NON-SMOOTH OPTIMIZATION FOR
INTERFACE CRACKS IN COMPOSITE MATERIALS
WITH NON-PENETRATION CONDITIONS

M. HINTERMULLER*, V.A. KOVTUNENKO', AND K. KUNISCH®

ABSTRACT. A constrained problem for a composite with an inter-
face crack subject to non-penetration conditions is considered. The
composite consisting of two identical homogeneous orthotropic ma-
terials is described with respect to an in-plane deformation. The
coupling of the materials occurs at an interface with an angle of
203 between their vertical planes of elastic symmetry. The model
is spatial, and we do not assume that it can be split into indepen-
dent in-plane and anti-plane states. Well-posedness of the problem
is proved by variational methods. For numerical computations a
semi-smooth method is proposed and its convergence properties are
studied. Based on the above model, we then describe a quasi-static
delamination of the composite with a crack following the Griffith
fracture criterion. This leads to a time-evolution problem for the
(global) shape optimization of the total potential energy with re-
spect to the crack length. Using the algorithms proposed in this
paper, numerical experiments for an interface crack under mode-3
loading are presented and analyzed with respect to the half-angle
B characterizing the coupling.

1. INTRODUCTION

Problems with cracks arise from applications in fracture mechanics
and are of importance for the design of structures in the engineering
sciences. A mathematical formulation of crack problems can be given
within the framework of elasticity theory [23]. As a consequence of the
presence of a crack in the domain singular solutions do occur. In the
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3-dimensional case these singularities are still subject of discussions.
To gain some insight into the 3-dimensional situation, the standard
approach is to simplify the elasticity model by splitting it into two 2-
dimensional in-plane and anti-plane models. We point out that this
leads to a loss of information concerning the 3-dimensional nature of
the system. Motivated by these drawbacks, we introduce an interme-
diate 2.5-dimensional model instead of the splitting approach. Our
model is a spatial one since it takes into account all 3 components of
the displacement vector. However, it is formulated in a 2-dimensional
domain.

For the construction of the 2.5-dimensional model we consider a ho-
mogeneous orthotropic material with a vertical plane of elastic sym-
metry rotated with an angle of 8 to a reference coordinate system. As
a specific case, we consider a semi-isotropic material, which is fibered
along a fixed direction having angle § with the x3-axis and is isotropic
in all cross-sections orthogonal to it. We compose two pieces of such
a material along the interface given by the plane o = 0 such that the
corresponding angles in the upper and lower half-spaces are § and —f,
respectively. We further assume that a crack is situated on part of the
interface. Applying the assumption of plain deformation at x5 = const,
then, due to the rotation, this results in a spatial model. The formula-
tion as a linear problem was suggested in [18].

In our numerical experiments we observe 3-dimensional effects: mix-
ing of crack modes (mode-1 with mode-3), and mutual inter-penetration
between opposite crack surfaces. They occur under pure mode-3 load-
ing, which is ruled out for the in-plane and anti-plane models. Due
to the latter phenomenon we are required to consider (unilaterally)
constrained crack problems with non-penetration conditions. The in-
equality constraint imposed on the jump of the displacement at oppo-
site crack faces prevents the non-physical, thus inconsistent, behavior
of overlapping faces which can occur in the framework of the linear
setting of the crack problem. The mathematical formulation results in
a variational inequality. An account for the variational techniques can
be found in [12, 13]. The variational formulation provides the appro-
priate state space for the crack problem which has a singularity at the
crack tip.

For plane models the general approach to the analysis of singular-
ities between two anisotropic half-planes was described in [27]. The
elastic problem determinating the corresponding singular solutions can
be reduced with the help of a partial Fourier transformation and the
Stroh formalism to a matrix eigenvalue problem. An analytic realiza-
tion of such a complicated technique is available for particular cases
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only. Let us emphasize that the analytical solutions obtained in [27]
require suitable orientation of the axes of material symmetry to ensure
decoupling of the anti-plane fracture mode from the in-plane modes.
Alternatively, in [24] (with no assumption of symmetry) an eigenvalue
problem for power solutions (singular solutions of a specific form) was
treated as a self-adjoint system to derive, in a formal way, the order of
the singularity and to define its eigenvectors.

We shall investigate the geometric and physical features of the com-
posite model by numerical experiments. For this purpose a semi-
smooth Newton technique is adapted to constrained crack problems. As
a rule, variational problems subject to unilateral constraints (the non-
penetration conditions in our case) are not Fréchet differentiable with
respect to the dual variable. This requires non-smooth optimization
techniques [21, 14, 28]. Under suitable assumptions, semi-smoothness
concepts will allow a locally super-linear convergence rate of the New-
ton iterates. Such properties are not available for problems with cracks
due to the lack of regularity caused by the geometric singularities of a
domain with a crack.

If we restrict our attention to the discretized problem, we arrive at
a finite dimensional linear complementarity problem (see [3]). In this
case superlinear convergence of the semi-smooth Newton method can
be proved. Moreover, in numerical experiments global and monotone
convergence was observed, which is supported by the a posterior: anal-
ysis in [8]. For a class of variational problems subject to boundary-
constraints, in [9] we applied an argument based on perturbation of
M-matrices guaranteeing these convergence properties.

Returning to the continuous setting of the problem, a penalization
technique was utilized in [10] to obtain an approximate Lagrange mul-
tiplier, which enjoys extra LP-regularity. As a consequence the gen-
eralized differentiability and the local super-linear convergence rate of
the Newton iterates were derived for the penalized problem in function
space.

For the problems under consideration semi-smooth Newton methods
are equivalent to primal-dual active-set algorithms [7, 11]. They are
an efficient tool for the numerical treatment of constrained variational
problems. As suggested by the terminology, these algorithms use the
primal as well as the dual variables independently to find the active
(contact part of the crack surfaces) and the inactive (non-contact part)
sets of the solution. In numerical examples the primal-dual active-
set methods turned out to find the exact numerical solution in only
a few (typically < 12) iterations also in degenerate cases when pure
primal methods may start to chatter. In comparison to interior-point
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methods, see, e.g., [20], the primal-dual active-set strategy determines
not an approximate but the exact solution of the discrete problem.
Decreasing the mesh-size results only in a moderate increase of the
required number of iterations. Moreover, we suggest a combination of
a local grid-refinement near the crack with a continuation technique
reducing costly fine-grid iterations. For the numerical treatment of
curvilinear cracks we refer to [22, 26], where extended finite element
techniques are used.

One of the principal questions in fracture mechanics and structure
design is to describe the stability properties of a solid with a crack and
to predict its growth. By the Griffith fracture hypothesis the propa-
gation of a crack is determined by the energy release rate at the crack
tip, which cannot exceed a given physical parameter (see [2, 25]). A
large number of papers investigated quasi-static growth of cracks in
elastic media: [23, 6, 1, 17] etc. We argue that the energy release rate
is the shape derivative of the potential energy functional with respect
to variations of the crack tip. In [13, 12] methods of shape sensitiv-
ity analysis to crack problems with non-penetration conditions were
adopted to provide a formula for the shape derivative. This includes
the Griffith formula as a specific case.

We observe that the Griffith fracture criterion provides a necessary
optimality condition for a local minimum (if it exists) of the total po-
tential energy, which is defined as the sum of the potential and the
surface energy. On the other hand, global shape optimization problems
require minimization over all admissible crack shapes. For strictly con-
vex cost functionals these two concepts coincide. In fracture mechanics
this corresponds to stable crack propagation (progressive). The case of
unstable (or brutal) crack growth is related to non-convex cost func-
tionals. It was noticed in [5] that for brutal growth the Griffith fracture
law (as a local criterion) predicts a critical loading for the initiation of
crack propagation larger than that needed by the global optimization
approach. This fact is observed in our numerical tests, too. By the
global formulation of the shape optimization problem, not only contin-
uous solutions for the stable crack propagation but also solutions with
jumps and discontinuous velocities of the propagation are obtained.

Well-posedness properties for time-evolution problems with cracks
were analyzed in [5, 4]. In the present work we apply the global formu-
lation of the problem of shape optimization to a rectilinear crack and
utilize it on a set of local minimizers derived in a constructive way from
the Griffith fracture law. Note that the delamination process suggests
a predefined path (along the interface) of the crack time-evolutions,
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which was confirmed experimentally [15]. This problem is solved nu-
merically to describe the delamination of composite materials with an
interface crack under quasi-static linear loading. For this purpose we
adopt the primal-dual active set method introduced for the solution of
the constrained state problem.

The paper consists of three parts: Section 2 serves for the formula-
tion of the problem, Section 3 deals with its numerical treatment, and
Section 4 describes the shape optimization for the state problem.

2. CONSTRAINED CRACK PROBLEMS FOR A COMPOSITE

In this section we formulate a model with respect to an in-plane de-
formation for two identical homogeneous orthotropic materials, which
are composed at a planar interface with the angle of 25 between their
vertical planes of elastic symmetry and which have a crack along a part
of their interface. The specific cases of material parameters for fibered,
isotropic, and orthotropic solids are described in the Appendix. Based
on the corresponding representation of elasticity coefficients, on con-
stitutive and equilibrium laws, we deduce the variational setting of the
problem.

2.1. Modeling of composite materials in plane deformation.
Consider a homogeneous orthotropic material with planes of elastic
symmetry corresponding to the (), 5, 2 )-axes, which can be described
by 9 independent (positive) material parameters (see [19]):

(2-1) E\, By, E3, v91, V32, V31, Gai, Gs2, Gai.

First, we compose the identical materials with respect to a reference
coordinate system (z1, Z3, x3) in the following way. In the "upper” half-
space R® = {z, 25 > 0,23} the (2}, 2}, 2})-axes are rotated in the anti-
clockwise direction to (x1, z2, x3) with respect to the common z), = zo-
axis by the angle § between x4 and z3. The angle § € [-7/2,7/2] is
arbitrarily fixed. In the ”lower” half-space R® = {z1,z, < 0,23} the
(x}, xh, x4)-axes are rotated to (x1,xq,x3) with respect to b, = zo in
the opposite direction by the same angle (i.e., —f), as it is illustrated
in Figure 1. The materials are assumed to be joined along the plane
x9 = 0 with an interface defect (crack).

For a displacement vector u = (uy,us,u3)' () (at a point x =
(21, 22,23)" € R?) in the composite material

ut inR3,
u = _ . 3
u~ inRZ,
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FIGURE 1. Composing of a body in R3.

we introduce a strain tensor € = {e;;} according to the linear Cauchy
law

(22) €ij (u) = 05(’&1’] + uj,i), 7,,_] = 1, 2, 3,
and a 3 x 3 symmetric tensor of stress o = {0;;} as

@9 w={ 7500 hE

Here and throughout we utilize the standard tensor notation common in
linear elasticity and the summation convention for the repeated indices

1, =1,2,3.
Second, we apply the assumption of plane deformation at every cross-
section x3 = const, which means that all three components of the

displacement vector u do not depend on x3. Hence €33 = 0 and the
strain tensor in (2.2) takes the particular form

511(“) =U1z1, 522(“) = Ug,2,
(2.4) €12 (U) = 0.5(11/1,2 + Ugjl),

513(7,6) = 0.5’11,3’1, 523(”) = 0.5U3,2.
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In R?, the relevant components of the stress tensor (2.3) satisfy the
following constitutive relations involving a non-symmetric matrix:

‘751 Clﬂl sz 0 0 QClﬂG €11
02ﬂ2 CiBQ Ca 0 0 2056 €22
(2.5) ol | = 0 0 205 205 0| | e
ol 0 0 20% 205 0 €23
01’33 ] Clﬂfs 0236 0 0 2056 i €13

with 9 elasticity coefficients depending on 3 (except for Cyy) and the
material parameters (2.1) as presented in the Appendix. The substitu-
tion of (2.4) into (2.5) allows us to rewrite the constitutive law in the
symmetric form:

Jfl(u)z 1u11+02u22+0611/31,

‘752 (u) = 12“1 1+ Cyug o + 026u3 1
(2:6) ?2(“) = 44(“1 o+ ug1) + 045u3 2,

‘723(“) = 45(“12+U2 1) +C55u32,

U’ffs (u) = 01ﬂ6u1,1 + 026u2,2 + 066u3,1'

In R? the above relations hold true if we exchange 3 with —/ accord-
ing to (2.3). The elasticity coefficients obey the following symmetry
properties (see the Appendix):

Cif =0, O3 = Ch, Cif = Clh, O = Og;, G5 = i,
016 = Cma 026 = 0267 045 = _Cf .

Note that if 8 = 0 or 8 = /2 then we have C5 = C5 = C2% = 0 and
(2.6) is split into two independent states, namely the in-plane state for

(u1,u2)" and the anti-plane state for uz. If 3 # 0,4m/2 then we have
a spatial model.

(2.7)

2.2. Equilibrium problem for the interface crack with non-
penetration conditions. Consider the composite of two elastic or-
thotropic materials joined along the plane x5 = 0, which was described
in Section 2.1. Assume that in each cross-section with x3 = const
the solid occupies a domain Q C R? consisting of two sub-domains
Qf ¢ R% and Q- C R? with the interface ¥ located on the line
To =0, 26, Q =QTUQ UX. Let Q be bounded by the Lipschitz
boundary 902 = 'y UT'p with an outward normal vector n = (ny,ny) ",
where I'p # (). We suppose that the crack I'c is a part of the interface
Y and define the domain with the crack as Q¢ = Q2 \fg. Its boundary
0f)¢ is the union of I'y, I'p, and the crack surfaces Fé. Here Fg cxt
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and ' C X7 are defined as the limit points of sequences (z) € QF and
(x) € Q™ at X3, respectively.

To prevent mutual inter-penetrations between the opposite crack sur-
faces '}, and I'; we impose a non-negativity condition on the jump of
the displacement normal to the crack (up-component), see [12]. Let
g = (91,92,93) " represent a surface traction given at I'y, and, without
loss of generality, assume that the volume force is zero. Further, the
solid is assumed to be fixed at I'p. The problem of equilibrium of the
composite with a crack is finally described by the following non-linear
(at I'¢) relations:

—01a,0(t) = —020,0(1) = —03q0(u) =0 in Qg,

o12(u) = o3(u) =0 on I,

[o22(u)] = 0, [uz] >0, 022(u) <0, o22(u)[us] =0 onTy,
(2.8) [ui] = Juz2] = [us] =0, S\ e
[o12(w)] = [o22(u)] = [o23(u)] =0
01a(U)Na = 91, 02a(U)Na = g2, T30(u)q = g3 on Ty,

U1 =u=uz3 =0 onlIp,

where the summation convention over repeated indices o = 1,2 is used.
Here [u] = vt —u~ and [o(u)] = 0?(ut) — 0~?(u~) denote the jumps
across the interface.
In view of (2.6) and (2.7) the divergence of the stress used in (2.8)
has the following representation in Qé:
+
Jlaﬂa( i) 011“1 1t Cﬂ uic22 + (CIﬂQ + C )“2 12
+ 016U’3 = Cy 5“3 22
+
02aﬁ,a (“i) = (C C )“1 12T 044“3:,11 + 022“3}:,22
(C + 026)u3 125
+
‘73£a( ) iCmUl 11 C45“1 22 (C + Cze)uz 12
+ Css“s,n + 055u3,22-

(2.9)

2.3. Constrained variational problem with a crack. We intro-
duce the cone of admissible displacements which accounts for all the
boundary conditions imposed on » in (2.8) as

KQc)={ue HQ¢): Jue] >0 onl¢} with
H(Qc)={ue H(Q¢)*: u=0 onTp}.
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For given g € L?(T'y)? the potential energy of the composite with a
crack is defined by

1

(2.10) mm:§/mmmmmm—/%m@

Qo I'n

where due to (2.4), (2.6), and (2.7) the quadratic form has the repre-
sentation in Q7 (recall that e33 = 0):

+
Uijﬂ(ui)eij(ui) = Clﬂl (Ufl)Q + 022(U2i,2)2 + QCfQUfluzi,Z

(2.11)  £200uius, £ 205uiyus; + Chy(uf, + usy)?
+ QCfs(qu + uéc,l)uf%tg + 05’35(%'[,2)2 + Cgﬁ(u::f,l)Z-

The weak solution u € K(€¢) to the equilibrium problem (2.8) is
defined as the solution to the constrained minimization problem

(2.12) minimize [I(v) over v € K(Q¢).

The optimality condition to (2.12) is expressed by the variational in-
equality

(2.13) /aij(u)eij(v —u)dx > /gi(v —u);ds forallv € K(Q¢).
QC I'n
For unique solvability of (2.12) (or, equivalently (2.13)) uniform pos-

itivity of the quadratic term is needed, i.e., the existence of an angle 3
and a constant cy(f) > 0 such that

(2.14) /Oij(u)eij(u) dz > co(ﬁ)||u||fq(nc) for every u € H(Q¢)
Q¢
holds. Note that condition (2.14) may not be true for all 5 € [—7/2,7/2].

If the 5 x 5-matrix in (2.6) is positive definite for some [, then this
leads to the estimate:

(2.15) / 045 (W)ess (1) dz > Amin(8) / i3 (w)es; (u) da
Qc Q¢
with the minimal eigenvalue A, (58) > 0 of this matrix. In this case,
a Korn-type argument based on (2.15) implies (2.14).
It can be verified for the solution u of (2.13) that [u] € HééQ(FC)?’,

where Hy!*(T'c) is the space of functions in HY/2(I'c) which admit a
continuation by zero on an extension of ' into €2¢. Since the trace of
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H(Q¢) onto H&éz (T¢)? is surjective there exists a Lagrange multiplier
A € Hyl*(T¢)* such that

(2.16a) /oij(u)aij(v) dz — (\, [v])re = /givi ds for all v € H(Qc),

Q¢ INY

(2.16b) € = [us])r, >0 forall 0 < & € Hy*(Te),

where (-, - )r,, stands for the duality pairing between the spaces H&f (Te)

and Hé({2(Fc)*. Applying Green’s formula to the first term in (2.13)
and using (2.16a) we arrive at the identity

(2.17) ob(ut) =0y (u”) = —A onTlZ.

Thus (2.16) yields the primal-dual variational formulation of the equi-
librium problem (2.8). Note that it expresses an optimality condition
for the minimization of the Lagrangian

1

L, N) = 5 [ owes(u) do — O\ Tualheg — [ gaeds

Q¢ I'n

over all admissible pairs (u,\)" € H(Q¢) x HééQ(PC)* subject to the
dual constraint A > (0, which is understood in the generalized sense.

2.4. Numerical example. Before starting a discretization of the prob-
lem and describing a numerical algorithm for its solution we give an
illustrative example. It clarifies principal features of the system under
consideration.

We choose the following symmetric geometry for the composite with
a crack as presented in Figure 2. The domain (2 is chosen to be a square
in R? with its boundary decomposed as follows:

FD = {.’L‘l = 1, |$2| S 05}, FN = F;l U F;Vl U F;Q U F;VZ’
I ={z1=0,0< +2, <05}, T, ={0<z <1,2,=+05}.

We assume that the crack I'c of length 0 < I < L =1 is located along
a part of the interface ¥ = {0 < z; < 1,29 = 0}. The corresponding
faces in 0F = QNRZ of the crack and the interface are denoted by T'S
and XF, respectively. The plane domain with crack Q¢ is bounded by
I'p, Ty, and TF. The elastic problem (2.8) in Q¢ is considered with
the following boundary conditions imposed on I'y:

(2.18) 012(u) = 092(u) = 093(u) =0 on 'y,

' —o11(u) = g7, —012(u) = g5, —0o13(u) = g5 onTyy,
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O

AR RRRRR
—

\\\\\\\\\\Q
=

F1GURE 2. Geometry of domain 2¢.

where we assume anti-symmetric loading corresponding to mode-3:
(2.19) g5 =Fgo, g =95 =0, go=0.001p~ 3.5376(mPa),

as illustrated in Figure 2.
We utilize the material parameters (2.1) for the specific case (5.3)
described in the Appendix with the values from [15]:

E, = E, = E = 10160(mPa), E; = 139400(mPa),

Ggl = G32 = Gg = 4600(mPa), Ggl = ~ 35376(mPa),

E
2(1+v)

Vo1 =V = 0436, V31 = V3 = V3 = 0.3.

The corresponding minimal eigenvalues Ay, (5) in (2.15) are found to
be positive for § € [—7n/2,7/2]. They are approximately constant with
value A, &~ 3537.6. In this case (2.14) holds, and the interface crack
problem formulated in Section 2.3 is well-posed.

For calculations, the angle 8 of fibering is taken at the six points
B = 0,7/16,7/8,7/4,37/8,7/2 in [0,7/2]. This includes the limit
cases of the plane isotropic model with 5 = 0, and the plane orthotropic
model with 8 = 7/2. Note that for 8 = 7/4 the directions of fibering
in Qf and Qg are orthogonal to each other.
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FIGURE 3. Displacement and stress at interface.

For [ = 0.75 the components of displacements uy, us, us and the
stresses o19(u), 0o2(u), o93(u) at the interface surfaces ¥+ are depicted
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in Figure 3 for various fibering angles 5. We observe in Figure 3 the
following behavior:
e [u;] =0on ¥ and [us] < 0on I'c for all B; u; = uy = 0 for g =
0,7/2; u; < 0 and [ug] > 0 on I'¢ for 8 = /16, 7/8,7 /4,37 /8.
e 0y (u) = 0 on X, o93(u) has a rC-singularity at the crack tip
for all §8; o99(u) = 0 for § = 0,7/2 and otherwise gg9g(u) # 0
and it has a r~“-singularity.
This case indicates clearly the appearance of a mixed mode-1 (Juz] # 0)
and mode-3 (Jus] # 0) crack under pure mode-3 loading. Moreover,
contact between opposite crack surfaces occurs. This situation is re-
lated to the 3-dimensional elasticity state and shows the advantage of
the spatial model with non-penetration conditions, in contrast to plane
isotropic (8 = 0) and orthotropic (8 = 7/2) models.

Note that there is no contact between the crack surfaces in the re-
maining interval 8 € (—w/2,0). This case was investigated in [18§]
for the linear setting of the problem with the condition o9(u) = 0
describing stress-free crack faces 1%.

3. CONSTRAINED MINIMIZATION OF THE DISCRETE CRACK
PROBLEM

For the numerical treatment of the constrained variational problem
with interface cracks in the composite, we rely on the following semi-
smoothness concept. The operator F' : X — Y, with X,|Y Banach
spaces is called generalized differentiable in an open subset U C X if
there exists mappings G : U — L(X,Y), referred to as generalized
derivatives, such that

1
lim ——||F(y+ h) — F(y) — G(y + h)h|ly =0 for every y € U.
h—0 ||h||X
In this section we use this property in RY and construct the resulting
semi-smooth Newton algorithm.

3.1. Discretized problem as linear complementarity system.
Discretization of (2.12) results in a quadratic programming problem of
the type

1
(3.1)  minimize §uTLu — fTu overueRY subject to Au >0,

where the symmetric matrix L € RV*¥ ig positive-definite, f € RV,
and the matrix A € RP*VN agsociated to the non-penetration condi-
tionhas full column-rank. Here, for the index set B C {1,...,N} we
denote by |B| its cardinality. The form of A for the specific case of a
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symmetric partition of the crack surfaces is presented in the numerical
examples below.

It is well-known that the unique solution u € RY to (3.1) exists and
is characterized by the variational inequality (similar to (2.13))

(32) Au>0, (f—Lu) (v—u)<0 forallveR" with Av > 0.

Introducing a Lagrange multiplier A € RIZ| we can equivalently express
problem (3.1) as: Find the pair (u,\)" € RV x Rl satisfying the
following system of equations (compare with (2.16))

(3.3a) Lu—A")=f,

(3.3b) ®(u, ) := max(cA — Au,0) —cA =0,

where ¢ > 0 is an arbitrarily fixed constant. Note that (3.3) is also

sufficient for the primal variable u to be the solution of (3.2) and (3.1).
Multiplying (3.3a) first by L=! and then by A we obtain

(3.4) Au— (ALTPADN = AL f =0.

Since the matrix AL7'A" is positive definite we can define its inverse
(which is a positive definite matrix again)

(3.5) L:=(AL'AT)t e RBXIBI
Setting
(3.6) a:=AueRP f.=LAL'f R

multiplying (3.4) by L, and taking (3.3b) into account we arrive at the
linear complementarity problem for @ at the subset of indices B only:
Find 4 € RB/ such that

(3.7) La—f>0, >0, 4 (La—f)=0.

This is the first order necessary and sufficient optimality condition for
the strictly convex quadratic minimization problem

1 ~ o
(3.8) minimize EQTLﬁ — {4 over 4 € R subject to @ > 0,

which admits a unique solution #%. Let \ denote the multiplier associ-
ated to (3.8). Then the pair (@, \)" € RIB/ xRl satisfies the non-linear
equations analogous to (3.3):

(3.9a) La—\=f,

(3.9b) & (@, ) := max(ch — 4,0) — cA =0,
with an arbitrarily fixed ¢ > 0.
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Lemma 3.1. Let (u,\)" € RY x RBl be the solution to (3.3). Then
@ = Au and A = X solve (3.9). Conversely, let (4, )" € RP x RF bpe
the solution to (3.9), then

(3.10) w=L"Yf+A"\)
and A = \.

Proof. The first assertion of the lemma follows from the discussion
above (3.9). To verify the converse assertion, multiplying (3.9a) by
L' yields
i— (ALPADA = AL f =0.
From (3.10) and (3.9) we obtain
Lu—f—A"A=0, Au=a>0, A>0,

which (similarly to (3.7)) is the linear complementarity problem as-
sociated to (3.3). Now the claim follows from the uniqueness of the
solution to (3.3). O

This equivalence will be useful for the application of the convergence
results of [9, 10].

3.2. The primal-dual active-set algorithm as a semi-smooth
Newton method. In order to devise a semi-smooth Newton method
for solving the constrained minimization problem (3.1) we focus on its
primal-dual formulation (3.3). Setting y := (u,\)" € RY x RE we
restate the system (3.3) as

(3.11) Fy) = ( Lu ;)(/;,Tj)‘ f ) —0,

where the function F : RN*Bl — RN*IBl ig non-differentiable in the
classical sense. However, in the sequel we argue that F' is generalized
differentiable. For this purpose we introduce the matrix yg € RIZI*IBl
by
. . 1 ifiesS,

xs = diag (s1,...,8p), withs; = { 0 ifigs
and we define
A(y) = {Z € B:ch— (Au)Z > 0},
I(y) ={i € B: c\ — (Au); < 0}.

The set A(y) is called the active set at y, and I(y) is called the inactive
set. This terminology is suggested by the fact that \; > 0 and (Au); =0
for all 1 € A(y) at the solution y of (3.3). On the other hand, for
i € I(y) we have \; = 0 and (Au); > 0 at the solution. Definition

(3.12)
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(3.12) implies that x4 + X1y = 1. This allows us to rewrite the
function @ in (3.3b) in the form

(3.13) D (u, A) = —Xxa@)Au — cxig) A
As a consequence, I in (3.11) admits the representation
0) 0= )
Flyy=Gg - , Gy) = :
(y) = Gly)y ( 0 W= Zxawd —cxuw
and satisfies, for small h, the identity

(3.14) F(y+h)—F(y) — G(y+ h)h = 0.
Thus, G in (3.14) serves as a generalized derivative of the non-differentiable
mapping F'.

Now we can define the semismooth Newton method for computing
the solution to (3.11): For some initial guess y(*) compute

(3.15) y ) =y — Gy T FY™), n=0,1,....

As we shall detail below, each step in (3.15) amounts to solving a
well-posed linear system. From [7, Theorem 1.1] the following local
convergence result for the process (3.15) can be deduced.

Proposition 3.1. The semismooth Newton iteration (3.15) is well-
defined, and the sequence of iterates (y™) converges superlinearly to a
solution y* of F(y) = 0 provided that 4 is sufficiently close to y*.

The numerical implementation of (3.15) is realized as follows.
Algorithm 1.

(0) Choose A(y=1) and I(y=Y) such that A(yC"V)UI(yY) = B;

set n = —1.

(1) Solve for y™V) = () \O+)T ¢ RV x RIB/;

(3.16a) Lyt — ATACHD — 7
(Au™), =0 for alli € A(y™),

3.16b
(3.160) A =0 for alli € I(y™).

(2) Compute the active and inactive sets at y"*+V):

(3.17a) Ay™)y ={ie B: eA™™ — (Au™tD); > 0},

7

(3.17b) Iy™) ={ie B: eA™™ — (Au+D), < 0},
(3) If n > 0 and A(y™+Y) = A(y™) then STOP; else set n = n+1
and go to step 1.
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Due to Step 2, which utilizes both the primal variable v and the dual
variable A, we shall refer to Algorithm 1 as the primal-dual active set
method. Tt is equivalent to (3.15): In fact, we start by rewriting (3.15)
as follows:

(3.18a) L(ul"*) — o) — AT(AMHD — Ay = £ — Ly 4 ATAM
—XA(y(M)A(U("H) - u(n)) — CXI(y(n))(/\( ntl) _ \(n ))

= cA™ — max(eA®™ — Au™, 0).
Equation (3.18a) implies (3.16a), and the non-smooth equation (3.18b)
is realized by the choices (3.17) and (3.16b).

The stopping rule in Step 3 of Algorithm 1 is motivated by the
following considerations. For i € A(y™) we have (Au"*V); = 0, and
fori € I(y™) we obtain /\("+1) = 0. Hence, if we assume that A(y™) =
A(y™+D), then from (3.17a) we infer A" D > 0 for all § € A(y™*Y),
and (Au®tV); > 0 for all i € I(y ”+1)) by (3.17b). This, together
with (3.16a), proves that the iterate y™+1) = (u(+1), )\(”“))T satisfies
F(y™*Y) = 0 if Algorithm 1 terminates in Step 3. This actually occurs
in all our numerical examples.

Based on Lemma 3.1, an application of the global convergence results
given in [9, 10] leads to the following proposition.

Proposition 3.2. Assume that L = M + S with M € RV*N q non-

singular M-matriz and with S € RN*N g perturbation such that ||S||:
1s sufficiently small. Then:

(1) Regardless of the initial choice, Algorithm 1 is well-defined, and
the iterates (u™, A\™)T converge to the solution of (3.3).

(ii) For the specific initialization of A% = 0 and u®) = L71f, the
iterates Au™ are feasible and they converge monotonically with
A(y™D) > A(y™) forn > 1.

(3.18b)

3.3. Numerical example (continued).

3.3.1. Discretization. We discretize problem (2.8) by finite elements.
For the basis functions e* related to the k-th nodal point of the trian-
gulation, we order the displacement vector as

. (ul)k, (Ug)k, (U,g)k, ceey (U,l)s, (’U,Q)S, (U,g)s, e
According to (2.6) the stiffness matrix L in (3.1) involves the following
3 x 3-cells:
0116161 +Cy 46262 0126162 046261 0166161 +Cq 56262
0126 e, + CF 46 26 c? 46 e + Coelyes 0456 €%+ 0266 He’)
C’lﬁ-e e + CF 15€5€% o 1€ eh + C’QﬂGe %€ 0666 €+ 0556 5€%
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Following a common procedure in linear elasticity we utilize linear
finite-elements on a triangular mesh constructed in . For improved
resolution of the singularity (crack tip), which may be located at any
point along the interface, we use a local refinement in a neighborhood
of ¥. This results in two mesh-parameters: h for the uniform mesh in
the domain, and h¢ for the fine mesh at the interface, as illustrated in
Figure 4 for h = 1/8 and hc = h, h/2,h/4.

hc=h hc=h/2 hC:h/4

FIGURE 4. Adaptive meshing in Q¢ for h = 1/8.

Next we give the description of the matrix A € RIB*Y in (3.1) with
B c {1,...,N}. First let us define the index set B C B x B. Each pair
(i%,17) € B corresponds to an index ¢ € B, which belongs to a nodal
point at the crack I'¢c, i.e., it =it (i) and i~ =4 (¢). Thus, |B| = |B].
This definition allows us to write the discrete non-penetration condition
as
(3.19) (ug)™ — (up)” >0 forall (it,i") € B,
where u'* = ((uy, up, us)T)" are the displacement vectors at the nodal
points on ', and T'. Secondly, we assume that the vector u € RY
is partitioned into u = (up,uz)"” with the index set B and the vector
ug defined as follows: Let uf™ = ((ug)"™ W, ..., (ug)" ®) € RP | and
analogously for uf”. Then usz = (uf",uf™)T € R?B. Thus, we infer
that |B| = 2| B|. Now, the matrix A can be expressed as

A= (Oa Xu§+’ _Xug_ )a

where 0 is the |B| x |D|-zero matrix with |D| = N — |B|. The
column-rank of A is |B|. Therefore, A is related to the discretized
non-penetration condition (3.19).

3.3.2. Implementation of the primal-dual active-set algorithm. We con-
sider the example of Section 2.4. As we shall see the primal-dual active
set, algorithm possesses the properties stated in Proposition 3.2.
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We decompose the stiffness matrix L as L = M + S with M an
M-matrix and S a perturbation. In relation to Proposition 3.2, the
1-norms of L, M, and S are presented in Figure 5 for a typical value
of h and h/hc = 4 for B chosen in [0,7/2]. These results are rather
independent of h. For the remainder of this section we fix § = 7/8.

< 10° (a) 1-norm (b) percent of ||L||1

6 — T, 100 i
Ml |
sil 80
—%— 1
4 60
3 X
40
2
1] 3
’ 0 *
0 0.5 1 1.5 0 0.5 1 1.5
B B

FIGURE 5. Decomposition of the stiffness matrix L.

In all cases tested, Algorithm 1 terminated after finitely many iter-
ates by producing the same active/ inactive set structure in two con-
secutive iterations. Thus it found the exact solution of the discretized
problem (3.1). For I = 0.5 the number of iterations required for the
successful termination of the algorithm is presented in Table 1 for var-
ious mesh-sizes h and h¢o. Table 1 shows that the number of iterations
(#it) is rather small and increases moderately when the mesh is re-
fined. We utilized the specific initialization A(y(~") = 0, I(y(~Y) = B,

#it/ he =] 1/20[1/40 ] 1/80 [ 1/160 | 1/320 | 1/640 | 1/1280

h=1/20 3 | 4 | 5 | 6 | 6 | - -
(h=1/40] - [ 41 4[5 | 7 | 7] - |
|h=1/80] - | - [ 5] 5 | 7 ] 9 ] 9 |

TABLE 1. Number of iterations for fixed grid method.

which corresponds to
(3.20) N0 =0, 4@=L""f

in (3.15). We choose ¢ of the order 10~® in the definition of the active
and inactive sets in (3.17).
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Concerning the monotonicity properties of the Newton iterates, we
next present the primal variable Au = [us] in (3.19), the dual variable
A = —09s(u) according to (2.17), and the characteristic function x4
of the active set A(y) at the interface 2, respectively. First let [ = 0.75,
h = 1/40, and h¢ = 1/160. The iterates Au®™ and A™ are depicted
in Figure 6 (a) and (b), respectively, for n = 0,...,8. The results

x10°° (a) jump

o1
P~NoOOhwWNEFO

OO DAV A * x H
533333333

OO ENS S

03 04 05 06 07 03 04 05 06 07
crack tip crack tip

FIGURE 6. Iterates Au(™, A" and A(y™) for [ = 0.75.

are provided only for the interval z; € [0.22,0.75] near the crack tip
where the active/ inactive structure is changing. On z; € [0,0.22)
the solution is active for all n > 0. For convenience the characteristic
function of the active sets A(y™) for n = —1,0,...,8 is indicated
below the graphs. We observe from Figure 6 a monotonic behavior of
Au™ >0 and A(y™Y), but not of A™. Note further that from one
iteration to the next several grid points are removed from the active
set.

The results for another set of data with [ = 0.5, h = 1/40 and
he = 1/640 are presented in Figure 7 in the interval [0.42,0.5]. The
remaining interval z; € [0, 0.42) is split into two subsets: an active and
an inactive one near x; = 0. In Figure 7 we see also that the active
set splits locally near the crack tip into separate intervals. At iteration
n = 6 the algorithm stops with 2 active and 3 inactive subintervals.

From all examples tested we can report the following properties of
the Newton iterates according to Algorithm 1: the iterates are feasible,
i.e., Au™ >0, and they converge monotonically Aut™ > Au(®=") with
A(y™Y) > A(y™) for n > 1. This is in accordance with the assertion
of Proposition 3.2.
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x107 (@) jump x10*  (b) multiplier
+ n=0

5 X n=1
* n=2 0

4 < n=3

3 > n=4
v n=5

2 O n=6 -5

1

0

0.42 0.44 0.46 0.48 0.5 0.42 0.44 0.46 0.48 0.5
crack tip crack tip

FIGURE 7. Iterates Au(™ A and A(y™) for I = 0.5.

For a reduction of the computational costs, we also used a contin-
uation technique: We solved (3.15) with (3.20) on a coarse grid with
hc = h, and subsequently used prolongation of this solution and its
corresponding multiplier as initial values on increasingly finer meshes
with mesh-size he < h, respectively. For | = 0.75, in Table 2 the

#it | hc=]1/201/40]1/80]1/160]1/320] 1/640 | 1/1280
h=1/20 | fixed| 5 | 7 | 8 | O 9 - -
h=1/20|cont. | 5 | +2 | +2 | +2 +2 - -
h=1/40] fixed | - 7 8 9 10 12 -
h=1/40 | cont. | - 7T 42| +2 +2 +2 -
h=1/80 fixed | - - 8 9 10 11 12
h=1/80] cont. | - - 8 +2 +1 +2 +2

TABLE 2. Number of iterations for fixed grid and the
continuation method.

first row shows the number of iterations required by Algorithm 1 for
a fixed grid. The second row presents the results for the continuation
technique. The entry +2’ (or '+1’) indicates that only two (or one)
iterates are required on the next finer grid for a successful termination
with A(y() = A(y@) (or A(y®) = A(y(~)). These results show that
the continuation technique is an effective tool for reducing costly fine
grid iterations.
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3.3.3. Mesh refinement. In this section we consider the results as h
and h¢ are decreased. For [ = 0.75 the jump Au and the correspond-
ing multiplier A obtained by Algorithm 1 are depicted in Figure 8 (a)
and (b). Representative results for A = 1/40 with he = 1/40 and

x 10°° (@) jump X107 (b) multiplier
¥ h =140 5
35| x h.=1/80
g * NesL/e0
4 ho=1/320
25| o hc:1/640
»| o hc—1/1280
15
1
0.5
@@ @4 \J S & &
0 0.2 0.4 0.6 0.2 0.4 0.6

crack tip crack tip

FIGURE 8. Solutions Au and A for [ = 0.75.

he = 1/640, and for h = 1/80 with he = 1/80,1/160,1/320,1/1280
are shown. We see that the solutions Au are visually almost undis-
tinguishable if he < 1/80, and that A converges monotonically as h¢
decreases. The characteristic functions of the corresponding active sets
are illustrated in Figure 9 (a). Monotone convergence of A(y) can be
observed if both mesh-size parameters decrease.

(a) 1=0.75 (b) 1=0.5 ()

(h.2) (h.)
"""" 1/20 - |1/20 |1/20
- 1/40 o - [1/20
.............................. 1/80 S: M /40 1/40
____________ u H 120
- ~||'[1/40 |1/80
................... ~ —|liso
................................... o —{1/20
§ ................ 1/40 |1/160
E ..... --1/80
1/20
1/40 |1/320
= 1/80
X 1/40
a3
I 1/80 1/640
1/80 [1/1280
0 0.25 0.5 0.75 0 0.25 0.5
crack crack

Ficure 9. History of active sets A(y).
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This is not the case for the crack problem with [ = 0.5 illustrated in
Figure 9 (b). We observe a monotonous behavior near the edge z; = 0,
and a flattering of the active set near the crack tip x; = 0.5. This
behavior persists even when we increase the accuracy tol for the iter-
ative solver for the linear system in Step 1 of Algorithm 1. Typically
the outer iteration terminates due to coincidence of two successive iter-
ations. The solutions Au and A in the neighborhood of the crack tip at
[0.42, 0.5] are depicted in Figure 10 (a) and (b) for tol € [107'*,1078],
with the same values for (h¢, h) as stated above. In Figure 10, again

x10° (@) jump x10*  (b) multiplier
+ N=17A0
o e .
* c
08| « hc:1/320
o hC:1/640 6
06| o hC=l/1280
4
0.4
0.2 2
0 0 g 4—O—8—G—9——8—G®
0.42 0.44 0.46 0.48 0.5 0.42 0.44 0.46 0.48 0.5
crack tip crack tip

FIGURE 10. Solutions Au and ) for [ = 0.5.

we see a flattering of the jump [us] between the corresponding active/
inactive intervals. However, we shall see that the solution w itself con-
verges linearly in the energy norm.

To interpret the flattering effect, let us note that the active set and
the crack tip are geometrically separated from each other in the case
[ = 0.75. For [ = 0.5, however, two geometrical singularities occur
simultaneously in a neighborhood of the crack tip: one is connected
to the non-penetration conditions resulting in the active set, and the
other one is due to the transmission conditions imposed at the joint
part of the interface. The phenomenon of flattering means that in the
limit case (h — 0), which corresponds to the continuous problem, it
may happen that there is not only one, but possibly several points
(finitely or infinitely many) separating the active/ inactive sets which
are accumulating in a neighborhood of the crack tip. Alternatively,
there may exist a non-zero interval where both the primal and the dual
components of the solution are zero, i.e., [us] = o9(u) = 0, (see [25]
for an account of oscillations at an interfacial crack).
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4. DELAMINATION OF THE COMPOSITE VIA GLOBAL SHAPE
OPTIMIZATION

Based on the model introduced in Section 2, we are now interested
in the quasi-static delamination of the composite with a crack. This
leads to a time-evolution problem for the (global) shape optimization
of the total potential energy with respect to the crack length. For its
numerical realization we rely on the algorithm analyzed in Section 3.

It was observed in experiments [15] that the assumption of crack
propagation along a predefined path is physically consistent for laminar
materials. To describe the delamination between QF and Q™ in our
model, we fix the length [y of an initial crack at ¢ = 0 and look for
its ”time”-evolution [(¢) > Iy with respect to a (loading) parameter
t > 0. With one crack tip fixed, the length-parameter [(¢) determines
the position of the second crack tip at ¢ > 0.

In a natural way we arrive at a one-parameter shape optimization
problem. At every time-step ¢, the global setting consists of the mini-
mization of an a priori given cost functional 7'(I) (the total potential
energy) over all admissible crack lengths [ > [o. This formulation re-
quires to solve (2.12) with the crack I'c of length [ to obtain T'(/).
Employing the shape derivative of the cost function at ly provides the
local optimality condition, which coincides with the Griffith fracture
criterion. We combine these two approaches to derive a computation-
ally constructive strategy for shape optimization.

4.1. Reduced potential energy function and its shape deriv-
ative. For L > 0 let the crack I'c at the interface ¥ = {0 < z; <
L,z = 0} be given by the set

(41) FC:{0<$1<Z, LEQZO}, 0<I<L.

Specifically we assume that the left crack-tip (0,0)" is fixed on the
boundary 99 and the right tip (/,0)" is located at the interface inside
Q. If I = L then the right end of the crack meets 0f).

For the crack (4.1) a reduced potential energy function P depending
on the crack-length parameter [ € [0, L] is defined according to (2.10)
and (2.12):

4.2 P(l) :=II(u) = min II(v).

(4.2) () =Ti(w) = min )

From (4.2) we deduce that P is a continuous, decreasing, and uniformly
bounded function:

(4.3) PeC(0,L]), 0>P()>P()>P(L)for0<I<I<L.
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Fix | € (0,L) and let By, By be such that (1,0)" € B, C By C Q.
Let x € W1°(R?) be an arbitrary cut-off function with support in a
neighborhood of the crack tip, such that x = 1 in B; and x = 0 outside
of By. For the solution u of (2.12), the shape derivative P'(l) of (4.2)
(in direction (x,0)") is found to be (see [16]):

1
(4.4) P(l) = /Uij(u)(§X,1€ij(U) - E;;(Vx; U)) dz,
Q¢
where E denotes a 3 x 3-symmetric tensor (with E33 = 0) of the gen-
eralized strain

Eu(VX§ U) = X,1U1,1, E22(VX; U) = X,2U2,1,
(4.5) E1a(Vx;u) = 0.5(x 21,1 + X1U2,1),
E23(VX; U) = 0.5X,2U3,1, E13(Vx; U) = 0.5X,1U3,1.

In view of (2.6) and (2.7) we can express the integrand of (4.4) in QF
as the following quadratic form, which is neither positive nor negative
definite (compare with (2.11)):

1 1
- §C1ﬂ1X,1(Uf1)2 + C22(5X,1 - X,2) (“552)2 - ClﬂQX,2“§E,1“§E,2

1 1
+ Cing,lufluil + 056X,2ug:,2u§t,1 + 505/3596,1(“3%2)2 - 505696,1(“3'[,1)2

1
- X,2(Cf4“1,1 + Cf5u3i,1)(uf2 + Uzil) + 5054X,1((uf2)2 - (u2il)2)

B + + ., + B +  +
+ C45(X,1“1,2 - X,2U1,1)U3,2 - CssX,2U3,1U3,2-

The value of —P’(l) describes the energy release rate at the vicinity of
the crack and is independent of x. In fact, let us integrate by parts
(4.4) in Q¢ \ By, using (2.8) and x = 1 in By. For an outward nor-
mal vector b = (b1,by)" at 0B;, an equivalent representation of the
shape derivative by the integral over a closed contour 0B; (see [16]) is
obtained:

(4.6) Pl(l) = / 015 (u) (3hiess () — By (b)) ds
0B,

with b; and b, replacing x; and x o in (4.5). For § = 0 and us = const
formula (4.6) coincides with the path-independent Cherepanov-Rice
integral, which is well-known in fracture mechanics.

From (4.4) and (4.3) we can conclude that

(4.7) P'ec(0,L), P'()<o.
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Let us notice the general fact that for unilaterally constrained crack
problems the second derivatives P" is set-valued.

4.2. Evolutionary problem for shape optimization. We assume
that the loading depends in a linear way on a parameter ¢ > 0:

(4.8) g(t) = tg.
In view of the multiplicative property of the static problem (2.13) it

follows that u(t) = tu is a solution of the quasi-static problem: Find
u(t) € K(Q¢) such that

/ s (w())ess (0 — u(t)) das > ¢ / gi(v — u(t)); ds
49 4 J
for all v € K(Q2c).

We arrive at the reduced potential energy function which is quadratic
in t:

(4.10) P()(t) = 2P(l), P'(1)(¢) = 2P'(l).

In addition to the potential energy let us introduce the surface energy
at the crack faces I%,

1
(4.11) S(l) = (/+/)§7ds=7l,
ré To
where the physical parameter v is a given constant and expresses twice
the density of the surface energy distributed uniformly at the crack.

The total potential energy T is defined as the sum of P from (4.10)
and S from (4.11):
(4.12) T)(t) := P()(t) + S(I) = 2P(l) + 1.

Let an initial crack with o € (0, L) be fixed at ¢ = 0. To determine
an actual state [(t) of the crack for ¢ > 0 following the principle of
virtual work, we have to minimize the total potential energy over all
admissible cracks. The standard assumption of brittle fracture does
not allow the crack to disappear. In this way, from (4.12) we arrive at

a shape optimization problem at every ”time” ¢ subject to a constraint
l Z lol

(4.13) minimize vl + t*P(l) over | € [ly, L].

Due to the linearity of S(l) and (4.3), the function 7°(1) is bounded and
uniformly continuous in [0, L]. Hence there exists a global minimizer
I(t) € [ly, L] for (4.13) satisfying

(4.14)  A@) +2P(U@)) <yl +t?P(l) foralll € [ly, L], t>0.
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It can be verified (see [5]) that the necessary and sufficient conditions
for (4.14) are given by the system:

(4.15a) 1(0) = lo,

(4.15b) I(t) > 1(s) fort>s,

(4.15¢) () +2P(I(t)) <yl +t*P(l) foralll >1 (),
(4.15d) FI(t) + 2 P(I(t)) < ~l(s) + t*P(I(s)) for all s < t.

Here, we use the notation I~ (¢) = lim,_,;{(s) for s < ¢, and analogously
IT(t) = lims_;I(s) for s > ¢. In fact, the initial condition at ¢t = 0
implies (4.15a), the model of brittle fracture requires that /(¢) should
be an increasing function of ¢ as written in (4.15b), and (4.15¢)—(4.15d)
follow directly from (4.14). In view of (4.7), the differentiability of P
and (4.15c) lead to the necessary optimality condition

(4.16) v+ t2P'(1(t)) > 0.

It is important to note that (4.15d) holds true in the case where [ is
continuous as well as in the case of a jump [t (¢) # [~ (¢). The jump
can be characterized by

(4.17) V@) = @]+ [P (1) — P ()] = 0.

Alternatively, if I() were a uniformly continuous function, then [ (¢) =
[=(t) in (4.17) and the Griffith law of fracture would be satisfied:

1) W=l
I8 1) > 0, 7+ 2PU0) > 0, 1) (3 + £PAE)) =0, ¢ >0,
The set of critical points for (4.13) is given by:

L,
(419) Mt = l() lf’)/ + t2PI(l()) Z 0,
I ify+#*P'(1)=0 andl>I(s)fors <t.

Using non-positivity of P’ we define

(4.20) G(t,1) ==t —+/v/(=P'(1)), P'(l)#0
and rewrite (4.19) as

L7
(421) Mt = lo if G(t, l()) <0 or Pl(lo) = 0,

I ifG(t,1)=0 andl>I(s)fors <t.
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Further, (4.13) is equivalent to
1(0) = l,

minimize vl + t°P(l) overl € M; fort > 0.

The advantage of our formulation (4.22) is related to the fact that it not
only uses function values 7(1) but also the derivatives 7"(l) which gives
a more accurate account of the extrema. In the numerical realization we
find that for (4.13) a finer discretization with respect to [ is necessary
to achieve the same accuracy as (4.22).

4.3. Numerical example (continued).

4.3.1. The discrete potential energy and its derivative. In this and the
following section we consider the example of Section 2.4 with a mode-3
surface traction. For [ € [0, 1] the numerical solution of (3.1) is com-
puted by the algorithm described in Section 3 . The reduced potential
energy function P and its shape derivative are obtained from (2.10)
and (4.4). For numerical calculations the cut-off function x in formula
(4.4) is taken piecewise-linear in Q with x = 1 around the crack tip,
x = 0 near the external boundary 02, and symmetrically centered with
respect to each crack tip. For [ = 0.5 and 8 = 7/8 the numerical values
of P and P’ are depicted for various mesh-sizes h and h¢ in Figure 11.
These graphs show linear dependence of both P and P’ on h as well as

x 10 (a) energy (mPaEhz) X 107 (b) derivative (mPalth)
-3.03[ [ 4+ h=1/20 -2.51
—— h=1/40
-3.04{ | 4 h=1/80 252
_3.05 -2.53
-2.54
-3.06
-2.55
-3.07
-2.56
-3.08 257
-3.09 -2.58
1/80 1/40 1/20 1/80 1/40 1/20
mesh-size hC (m) mesh-size hC (m)

FIGURE 11. Error of the discretization.

he. In further calculations we fix the mesh-parameters A = 1/80 and
he = 1/320.

We approximate the functions P and P’ by its discrete values in
nodal points | = 0, h,...,1, respectively | = h,2h,...,1 — h for P'(l).
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The results are depicted in Figure 12 for various fibering angles g =
0,7/16,7/8,7/4,37/8,7/2. Here mPa stands for mega Pascal. We

2
(a) energy (mPalh®) x107

ém_z
< ’

+ pB=0
o B=1il
x  [B=118 -10
*  B=14
< B=3m8 | -12
O B=m2 |1 1(B)
0 05 1 0 "~ 05 1
crack length (m) crack length (m)

Ficure 12. Potential energy and its shape derivative.

find regions of convexity and concavity of P and minima of P’(l):
(4.23) P'(I*) < P'(1) for alll,

which occur for I* ~ 0.3 if 3 € {0,7/2}, and for [* =~ 0.2875 if § €
{m/16,7/8,m/4,3n/8}. They are marked by dotted-lines in the figure.
From Figure 12 we observe the following properties:
e P(l) <0, P'(I) < 0for all 3, the limit cases f =0 and § = 7/2
are close to each other.
e 3 — P and f — P’ increase for 5 € [0,7/8] and decrease for
pen/8,m/2].

e P(l) is concave on (0,1*) and convex on (I*,1) for all 3.

4.3.2. Delamination under mode-3 loading. Now we apply the numeri-
cal data from Figure 12 and describe a quasi-static delamination of the
composite with crack. For numerical tests the physical parameter 7 is
taken as v = 25%2/2p ~ 0.011 (mPa-m).

To endow the loading parameter ¢ > 0 with a physical scale we
multiply it by go and consider the linear loading got (mPa) according
to (4.8). Since P'(l) is negative G(t,1) in (4.20) is well-defined and
got(l) can be obtained from

(4.24) 0= goG(t,1) = got — go/v/(=P'(1)).
For § = 7 /8 this curve is shown in Figure 13 (a) and (b), respectively,

by a dashed-line. In the remainder of this section we analyze the func-
tion T defined in (4.12) with respect to local and global minima using
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(4.18) and (4.22), respectively. The curve defined in (4.24) contains all
critical points of 7" inside the optimization interval.

(a) stable growth (b) unstable growth
—o "
-~ G(h=0 - G®(h=0
0.8 0.8 - - G(t,I)=0
E E _—
s 06 G*(t)=0 £ 06 G(th=0
2 2
g |,=0.3982 g "=0.3982
X 04 ; X 04
I IS
3] I* ¢ 3] .
=0.2875 L 1'=0.2875 Griffith
02 | G(t)=0 02 O
Griffith: opt N — opt
0 gcr gcr ~a. - _ _ 0 IO_O'l gcr \\ ~—_ _ _ ]
0 50 100 0 50 100
loading gt (mPa) loading gt (mPa)

FIGURE 13. Quasi-static crack growth as 5 = 7/8.

We start with the discussion of local minima and fix an arbitrary
lo € (0,1). Following the Griffith fracture hypothesis, a critical loading
required to start the growth of a crack of length [, is determined from
(4.24) by

(425) ggrifﬁth(lo) = got(lo) where G(t(lo), lo) =0.

Then the constant function /(¢) = [y is the unique solution to (4.18) as
long as G(t,1y) < 0.

Next we seek for the solution [(¢) to (4.18) for ¢ such that G(t,1y) > 0.
For this purpose points [* € (0,1) of local extrema of #(l) must be
found. For our data we obtain one minimizer [* which is equivalently
characterized by

(4.26) G(t,1*) > G(t,1) for alll,

independently of ¢t. For 5 = /8 we obtain [* ~ 0.2875, which is marked
with a dotted-line in Figure 13. The line | = [* separates G(t,1) = 0
into two branches along which /() is invertible. These two branches are
given by G~ (¢,1) =0 for [ € (0,1*), and G*(¢,1) =0 for [ € [I*,1). The
local solution [(t) = ly of (4.18) meets either G~ (¢,1) = 0 if Iy < I*, or
G*(t, 1) = 0if Iy > I*. In the latter case [(t) is an increasing function.
Therefore if Iy € [I*,1), then [(t) satisfying G (¢,1(t)) = 0 is the unique
continuous solution to (4.18) for all ¢. Alternatively, [(¢) obtained from
G~ (t,1) = 0 is a decreasing function. Hence if [y € (0,1*) then there
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is no solution {(t) to (4.18), which is continuous at the points ()
satisfying G(t,1p) = 0.

To explain the non-existence of a solution to (4.18) we observe that
this relation constitutes a local optimality criterion for (4.13). In our
example this results in the following: The points I* found by (4.23) and
(4.26) coincide. Thus P(l) (and hence the total energy I + t2P(l)) is
convex along the branch G*(¢,1) = 0 and concave along G~ (t,1) = 0.
Hence, points [(t) located on G*(t,1) = 0 provide minima of the total
potential energy, whereas points on G~ (¢,1) = 0 give its local maxima.

Now we look for a global minimizer of the shape optimization prob-
lem (4.14) represented in the form (4.22). Solving it numerically we
find continuous solutions for initial cracks of the length I, € [I*,1),
which coincide with those obtained by the Griffith fracture law (4.18).
For f = /8 and [y ~ 0.3982 the solution [(t) to (4.21), (4.22) is de-
picted in Figure 13 (a) with a solid-line. For initial cracks of the length
lo € (0,1*) we derive discontinuous solutions with a jump It — Iy > 0
at the point ¢ where the jump condition (4.17) is satisfied, i.e.

9y t(lo) := got where t satisfies
G(t,17) =0, and ~[I* — o] + t2[P(I") — P(ly)] = 0.

For f = 7/8 and Iy = 0.1 the solution [(¢) to (4.21), (4.22) is depicted
in Figure 13 (b) with a solid-line. We find numerically that {* =~
0.3982 (this value for ly was chosen in the previous example of stable
propagation), g% ~ 63 (mPa) and gS"fith ~ 69 (mPa). Here the
value of critical loading obtained by the shape optimization approach
from (4.27) is smaller than the one predicted by the Griffith fracture
criterion (4.25).

We obtain an improved curve of critical loading by determining ¢(1)
from the following equation

(4.27)

G*(t,1) for 1 € [I*,1),
got — g2P(1) for l € (0,1*),

where g°P*(l) is computed according to (4.27) using (4.22) and (4.21)
for all discrete length-parameters [ € (0,1*). For § = 7/8 this curve is
depicted in Figure 13 (b) with a dash-dotted line.

The delamination of the composite with the initial crack of length
lo € (0,1) under linear quasi-static loading got can be constructed

geometrically by the following algorithm.
Algorithm 2.

(0) Fiz the initial crack length ly € (0,1), find t(ly) such that
G°P*(t(ly), lo) = 0.

(4.28) 0=G"(t,1) := {
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(1) For allt < t(lo) we have l(t) = ly (no growth).

(2) At t = t(lo) find I(t) = max{ly, [T}, such that IT satisfies
G°P*(t(ly), 1) = 0 (initiation of crack growth).

(3) For all t > t(lp) find I(t) such that GT(t,1(t)) = 0 (crack
growth,).

If [T = Iy in Step 2 then the propagating crack is stable and it grows
in a continuous way. Otherwise, if [T > [, then the crack propagation
is unstable with the jump [T — [,.

Next we solve G°P*(¢,1) = 0 for various choices for the fibering angle
B =0,7/16,7/8,7 /4,31 /8, /2. The results are depicted in Figure 14,
and are compared to the solutions of G(¢,1) = 0 according to the Grif-
fith law (4.25) indicated by dashed lines. The points I*(5) separating

1 1
0.8 0.8
E E
< 0.6 < 0.6
S) x  B=1U8 IS) +
E’ 4 * (=174 E & o 6
—;4% 0.4 ®) ] 4 2 B=3178 é 0.4 l*(B) b <>;
0.2 — — by Griffith 0.2 — — by Griffith
0 == 0 ‘ e
0 50 100 0 50 100
loading (mPa) loading (mPa)

FIGURE 14. Curves G°?*(t,1) = 0 of critical loading.

the intervals of stable and unstable crack propagation are indicated
by dotted-lines. For every initial crack of length [, the delamination
process can be constructed by Algorithm 2.

From Figure 14 we can report on the following features:

e The toughness with respect to the critical mode-3 loading of
the composite materials is maximal at 8 = 7/8.

e The curves for the limit cases § = 0 and 8 = /2 are close to
each other.

e In the interval [I*,1) the crack growth is stable, otherwise it is
unstable.

Figure 14 shows clearly that gS"f®(/;) — oo as lp — 0. To ex-

plain this behavior, note that the limit case lj = 0 corresponds to
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the initialization of a crack in a continuous solid which can not be de-

scribed exactly by the above macro-crack model. Nevertheless, from

Figure 14 we may conjecture that goP*(0) < oo, which is more con-

sistent physically than ¢Sifih(0) = oco. The other limit behavior

¢ cr
oPt(ly) = ¢SHt(]) — oo as Iy — 1 is due to the boundary condi-

tion describing a clamped edge at [ = 1.
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5. APPENDIX

The elasticity coefficients in (2.5) have the form (see [19]):

Cf = C:',,?, sin® B + 2(C1; + 2C%) sin B cos? 3 + C1 cos* B,
066 = Cgs + (O3 + C1; — 2013 — 4C%g) sin” B cos? B,
016 = [ 11 cos” f — Css sin” § — (Ci5 + 20(156)(0052 B — sin” 5)}
X sin (3 cos 3,
(5.1 CP =, cos® B + Clysin® 3,
CE =, sin® B + Cly cos?
P = (¢4, — CL.)sin B cos B,
CF, = Chysin® B + C', cos? B,
CQﬁG = (C1y — C33) sin B cos B,
Caz = Csy,
where the coefficients subscribed with ”prime” are related to the ro-

tated coordinate system (', 5, 24). They connect the material param-
eters in (2.1) by the relations:

011_9(E2 V_§2)’ 012_0(1/21 +V31V32)’

E; Ey Es
¢ (V31 Tt Va3 r o L 1/_;31
013_0( E, ) 022_9(& Eg)’
(5.2) U3y | Vl31 Byl v
=40 =0 - =
B+ %) G553

01114 = GQI; Cé5 = G327 Cé(i - G317
1 ( 1 V32)( 1 V§1) (@_*_ 1/317/32)2
0 Ey FE3/\FE, Ej FEs FE5 '

As specific case we suppose throughout that the material parameters
(2.1) satisfy the identities:

Ei=E=E, vy=v, Gyy=——
(5.3) 1 2 21 21

v = v3p =13, G =Gz = Ga,

thus reducing the number of independent material parameters to 5.
These parameters describe a fibering along the z}-axis of a material
which is isotropic in every plane z = const. With (5.3) we can rewrite
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(5.2) in the form:

E 1 2 E (v 12
I - 73 [ s 3
011_022 El‘*’l/(E E3)’ 012 K/l—}—l/(E—{_Es),

E
Cls = Chy = krs, Chy = Ii—3(1 - v),

G 5 ok

Cu = ma Css = Cgs = G,

1_ 1—V_2_V§:(1_V_§)_<z+v_§),

x E B \E E E " E,
Note that the coefficients in (5.4) fulfill the relations:
(5.5) Ciy +2Cy = Cyy = Coy,  Cpp + Cyy = 0.5k.

In what follows we consider the two limit cases 8 = 0 and § = +7/2.
For 8 = 0 we introduce the Lamé parameters:

(5:5) p= g A=rrs (B4

2o1+v) ~ "1+v
In this case, from (5.5) and (5.6) we obtain that x = 2(A + u) and the
coefficients in (5.1) are the following:
0505 = Cg(s = Gs, 0?6 = 036 = 025 = 0.

(5.7)

Using (5.7) the stress in (2.6) is split into the components for (uy,u)
o11(u) = Clyury + Clyugy,

(58) 0'22(U) = C?Q’U,l,l + CQQ/U/Q,Q,
o15(u) = Chy(ur,2 + uz),

and independent components for uz:

(5.9) 03(u) = Cgsuzz,  0f3(u) = Cogua,.

Hence from (5.8) and (5.9) we arrive at a 2-dimensional Lamé/ Laplace
operator in (2.9) for the in-plane/ anti-plane isotropic problem:

aga,a(u) = pAuy + (A + p)(divu) 4,
aga,a(u) = pAug + (A + p)(divu) o,

aga,a(u) = G3Aus,

where divu = uy 1 + ugo and Au; = u; 11 + uige, 2 =1,2,3.



INTERFACE CRACKS IN COMPOSITE WITH NON-PENETRATION 37

Next consider the case f = £7/2. From (5.1) and (5.3) we derive

that
2

+7/2 E3 E (1 v
Ci=rga-n. Cn=ni (5 g)

5.10 +m/2 +7/2 E +7/2 +7/2
(5.10) Cia? = ks, 055/:ma c = 66/=G3,

+7/2 +7/2 +7
016/ :Cze/ =Cys /2:0-

According to (5.10) the stress tensor (2.6) is split similarly to (5.8) and
(5.9). As a result we arrive at the following operator in (2.9) for the
in-plane/ anti-plane orthotropic problem:

E
Oitoz:({f(u) = Hfg(l — v)ur 11 + Gsug 22 + (ks + G3)ug 10,
J;Xf(u) = (k3 + G3)uy,12 + Gug 11 + (21 + A)ug 29,

+7/2
O3a,a (u) = G3us 11 + pus 2.

We can conclude that the spatial model under consideration is in-
termediate between the plane isotropic model for § = 0 and the plane
orthotropic model for g = +7/2.



