
p∗ would suggest O(h2) convergence estimates. Such results are impeded by the lack of the
estimate |y∗

h − ȳh |0 ≤ ch |y∗
h − ȳh |1. For finite element approximations this is a consequence

of the Aubin-Nitsche duality argument. If the estimate were to hold, we obtain h2 in (16)
and (17). Moreover, our numerical experiments show that the estimate (15) for the control
is pessimistic. In fact, we observe

|u∗
h − Rhu∗|0 ≤ ch3/2, (18)

and O(h2) convergence for the state and the adjoint variables. In the recent publication [19]
these convergence rates could be verified for finite element approximations.

To illustrate that these convergence rates are obtained by our algorithm, consider the
following exact solution to (6) with

g(x1, x2) = −u + 2π2 sin(πx1) sin(πx2), (19)

z(x1, x2) = −�p + y, (20)

where

y(x1, x2) = sin(πx1) sin(πx2), (21)

p(x1, x2) = sin(8πx1) sin(8πx2), (22)

u(x1, x2) = max{−1, min{1, p/ν}}. (23)

Note that the control is active for each ν < 1. Results of experiments with this test case are
reported in Table 1. One can see that the solution errors for y and p reduce as a factor of
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Table 1. Accuracy results; ν = 10−8.

Mesh |y − yh |0 |p − ph |0 |u − uh |0
129 × 129 1.63 10−7 1.60 10−3 1.54 10−3

257 × 257 4.20 10−8 4.03 10−4 5.26 10−4

513 × 513 1.11 10−8 1.00 10−4 1.80 10−4

1025 × 1025 2.93 10−9 2.51 10−5 6.26 10−5

four by halving the mesh size, showing second-order convergence. On the other hand, the
error for the control scales as h3/2 with c ≈ 2 in (18).

4. The multigrid method

The purpose of this paper is to present multigrid algorithms for optimality systems, arising
from constrained optimal control problems, that have multigrid efficiency and are robust
with respect to a large range of values of the cost of the control.

For the presentation, let us index the operators and variables defined on the grid with
mesh size h = hk = h0/2k , k = 1, . . . , L , with the index k.

For multigrid purposes, in order to formulate (13) on all grids we need to have a multigrid
full approximation storage (FAS) [6] representation of the problem. That is, a representation
where the solution and not the error is computed on all grids. In fact, in order to impose the
constraints the variables uh and ph must be available at all levels. In the remainder of this
section we describe our algorithm formulated in the FAS framework.

Recall (13) given by

−�h yh − Bhuh = gh, (24)

−�h ph + yh = zh, (25)

(νuh − B∗
h ph) · (vh − uh) ≥ 0 for all vh ∈ Uad h . (26)

In general, an initial approximation to the solution of this problem will differ from
the exact solution because of errors involving high-frequency as well as low-frequency
components. In order to solve for all frequency components of the error, the multigrid
strategy combines two complementary schemes. The high-frequency components of the
error are reduced by smoothing iterations while the low-frequency error components are
effectively reduced by a coarse-grid correction method.

On the grid of level k, the smoothing procedure is denoted by Sk , and Sm
k is the smoothing

operator applied m times on the pair wh = (yh, ph). This operator is defined later in this
section. To correct for the smooth component of the error, a coarse grid correction is defined.
First, a coarse grid problem is constructed on the grid with mesh size H = hk−1. That is,

−�H yH − BH uH = I H
h gh + τ (y)H

h , (27)

−�H pH + yH = I H
h zh + τ (p)H

h ,

(νuH − B∗
H pH ) · (vH − uH ) ≥ 0 for all vH ∈ Uad H , (28)
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where I H
h : L2

h → L2
H denotes a restriction operator, and τ (y)H

h and τ (y)H
h are fine-to-coarse

defect corrections defined by

τ (y)H
h = −�H Î H

h yh − BH Î H
h uh − I H

h (−�h yh − Bhuh), (29)

τ (p)H
h = −�H Î H

h ph + Î H
h yh − I H

h (−�h ph + yh), (30)

with Î H
h : L2

h → L2
H a restriction operator not necessarily equal to I H

h . We choose Î H
h

to be straight injection. Once the coarse grid problem is solved, the coarse grid correction
follows

ynew
h = yh + I h

H

(
yH − Î H

h yh
)
, (31)

pnew
h = ph + I h

H

(
pH − Î H

h ph
)
, (32)

where I h
H : L2

H → L2
h represents an interpolation operator. If the high frequency compo-

nents of the error on the finer grid are indeed well damped, then the grid �H should provide
enough resolution for the error of wh and hence wH − Î H

h wh should be a good approxima-
tion to this error. This idea of transferring the problem to be solved to a coarser grid can be
applied along the set of nested meshes. One starts at level L with a zero approximation and
applies the smoothing iteration m1 times. Then the problem is transferred to a coarser grid
and so on. Once the coarsest grid is reached, one solves the coarsest problem to convergence
by applying, as we do, a few steps of the smoothing iteration. The solution obtained on
each grid is then used to correct the approximation on the next finer grid. The coarse grid
correction followed by m2 post-smoothing steps is applied from one grid to the next, down
to the finest grid with level L . This entire process represents one FAS-(m1, m2) multigrid
cycle.

The application of N FAS cycles is denoted by N -FAS. One can choose a starting grid
with a level number K < L which is coarser than the finest grid where the solution is desired.
In this case one applies N -FAS on level K and then the solution is interpolated on the next
finer grid. The interpolation provides a first approximation for the N -FAS on this finer level
and so on until the finest grid is reached. The combination of the nested iteration technique
and the FAS scheme is called the full multigrid (FMG) method.

Denote the optimality system by A(wh) = fh . Then the multigrid FAS-(m1, m2)-cycle
algorithm, expressed in terms of the (nonlinear) multigrid iteration operator BK to solve
this problem in recursive form is given as follows:

Multigrid FAS-(m1, m2)-Cycle
Set B1(w(0)) ≈ A−1

1 (e.g., iterating with S1). For k = 2, . . . , K define Bk in terms of
Bk−1 as follows. Let q0 = 0.

1. Set the starting approximation w(0)
k .

2. Pre-smoothing. Define w(l)
k for l = 1, . . . , m1, by

w(l)
k = Sk

(
w(l−1)

k , fk
)
.
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3. Coarse grid correction. Set w(m1+1)
k = w(m1)

k + I k
k−1(qm − Î k−1

k w(m1)
k ) where qi for i =

1, . . . , m is defined by

qi = qi−1 + Bk−1
(
Î k−1
k w(m1)

k

)[
I k−1
k

(
fk − Ak

(
w(m1)

k

))

+Ak−1
(
Î k−1
k w(m1)

k

) − Ak−1qi−1
]
.

4. Post-smoothing. Define w(l)
k for l = m1 + 2, . . . , m1 + m2 + 1, by

w(l)
k = Sk

(
w(l−1)

k , fk
)
.

5. Set Bk(w(0)
k ) fk = w(m1+m2+1)

k .

Notice that we can perform m two-grid iterations at each working level. For m = 1 we have
a V -cycle and for m = 2 we have a W -cycle; m is called the cycle index [21]. Our numerical
experience shows that in case of constrained control problems the use of W -cycles results
in a robust multigrid iteration.

Our main contribution to the formulation of multigrid schemes for constrained optimal
control problems is a new relaxation scheme. In the present context, the smoothing iteration
must reduce the high-frequency components of the error and must preserve the inequality
constraint. In case of unconstrained optimal control problems of the type considered here,
the Fourier analysis presented in [4] proves that collective Gauss-Seidel iteration has the
smoothing property required in the multigrid method. In order to present our modification
of this iteration that takes account of the presence of constraints consider (24) and (25) at
x ∈ �h , where x = (ih, jh) and i, j index the grid points, e.g., lexicographically. We have

−(yi−1 j + yi+1 j + yi j−1 + yi j+1) + 4yi j − h2 Bhui j = h2gi j + h2 f (y)
i j , (33)

−(pi−1 j + pi+1 j + pi j−1 + pi j+1) + 4pi j + h2 yi j = h2 zi j + h2 f (p)
i j , (34)

(νui j − B∗
h pi j ) · (vi j − ui j ) ≥ 0 for allvh ∈ Uad h, (35)

where f (y) and f (p) have been introduced to take into account the presence of defect
corrections in (27) and (28).

A Gauss-Seidel step at x consists in updating the values yi j and pi j such that the resulting
residuals of the two equations at that point are zero. The neighboring variables are considered
constant during this process. Therefore, define the two constants

Cy = (yi−1 j + yi+1 j + yi j−1 + yi j+1) + h2gi j + h2 f (y)
i j ,

and

C p = (pi−1 j + pi+1 j + pi j−1 + pi j+1) + h2 f (p)
i j .



MG FOR CONSTRAINED OPTIMAL CONTROL PROBLEMS 321

Replacing these two constants in (33) and (34), we obtain yi j and pi j as functions of ui j as
follows

yi j = (Cy + h2 Bhui j )/4, (36)

and

pi j = (4 C p − h2 Cy + 4 h2 zi j − h4 Bhui j )/16. (37)

Now to obtain the ui j update, replace the expression for pi j in the inequality constraint and
define the auxiliary variable

ũi j = 1

16 ν + h4
B∗

h (4 C p − h2 Cy + 4 h2 zi j ). (38)

Then, the new value for ui j resulting from our Gauss-Seidel step is given by

ui j =






ūi j if ũi j ≥ ūi j

ũi j if ui j < ũi j < ūi j

ui j if ũi j ≤ ui j

(39)

for all x = (ih, jh) ∈ ωh , ui j = 0 otherwise. Possible ill-conditioning due to the division
by (16 ν + h4) in (38) is confined by the constraints expressed in (39). With the new value
of ui j given, new values for yi j and pi j are obtained. This completes the Gauss-Seidel step.

The collective Gauss-Seidel step defined by (36), (37), (38), and (39) satisfies the in-
equality constraint. In fact, consider any grid point such that ũ > ū; then from (39) we have
u = ū. Therefore (v − u) ≤ 0 for any v ∈ Uad h . On the other hand we have

νu − p = νu − (4 C p − h2 Cy + 4 h2 zi j − h4 Bhui j )/16

= [(16ν + h4)u − (4 C p − h2 Cy + 4 h2 zi j )]/16

< [(16ν + h4)ũ − (4 C p − h2 Cy + 4 h2 zi j )]/16 = 0.

Therefore (νu − p) · (v − u) ≥ 0 for all v ∈ Uad h . Similarly one proves that if ũ < u,
then the choice u = u satisfies the inequality constraint. The case u ≤ ũ ≤ ū is obvious.
Similarly in case ν = 0, it can be proved that the Gauss-Seidel iteration defined above
satisfies (8). Because of (39) we can consider the present iteration belongs to the class of
projected Gauss-Seidel schemes [7].

We complete this section describing the prolongation and restriction operators used in
our algorithm. Between two grids �̄k and �̄k−1, corresponding to mesh sizes hk and hk−1,
we apply the bilinear prolongation operator, I k

k−1 : L2
k−1 → L2

k , given in stencil form by

I k
k−1 = 1

4






1 2 1

2 4 2

1 2 1




 . (40)
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For restricting the residuals we use the half-weighting restriction operator, I k−1
k : L2

k →
L2

k−1, given in stencil form by

I k−1
k = 1

8






0 1 0

1 4 1

0 1 0




 . (41)

We conclude this section with remarks on the complexity of our multigrid algorithm.
Regarding memory complexity notice that we have followed a standard implementation
of the FAS structure. Therefore we have σ ≈ 1.5 where σ is the grid complexity defined
as the total number of unknowns on all levels divided by the number of unknowns on the
finest level. Further, mesh independent convergence factors imply optimal computational
complexity.

5. Numerical experiments

In this section we present a numerical investigation of the computational performance of
the proposed multigrid method to solve constrained optimal control problems. We report
the values of the tracking functional |yh − zh |0 depending on the value of the cost of the
control and the residual of the primal and of the adjoint equations which are denoted by
rh(y) and rh(p), respectively.

We also report values of the convergence factor defined as the “asymptotic” value of the
ratio between the discrete L2-norm of the residuals resulting from two successive multigrid
cycles on a given mesh [13]. That is,

ρ(y) = lim
N

∣
∣rh(y)(N+1)

∣
∣
0∣

∣rh(y)(N )
∣
∣
0

and ρ(p) = lim
N

∣
∣rh(p)(N+1)

∣
∣
0∣

∣rh(p)(N )
∣
∣
0

. (42)

For the coarsest grid we have h1 = 1/8 and we use up to eleven levels. For L = 11 we
have a 8193 × 8193 mesh. In all experiments we use m1 = m2 = 2 smoothing steps and
the FMG-W-cycle version of the algorithm with initial level K = 3. Starting with k = K
three W-cycles are performed at this level. Then the solution is (cubic) interpolated to the
next finer working level and the same number of W-cycles are performed. This process
is continued until the finest level is reached where k = L and at most ten W-cycles are
carried out. The stopping criterion is |rh(y)|0 + |rh(p)|0 < 10−10. Recall that with this
setting the typical multigrid convergence factor for the Poisson problem in a square domain
is ρ ≈ 0.08.

We investigate the convergence behavior of the multigrid solver depending on the mesh
size, on the value of ν, and on the presence of constraints.

Four cases are considered. In the first case ω coincides with the entire domain and
no constraints are given. Results for this case are reported to allow comparison with the
forthcoming cases. In the second case we also have ω = � and severe constraints are
prescribed. In the third and fourth case we investigate the multigrid solution process when
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ω ⊂ �, without and with constraints, respectively. In the experiments that follow we choose
g = 0. A first series of experiments is performed with the following objective function

z(x1, x2) = sin(2πx1) sin(πx2).

Case 1. ω = �, no constraints.

This case has been investigated by the authors in [4]. In this reference stability of the
finite difference optimality system and optimal-order error estimates in the discrete L2-norm
and in the discrete H 1-norm were proved. Sharp convergence factor estimates of the two
grid method for the optimality system were obtained by means of local Fourier analysis. A
multigrid convergence theory was provided which guarantees convergence of the multigrid
process towards solutions of the optimality system. The smoothing iteration considered in
[4] was the collective Gauss-Seidel iteration that coincides with the smoothing iteration
considered here when no constraints are imposed. The collective Gauss-Seidel iteration is
also a special case of the Newton-Gauss-Seidel iteration presented in [3] to solve singular
optimal control problems. In all cases optimal convergence factors are obtained as reported
in Table 2. The state and control solutions for the present case are depicted in figure 2.

Notice that, in the unconstrained case the convergence behavior of the multigrid solution
process is independent of the value of ν and of the mesh size. Note also that for the present
example z is attainable, i.e. there exists u such that y(u) = z. Similar computational
performance is obtained for non-attainable z.

Case 2. ω = �, constraints: u = −30 and ū = 30.

For this case, the constraints are active in large portions of the domain for all three choices
of ν = {10−4, 10−6, 10−8} considered here. For ν = 10−6 this can be seen in figure 2.
From the results of numerical experiments reported in Table 3 we observe that for ν = 10−4

the multigrid convergence behavior is similar to that observed in the unconstrained case.
Reducing the value of ν results in steeper gradients of the adjoint and control variables,

Table 2. Case 1: Results of experiments.

Mesh ρ(y), ρ(p) |y − z|0 |r (y)|0, |r (p)|0
ν = 10−6

129 × 129 0.03, 0.07 1.21 10−3 4.6 10−10, 1.3 10−13

257 × 257 0.03, 0.02 1.21 10−3 1.4 10−10, 1.2 10−14

513 × 513 0.03, 0.01 1.21 10−3 1.7 10−10, 8.9 10−15

ν = 10−8

129 × 129 0.03, 0.05 1.21 10−5 1.2 10−10, 1.6 10−14

257 × 257 0.03, 0.07 1.21 10−5 8.9 10−11, 3.6 10−15

513 × 513 0.03, 0.07 1.21 10−5 1.7 10−10, 2.7 10−15
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Figure 2. Numerical solutions for Case 1 (top) and Case 2 (bottom) the state (left) and the control (right);
ν = 10−6 and 513 × 513 mesh.

particularly close to the boundary where p and u are required to be zero. Furthermore,
decreasing ν results in an increasingly more complex switching structure of the control
between upper and lower bounds; see figure 3. The results for ν = 10−6 in Table 3 suggest
that once the mesh size is sufficiently fine to resolve completely the switching structure the
typical multigrid convergence rate is obtained. They further indicate that the multigrid con-
vergence factor depends only weakly on the mesh size provided the problem is sufficiently
well resolved on the mesh.

The ability of the multigrid scheme in solving constrained control problems with very
small value of ν allows to investigate the occurrence of bang-bang control for the present
class of problems. In particular, with the choice of z given above we can observe fast
switching of the control function in the x2 direction as depicted in figure 3. In this figure
we give plots of the control function for x1 = 3/4 and x2 ∈ [0, 1] for the following choices
of ν ∈ {10−8, 10−10, 10−12, 0}. We can see that as the value of ν is reduced the number of
switching points increases.

The solution obtained for ν = 0 is interesting. In this case, by further refining the mesh
size additional switching points can be seen closer to the boundary while the existing
switching points obtained at the previous coarser grids are retained; see figure 4.
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Table 3. Case 2: Results of experiments.

Mesh ρ(y), ρ(p) |y − z|0 |r (y)|0, |r (p)|0
ν = 10−4

129 × 129 0.04, 0.04 1.11 10−1 3.1 10−10, 1.2 10−13

257 × 257 0.03, 0.04 1.11 10−1 6.8 10−10, 7.1 10−14

513 × 513 0.03, 0.04 1.11 10−1 4.9 10−10, 1.5 10−13

1025 × 1025 0.03, 0.03 1.11 10−1 3.2 10−10, 7.2 10−13

ν = 10−6

129 × 129 0.56, 0.56 5.30 10−2 1.3 10−6, 2.2 10−10

257 × 257 0.52, 0.51 5.30 10−2 1.5 10−7, 1.3 10−11

513 × 513 0.03, 0.03 5.30 10−2 3.5 10−10, 5.3 10−14

1025 × 1025 0.03, 0.03 5.30 10−2 2.2 10−10, 2.2 10−13

ν = 10−8

129 × 129 0.63, 0.63 5.28 10−2 1.6 10−3, 8.3 10−8

257 × 257 0.54, 0.54 5.28 10−2 2.4 10−6, 7.4 10−11

513 × 513 0.64, 0.60 5.28 10−2 2.5 10−7, 3.7 10−12

1025 × 1025 0.68, 0.66 5.28 10−2 2.7 10−7, 2.1 10−12

2049 × 2049 0.74, 0.71 5.28 10−2 7.8 10−7, 3.5 10−12

4097 × 4097 0.76, 0.70 5.28 10−2 7.4 10−8, 2.9 10−12

We complete the discussion of Case 2. considering another desired state given by

z1(x1, x2) = sin(4πx1) sin(2πx2).

The difference between this objective function and the previous one is that the gradient
of z1 is larger close to the boundary. For the choice ν = 0 the constraints are everywhere
active, i.e. differently from the previous case with desired state z the control is bang-bang.
Moreover no fast switching of the control occurs. In figure 5 the optimal control and the
corresponding state for ν = 0 are depicted. The numerical results in Table 4 document the
convergence factors.

Table 4. Results of experiments with z1 and ν = 0.

Mesh ρ(y), ρ(p) |y − z|0 |r (y)|0, |r (p)|0
513 × 513 0.12, 0.13 3.70 10−1 2.9 10−8, 1.3 10−13

1025 × 1025 0.12, 0.13 3.70 10−1 2.5 10−8, 4.2 10−13

2049 × 2049 0.12, 0.16 3.70 10−1 1.9 10−8, 1.6 10−12
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Figure 3. The control function for x1 = 3/4 and x2 ∈ [0, 1] obtained with ν = 10−8 (top left), ν = 10−10 (top
right), ν = 10−12 (bottom left), and ν = 0 (bottom right); 2049 × 2049 mesh.

Case 3. ω ⊂ �, no constraints. Here ω is given by

ω = {x ∈ � : (x1 − 1/2)2 + (x2 − 1/2)2 <
√

(7/160)},

and z is the desired state.
In this case we have u = p/ν in ω and otherwise we set u = 0. Results of experiments

with the present setting are reported in Table 5 where typical multigrid convergence behavior
can be observed.

Case 4. ω ⊂ � as in Case 3, and constraints given by u = −30 and ū = 30.

In Table 6, optimal multigrid convergence factors for the present case with moderate
values of ν are reported. For ν sufficiently small the convergence factors worsen (while
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Figure 4. Switching of the control function for x1 = 3/4 and x2 ∈ [0.9, 1] (notice the scaling) obtained with
ν = 0 on increasingly finer meshes: 1025 × 1025 (top left), 2049 × 2049 (top right), 4097 × 4097 (bottom left),
and 8193 × 8193 (bottom right).

Figure 5. Numerical solutions with z1 and ν = 0. The state (left) and the control (right); 257 × 257 mesh.
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Table 5. Case 3: Results of experiments.

Mesh ρ(y), ρ(p) |y − z|0 |r (y)|0, |r (p)|0
ν = 10−6

129 × 129 0.10, 0.10 1.85 10−1 1.1 10−9, 1.0 10−13

257 × 257 0.05, 0.05 1.84 10−1 3.3 10−10, 5.0 10−14

513 × 513 0.05, 0.05 1.84 10−1 2.5 10−10, 1.1 10−13

1025 × 1025 0.05, 0.05 1.84 10−1 3.3 10−10, 5.5 10−13

ν = 10−8

129 × 129 0.37, 0.37 1.58 10−1 5.6 10−3, 2.5 10−7

257 × 257 0.16, 0.15 1.57 10−1 4.2 10−7, 7.8 10−12

513 × 513 0.05, 0.05 1.57 10−1 1.7 10−10, 1.0 10−13

1025 × 1025 0.05, 0.05 1.57 10−1 1.9 10−10, 4.4 10−13

Table 6. Case 4: Results of experiments.

Mesh ρ(y), ρ(p) |y − z|0 |r (y)|0, |r (p)|0
ν = 10−4

129 × 129 0.05, 0.05 4.24 10−1 4.4 10−10, 5.0 10−11

257 × 257 0.05, 0.05 4.23 10−1 3.2 10−10, 1.4 10−13

513 × 513 0.05, 0.05 4.23 10−1 2.3 10−10, 5.6 10−13

1025 × 1025 0.05, 0.05 4.23 10−1 2.7 10−10, 2.6 10−12

ν = 10−6

129 × 129 0.61, 0.61 4.23 10−1 6.9 10−6, 1.1 10−9

257 × 257 0.67, 0.67 4.22 10−1 3.0 10−6, 2.7 10−10

513 × 513 0.71, 0.70 4.22 10−1 1.1 10−6, 5.7 10−11

1025 × 1025 0.72, 0.70 4.22 10−1 3.7 10−7, 1.0 10−11

ν = 10−8

129 × 129 0.57, 0.57 4.23 10−1 7.8 10−5, 1.3 10−8

257 × 257 0.58, 0.57 4.22 10−1 1.2 10−5, 6.9 10−10

513 × 513 0.64, 0.63 4.22 10−1 5.5 10−6, 1.2 10−10

1025 × 1025 0.70, 0.68 4.22 10−1 2.5 10−6, 2.7 10−11

remaining approximately mesh independent) taking values typical of multigrid applied to
complementarity problems as in [7].

For comparison we report results obtained with the choice ν = 0 and z1 as objective
function. Results of numerical experiments for this case are reported in Table 7. In figure 6,
bang-bang control in ω can be seen.
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Table 7. Results of experiments with z1, ω ⊂ �, and ν = 0.

Mesh ρ(y), ρ(p) |y − z|0 |r (y)|0, |r (p)|0
513 × 513 0.27, 0.23 4.87 10−1 6.6 10−8, 2.4 10−13

1025 × 1025 0.22, 0.21 4.87 10−1 1.6 10−7, 6.3 10−13

2049 × 2049 0.20, 0.21 4.87 10−1 9.0 10−9, 2.5 10−12

Figure 6. Numerical solutions with z1 and ω ⊂ � and ν = 0. The state (left) and the control (right); 257 × 257
mesh.

6. Constrained boundary optimal control problems

We now turn to boundary optimal control problems with constraints. We focus on the
following optimal control problem. Minimize

J (y, u) = 1

2
||y − z||2L2(�) + ν

2
||u||2L2(∂�), (43)

subject to u ∈ Uad ⊂ L2(∂�) and

−�y + y = g in �,

∂y

∂n
= u on ∂�,

(44)

where � is a open bounded set of R2, g ∈ L2(�), z ∈ L2(�) is the objective function, and
ν ≥ 0. The set of admissible controls is given in this case by

Uad = {u ∈ L2(∂�) | u(x) ≤ u(x) ≤ ū(x) a.e. in ∂�}, (45)

where u and ū are functions of L∞(∂�).
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For the existence of a unique solution to (43)–(45) we refer to [16]. The solution is
characterized by the following optimality system

−�y + y = g in �,

∂y

∂n
= u on ∂�,

−�p + p = −(y − z) in �, (46)
∂p

∂n
= 0 on ∂�,

(νu − p, v − u) ≥ 0 for all v ∈ Uad .

After discretization the optimal control problem becomes





min
1

2
|yh − R̃hz|20 + ν

2
|uh |20,

−�h yh = R̃h g,

∂n
h yh = uh .

(47)

Here, ∂n
h denotes the second-order centered difference quotient with orientation normal to

the boundary. The optimality system related to (47) is found to be

−�h yh + yh = gh,

∂n
h yh = uh,

−�h ph + ph = −(yh − zh), (48)

∂n
h ph = 0,

(νuh − ph) · (vh − uh) ≥ 0 for all vh ∈ uadh ,

where gh = R̃h g and zh = R̃hz.
Notice that to solve (48) we need to realize the control on the boundary. For this purpose we

eliminate the Neumann boundary conditions including them in the stencil of the differential
operator considered at the boundary. We discuss this approach explicitly for one lateral
boundary of � = (0, 1) × (0, 1).

Let x = (ih, jh) be a boundary grid point on the side x = 0.

−(yi−1 j + yi+1 j + yi j−1 + yi j+1) + (4 + h2)yi j = h2gi j + h2 f (y)
i j ,

yi−1 j − yi+1 j = 2hui j ,

−(pi−1 j + pi+1 j + pi j−1 + pi j+1) + (4 + h2)pi j + h2 yi j = h2 zi j + h2 f (p)
i j ,

pi−1 j − pi+1 j = 0.

Summing up the minus Laplacian stencil with the normal derivative the (ghost) variables
outside of � are eliminated. We have

−(2yi+1 j + yi j−1 + yi j+1) + (4 + h2)yi j − 2hui j = h2gi j + h2 f (y)
i j ,

−(2pi+1 j + pi j−1 + pi j+1) + (4 + h2)pi j + h2 yi j = h2 zi j + h2 f (p)
i j .
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On the corners we consider the minus Laplacian stencil with the normal derivatives in both
directions. The equations obtained in this way have the same structure as (33) and (34) and
can be solved by the FAS multigrid method described in Section 4.

The application of the collective Gauss-Seidel iteration follows along the same lines as
described in the previous sections. In the interior of the computational domain the collective
Gauss-Seidel iteration reduces in this case to the single Gauss-Seidel iteration for the state
equation while the residuals of the state equation and of the adjoint equation both enter in
the relaxation of the adjoint variable.

To describe the Gauss-Seidel iteration on the boundary x = 0 in more detail, define

Cy = (2yi+1 j + yi j−1 + yi j+1) + h2gi j + h2 f (y)
i j ,

C p = (2pi+1 j + pi j−1 + pi j+1) + h2 f (p)
i j .

We obtain yi j and pi j as functions of ui j as follows

yi j = (Cy + 2hui j )/(4 + h2),

and

pi j = ((4 + h2) C p − h2 Cy + (4 + h2) h2 zi j − 2h3ui j )/(4 + h2)2.

To obtain the ui j update, replace the expression for pi j in the inequality constraint and
define

ũi j = 1

(4 + h2)2 ν + 2h3
((4 + h2) C p − h2 Cy − (4 + h2) h2 zi j ).

Then, the new value for ui j resulting from Gauss-Seidel step on the boundary is given by

ui j =





ūi j if ũi j ≥ ūi j

ũi j if ui j < ũi j < ūi j

ui j if ũi j ≤ ui j

(49)

for all x = (ih, jh) on ∂�h . With the new value of ui j given, the values for yi j and pi j are
updated.

The bilinear prolongation operator described above applies also to the boundary variables.
For restricting the residuals we use the full-weighting restriction operator, I k−1

k : L2
k →

L2
k−1, given in stencil form by

I k−1
k = 1

16






1 2 1

2 4 2

1 2 1




 . (50)

This choice is necessary to guarantee at the boundary the right scaling for the coarse-grid
problem formulation; see the discussion in [21]. Clearly, on the boundary the restriction
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Table 8. Results of experiments, boundary control problems; 1025 × 1025 mesh.

ν ρ(y), ρ(p) |y − z|0 |r (y)|0, |r (p)|0
10−6 0.05, 0.05 8.09 10−2 1.7 10−10, 2.9 10−13

10−8 0.14, 0.12 8.09 10−2 3.7 10−8,2.9 10−13

10−10 0.28, 0.28 8.09 10−2 4.7 10−5,9.9 10−11

0 0.25, 0.26 8.09 10−2 3.5 10−5,4.8 10−11

operator is mirrored. For example on the left vertical boundary, we have I k−1
k = 1

16 [
0 2 2
0 4 4
0 2 2

]
and in the left-low corner I k−1

k = 1
16 [

0 4 4
0 4 4
0 0 0

].
To numerically validate the present algorithm for solving boundary optimal control prob-

lems, consider the desired state given by

z(x1, x2) = (
x2

1 − x2
2

)
sin(πx1) sin(πx2),

and g = 0. We choose constraints given by u = −1 and ū = 1 which are active in part
of the boundary for ν ≤ 10−6. The multigrid setting is the same as in previous sections.
Results for this case are reported in Table 8.

7. Conclusions

We presented a robust multigrid method for a class of optimality systems arising from elliptic
constrained optimal control problems. The multigrid method was developed based on a
collective Gauss-Seidel scheme that satisfies the given constraints pointwise. In applications
we considered distributed and boundary control problems. With the present algorithm it was
possible to investigate bang-bang control solutions.
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