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Abstract

The shape derivative of a functional related to a Bernoulli problem is derived without using the
shape derivative of the state. The gradient information is combined with level set ideas in a steepest
descent algorithm. Numerical examples show the feasibility of the approach.
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1. Introduction

In this paper we consider the shape optimization problem

. 1 2
minJ(I')=min= | u“drl, (1.1)
r r 2
r
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whereu = u(I') is a solution of the mixed boundary value problem

—Au=f in$,
u=gq Only,

du =g onrl. (1.2)
on
Here the boundarys2 of the domain2 c R? is the disjoint union of a fixed paif; and
an unknown parf” both with nonempty relative interior.
We shall characterize the shape derivatigI", k) of J(I") with respect to perturba-
tions of the domain2 defined by a vector field. Subsequently we solve (1.1) numerically
by means of a level set implementation. For this procedure the shape derivative is used to
update the level set equation during an iterative minimization technique and the zero-level-
set of the level set function represents the desired boundary
The approach that we utilize for computing the shape gradient differs from the com-
monly employed techniques. To put it into a perspective with other methods, we proceed
formally and consider the family of perturbed problems

1
min  J(I}) = E/u,zdr, (1.3)
I
subjectto e(u;) =0. (1.4)

Heree represents the equality constraints due to the partial differential equation (1.2)
andu,; denotes the weak solution of (1.2) on the perturbed donmie= F;(£2), where
F,: 2 — R? is the transformation given by, (x) = x + th(x) for + € R. The most
common approach for computing the Eulerian derivativV&r™, h) = lim,_ o+ %(J(F,) —

J(I')) is based on the chain rule. Consideringas a function of the domain—the depen-
dence on the domain being encoded in the scalar parameter (I, h) can be represented
as

1 ([0u?

dJ(T, h) =/uu/(1", nydr + 5/(% +Ku2>h.ndr, (1.5)
n

r

wherex is the curvature of” andu’(I", h) is the shape derivative af in the directionh.
Following [16],u'(I", k) is defined in terms of the material derivativel", 4) of u at I' in
the direction,

1
M(F,h)= lim —(MIOFZ_M). (16)
t—0t ¢
Once the material derivativig I, /) is available, one defines the shape derivative
W' (Cyh)y =u(l, h) — V- h, (1.7)

using the tangential gradieft;. Frequently an equation for' (I", k) can be derived by
formally differentiatinge () = O with respect to the domain. For system (1.2) one would
find thatu’ = u/(I', h) satisfies
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—Au'=0 ing,

=0 only,

ou’ ) g

a—:lep(h-anu)+ f+8—+/<g h-n onrl, (1.8)
n n

where diy- denotes the tangential divergence and the solution of (1.2) orf2. This
formal step must be justified by verifying the identity (1.7). This in itself is a nontrivial
task. Introducing a suitably defined adjoint variable and using (1.8), the first term on the
right-hand side of (1.5) can be manipulated in such a waydtiat, #) can be represented

in the form assured by the Zolesio—Hadamard structure theorem [4]

dJ(T, h):/Gh-ndF.
r

Note that the kernely does not involve the shape derivativ&l, 1) any more.

The Eulerian derivative of can also be obtained by considering both the state vari-
ablex and the geometric variable as independent variables. Then the equality constraint
e(u) = 0 can be imposed by means of a Lagrangian approach. The associated Lagrange
multiplier becomes the state variable of the adjoint equation. This technique which was in-
vestigated in [5,6], strongly depends on sophisticated differentiability properties of saddle
point problems.

In the approach that we employ for characterizity I", i) we avoid the disadvantages
of the “chain rule” approach as well as those of the Lagrangian technique. Again, we con-
sider the state variable as a dependent variable. However, differently from the “chain
rule” approach, we bypass steps (1.6)—(1.8) by exploiting the special structure of the cost
functional and a consistent use of the adjoint variable. On the technical level the existence
of the material derivativé (1", ) can be replaced by Holder continuity of the state with
exponent greater tha%q with respect to the deformation of the shape, see Proposition 3.1.
Since this approach does not utilize the shape derivative of the state it has the potential of
allowing the characterization of the shape gradient einder weaker regularity assump-
tions. For exampley € H?(£2) is not sufficient to ensure that the solution of (1.8) is an
element ofH1(£2). In our analysis, however, we only neee& H2($2) for the characteri-
zation of the shape derivative.

Let us turn to a brief description of the organization of this paper. The short Section 2
gives the precise problem formulation. In Section 3 we gather necessary tools from shape
analysis. The existence of a shape derivative and its analytic expression are proven in
Section 4. In Section 5 a level set approach, its implementation and numerical examples
are described. The proofs of some technical results used in Section 3 are postponed to
Appendix A.

2. Formulation of the problem
Consider the shape optimization problem

1
minJ(F)Emin—/uzdF (2.1)
r r 2
r
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subject to the mixed boundary value problem

—Au=f ing,

u=ug; Oonly,

Ou =g|lr onT, (2.2)

on
where the boundargs2 is the disjoint union of a fixed patt; and an unknown park’
both being nonempty and such that dist, I') > 0. We assume that there is a fixed convex
bounded open séf ¢ R? such that?2 c U. We requireu, € H¥2(Iy), f € H (U),s > 3
andg € H?(U). Furthermore we assume that the shape optimization problem (2.1)—(2.2)
has a solution which is smooth enough to ensare C11. The class of feasible boundaries
I will be described below.

The optimization problem (2.1), (2.2) arises for example in free boundary problems of

Bernoulli type: Find(u, I") such that

—Au=f ing2,

u=ug Only,
ou

u=0 and a—=g|r onrl. (2.3)
n

Note, that a solutiotix, I") of (2.3) provides a global minimizer for (2.1) corresponding to
vanishing cost. Conversely, if there exists an optimal shape sucli ¢figt= 0, any such
optimum determines a solution of (2.3).

Let us define the Hilbert space

HIJ—'-d’O(Q)z{QDEHl(Q): (p|pd=0} (24)

endowed with the norm

1/2
9l = (Vo, Vo) 32,

where(-,-)s denotes the inner product ib?(S) for any measurable seét Similarly, we
define forv € HY2(Iy) the linear manifold
H}ﬂd’v(g) ={p e HX2): ¢lr, =v}.

It is known that (2.2) has a unique solutiore H}d u (£2) which can be characterized by
the variational equation

Vu,Vo)o = (f.¢9)2 — (g.9)r =0 (2.5)

forall g € Hf (£2).

The objective of this paper is to calculate directly the shape derivative of the cost func-
tional in (2.1) at a domai® € C1-1 with respect to the boundary shapewithout taking
the shape derivative of. The admissible set of free boundaries is described by a particular
class of perturbations of the domaih Let H denote the set

H={heCt U)% hlr, =0} (2.6)
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and define for each € H andr € R the transformatior; : 2 — R2,
Fi(x)=x+th(x). (2.7)

One can verify thatF; is injective for|z| < th_l, 1, = max{|Dh(x)|: x € U} and defines
a CL1-diffeomorphism froms onto £2, = F;(£2). For suchr one obtains?2, € 11 and
2, C U. The boundary) £2; is the disjoint union offy and I, = F,(I").

The Eulerian derivative of the cost functionalin (2.1) at2 in the direction of the
vector fieldh is defined as

1
dJ (I k) = lim (I (1) = J (D)),

whereu, € H },ud(.Q,) satisfies

Vuy, Voo, — (fione, — (8. 90 = 0 (2.8)

forallp, e H 1111 o (820). The Eulerian derivative is called shape derivativéJf( I, k) exists
for all k1 € H and the mapping — dJ (I, k) is linear and continuous with respect to the
topology of C11(£2)2.

In the discussion below we shall frequently use the notation

o' =¢oF;. (2.9)

We also introduce the unit outward normal veciaand the unit tangential vectet

n:(Z;) and z=<‘n’;2). (2.10)

The tangential vector is oriented such tliaties on the left ofr.

3. Analysis of the state equation on the perturbed domain

In this section we utilize the method of mapping to compare the solutiar (2.8) to
the solutionu of (2.5). We shall use to indicate a generic positive constant which may
depend on the geometry ¢f and the choice of the vector fieldbut is independent of.

We recall from [16] the following transformation theorems:

Lemma 3.1.
(1) Let g, € LY(82,). Then ¢, o F, € L1(£2) and

/W[ dx; 2/(/); o F;detDF, dx.
2 2
(2) Leth; € LX(I}). Then h; o F; € LY(I') and

/htdl“, =fh, o F,detDF,|[(DF,) "n|dr.
I r
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In the formulation of the transformation formula for volume integrals we used
detDF;(x) > 0 on §2 for |¢| sufficiently small. A proof of the transformation theorem
for surface integrals will be given in Appendix A.

Above we have used the abbreviatidhF;) =" = ((DF,)T)~1. The following notation
simplifies the discussion below:

I;(x) =detDF;(x),
Aix) = (DF,0)) (DFE) T Lx), xef,

w(x) = LW|(DF,(x) "nx)|, xeT. (3.1)

We collect some useful properties of the functions defined in (3.1):

Lemma 3.2. Consider a fixed vector field & € H and let the transformation F; be defined
by (2.7). Then there is 1, > 0 such that the functions defined in (3.1) restricted to 7 =
(—tp, tp,) have the following regularity:

t— FeClg,ck@), t—Ftec(g, cl)),
t— L eCHT,C(2), t— A eCYT,C),
t— w, e CHJ, C(I)),

and the properties listed below:

(1) I, =1+ tdivh + r?detDh,

(2) there are positive constants «g, o1 and 8 such that 0 < ag < I;(x) < g and A, (x) >

BI for x € 2,

(3) %Ft|t=0 =h,

(4) &DFli—o=Dhand & (DF)~Y—0=—Dh,

(5) G lili—o=divh,

(6) L Al,—o=divhi — (Dh+ (D)T) = A,

(7) lim—ow, =1and Lw,|,—o=divy h,

where the surface divergence div is defined by
divrh=divh|f — (Dhn) - n.

In particular, the difference quotients defining the above derivatives with respect to
exist uniformly inx € £2 respectivelyc € I'.

Lemma 3.3 [12]. For 1 € H we have ¢; € H1(£2;) if and only if ¢' = ¢; o F; € H1(£2).
Moreover, the following inequality holds:

i _1+1nlDhls
19" | H12) < T Jm ot 1e,)-



132 K. Ito et al. / J. Math. Anal. Appl. 314 (20065) 126-149

In particular, ifg, = ¢|g, for somey € H(U) we have
lgr © Ft|H1(_Q) < C|(P|H1(U).

Lemma3.4. Forany f € LP(U), p > 1, wehavelim,_qo f o F; = f in LP(£2).

Proof. Fore > 0 choosef,; € CX(U) such thal f — f.|Lrv) < &. Using Lemma 3.1 and
the uniform continuity off, on U, one obtains the estimates

1
|f o Fr = feo Filirie) S —75 If = felrr ),
,
0

| feo Fr — felirc) <el2|YP,

the last one of which holds for allsufficiently small. Then the claim follows from
[fokF— fler) S| f ol — feoFilora) +1feo Fr — felor2) + 1 fe — flor)

1
<W|f_fg|LP(U)+E|.Q|1/p+E. O
%o

Lemma3.5. Let g € W22 (U), p > 1. Then the mapping t — ¢ o F; from 7 — W17 ()
isdifferentiable at = 0 and the derivativeis given by

1
lim =(p o F; — ¢) = Doh.
t—0t1

Proof. At first we establish the expansionirf (£2),
1
@ o Fy(x) —(p(x):t/D(p(x+sth(x))h(x)ds. (3.2)
0
Choose any, € C}(U) such thatip — g.|y1,yy < &. Then (3.2) follows from the esti-
mate
1
poF,—¢ —t/D(p(- + sth)hds
0

<o Fr — s o Fylpr() + 19 — @lLr(2)
1

LP(£2)

+ |@e 0 Fy — ¢ —t/D¢5(~+sth)hds
0 LP(£2)
1
+ t/|D<pg(~+sth)—D(p(-—i-sth)}ds 17| o
0 LP(£2)

As a consequence of (3.2), one obtains
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p

1
/‘;((ﬂ o Fi(x) = ¢(x)) — De(x)h(x)
2

J

2

p

1
/ D(p(x + sth(x))h(x) ds — De(x)h(x)
0

g//|1)go(x+sth(x))—Dgo(x)|”|h(x)|”dsdx,

which invoking Lemma 3.4 and the Lebesgue dominated convergence theorem ensures the
differentiability ofr — ¢ o F; atr = 0 with respect to the topology df?” (£2).
Since by Lemma 3.3 the left-hand side of (3.2) defines a functidi’if (£2) the same

regularity holds for the right-hand side. We show that its distributional derivative for fixed
t € J is determined by

1 1

D/ Do(-+ sth)hds = /[hTngp(. + sth)(I + st Dh) + D(- + sth)Dh] ds
0 0
(3.3)

Choosey € D(£2). Then using Fubini’'s theorem and integrating by parts the distributional
partial derivative(,,% is given by

1

a
<—/Dg0(~ + sth)hds, X>
ax,-

1
/D(p X+ ?th(x))h(x) dsix(x) dx
0

/D(p X +sth(x))h(x)—x(x) dxds

g
y

2
2 2

[ZZ x+szh(x))(3,,+sz—h (x))hk(x)
i 0x0x;

o\r—‘

+ Z a_go(x "‘Sth(x))aixihk(X)}x(x)dx ds

—1 0%k

=~

+ O\H

/[hT(x)DZ(p(x + sth(x))(I + stDh(x)),
2
D

go(x + sth(x)) (Dh(x)) ]X (x)dxds
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1
:// [T ) D%p(x + sth(x))(I + stDh(x)),
2 0

+ D(p(x + sth(x)) (Dh(x))l.] dsy(x)dx.
Note that (3.3) is valid also far= 0. As a consequence, we obtain
p

1
’D<;(<p oFy—¢)— D(th)>

LP(£2)
1
< //|hT(x)[D2¢(x + sth(x))(l +sch(x)) - ngo(x)]|pds dx
1
+//](D¢(x +sth(x)) — De(x)) Dh(x)|" ds dx.
Now the proof of the lemma follows using the smoothnesg ahd Lemma 3.4. O

Corollary 3.1. Let ¢ € HY(U). Then the mapping t — I,¢ o F, from J to L2($2) isdiffer-
entiable at = 0 and the derivative is given by

1 .
lim — (I, o F; — @) = div(ph).
t—0t

Proof. The result is a consequence of

1 1 1 . .
;(1[(/) oF; —¢)= ?(I, — D' + ?(wt — @) t—>0g0 divh + Do h =div(he). O

The Sobolev embedding theorem [12, Theorem 11.5.5] implies the following corollary.

Corollary 3.2. Let ¢ € W2P(U), p > 1. Then the mapping t — ¢ o F;|; from J to
wi-Yr.r(r) isdifferentiableat r = 0.

Corollary 3.3. Let ¢ € H2(U). Then the map t — w;¢ o F,|; from J to HY2(I") is
differentiable at + = 0 and the derivative is given by

1 .
lim —(w;p 0 Fy — @) =¢@divp h + Doh.
t—0t

Proof. The result follows from Lemmas 3.2, 3.5,
1 1 1 .
T(wipoFr—¢) = —(w — De' + ;(w’ —¢) 2 ¢dVi+Dg-h
and the trace theorem.o

For p = 2 in particular we infer the differentiability af— ¢ o F; att =0in L4(I") for
arbitraryg > 1 from the continuous embedding BfY/2(I") into L4 (I").
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Now we turn to the discussion of Eq. (2.8). It can be shown#hat u, o F; satisfies
(AVu',Vo)o — (L f', 9)2 — (wig', 9)r =0 (3.4)
forall ¢ € H%,,,o(g)- Above we have sef’ = f o F; andg’ =g o F;.
In fact, the chain rule for; = u’ o F,‘l entails
Du, = Du' o F7Y(DF ") = Du' o F;/Y(DF, o F;l)‘l = (Du'(DF) ™Yo F7L,

which by Lemma 3.1 implies

(Vur, Vi) g, =/(Dut)(Xz)(DW:)T(Xz)dxt

2

= /(Du’(DF,)_l) o Ft_l(x,)(Di/f’(DF,)_l)T o F Y (x) dx;
2

:/Du’(DF,)*l(DW(DF,)*l)TI,(x)dx
2

= / Du'(DF) YD F) T 1(Dy")T dx = (A, Vu', VY')g.
2
Apply Lemma 3.1 to obtain

(v o, = / F G (e iy = / fo Ry Ldx = (I, ', y)o
2 2

and
(g, I/ft)l“, 2/8 o Ft‘/ftwtdr = (wtgt, 1/ft)1“~
I
Hence (2.8) is transformed into
(A Vi, VYo — U f' ¥ e — (wg', v)r =0

for all ¢! H,lwd’o(.(z). Now, the result follows from Lemma 3.3.

Proposition 3.1. The solutions u’ of Eq. (3.4) are uniformly bounded in H1($2) for r € J.
Moreover, for f € HL(U),

1,
tl_'>r2+ﬁ‘(“ =01y =0 (3.5)

holds, where u isthe solution of (2.5).

Proof. Let G, € HY(U) be an extension qf,; from I'; to U. Sinceu’ — G4 € H}ﬂd’o(fz),
Eq. (3.4) together with the uniform positivity af; (x) for x € £2 implies the estimate
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Blu' — Gali < (AVW' —Ga), V' —Ga))
=L f'ou' —Gaa + (wig u' —Ga)r — (AVGy, V' —Gy))
< ' p2)lu’ = Galpzigy + lweg' |2y 14" — Gal 2y
+1A:VGal 2@’ — Gals
(11 ' 2c) + lwig' 12y + 1AV Galp2(g)) U’ — Galu,

where ¢ depends on the embedding constantE¥(§2) into L2(352) and the constant
appearing in the equivalence pf|; and the full #1 norm, but is independent of The
following calculation

1 1" o = / (10 7Y 0 Fy(x) f2 0 Fi () Iy (x) dx
2

/IIOF f dx a1|f|L2(U)

2
entails the bound
2 2
|Ilft|L2(_Q) < Ol1|f|LZ(U)'
Concerningw, g'| 2.y, ONe argues

|u)tg |L2(F) Cl)|gOF[|L2(F) CUC|gOF[|H1(_Q) CL)C|g|H1(U),

with o = max . |w; (x)|, and where the last inequality follows by Lemma 3.3. Summa-
rizing, we obtain the a priori estimate

lu' — Galr <c(1f 2wy + 18larw) + 1Alool Gal i)

which implies the boundedness #f in Hl(.Q) for r € J. In order to prove (3.5), sub-
tract (2.5) from (3.4) to obtain foy € H Fd 0 (82),

(V@' —u), Vx)g=—((A = DVu', Vx) o + (A V', V)2 — (Vu, Vi)g
—((Ar=DVu' V) + Ui fT = fo )2 + (wig" —g. 0r-
Sinceu’ —u e H}M(Q), one may choosg = u’ — u which gives
' —ulf=—((A — DVU' V' —w) o + L f' = fou' —u)e
+(wig' —gu' —ur. (3.6)

As a consequence, one concludes

u' —ulp < c - I)VM[|L2(Q) + 1L f" = flizee) +wig" = glizar))

which in view of Lemmas 3.2, 3.4, Corollary 3.2 and the boundednes of in H1(£2),
respectivelyL?(I") implies

Iin})u’ =u in HY(Q). (3.7)

11—
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Boundedness @t follows from |gt|L2(1") = |g @) Fl|L2(F) < C|g o FT|H1(.Q) S Clngl(U)'
Finally dividing (3.6) byt results in

1 1
“lut —u)? = —(—(A, —DVu', V' - u))
t t o

1 1
+<—(Iz—1)f’,u’—u> +<—(f’—f),u’—u>
t Q t Q
1 1
+<—(wt—1)g’,ut—u> +<—(gt—g),u’—u> ,
t r ! r

which implies (3.5) using Lemmas 3.2, 3.5, Corollary 3.2 and (3.7).

4. Theshapederivative

In this section we turn to the calculation of the Eulerian derivative of the cost functional
in (2.1) which will turn out to be a shape derivative. We point out that we do not use the
shape derivative af, with respect tal". At first we assume’ € H1(U). This assumption
will be weakened later on. In view of Lemma 3.1 one obtains

JU) —JU) =5 /qul dﬂ——flul ar

I

1
=5 /[w,|uf|2 — |u)?]dr

r

I\)li—‘

/Kw—bmﬁ ul?) + (wr — Dul?+ |u'|? — |u|?]dT
r

I\)ll—\

fﬁw (112 = () + (wr — Dju?

+20 —wu+u’ — u|2] ar
= J1(?) + J2(t) + J3(1) + Ja(?).
Lemma 3.2 and Proposition 3.1 entail
J1(0) = Ja(0) =0. (4.1)
Another application of Lemma 3.2 and the observation-dive C (I") (which follows from
x — n(x) € C%L(IM) gives

J2(0) = %/|u|2div1~hd1“. (4.2)

Let p € H}, (£2) satisfy the adjoint equation

forall ¢ € H}‘!O(Q). ThenJs can be written as



138 K. Ito et al. / J. Math. Anal. Appl. 314 (20065) 126-149

J3(t) = (V(ut —u), Vp)_Q.
Proceeding as in the derivation above (3.6), one finds

J3(t) = —((A; — V', VP)Q + Ui f' = f.p)e+ weg —g. pr.
which implies

J3(0) = —(AVu, Vp)e + (div(hf), p), + (h- Vg +gdivr h, p)r (4.4)
using Lemma 3.2, Corollaries 3.1 and 3.3. Note that sa farH}dvo(Q) was sufficient to

justify the derivatives. Sinc& e C11 elliptic regularity theory implies:, p € H2(£2).

The first term in (4.4) will be manipulated using the formalism for the curl-operator
in R3. For this purpose we embed n, Vu and Vp into R3 by appending a zero third
coordinate.

Lemma4.1. Theterm —(AVu, Vp) o can be represented as
—(AVu,Vp)o = (V(h -Vu), Vp)Q — (hAu,Vp)o —(Vu-Vp,h-n)r

ou
+ (—, h- Vp) .
on r
Proof. The identity

((Dx)" — Dx)e =& x curly, (4.5)

which holds fory € H1(£2)% and& € R3, suggests to separate the skew symmetric part
of Dhin A as

—AVu =2DhVu + (DhT — Dh)Vu — divhVu
=2DhVu — divhVu + curl(u curlh) — u curl curlh.
In the last step we used (4.5) together with
curl(xv) =vcurly + Vv x x, (4.6)

which holds for all(x, v) € H(£22)® x H(£2). Applying (4.6) once more with =« and
x = curlh, one obtains

—AVu =B —curl(Vu x h),
where we have set
B =2DhVu —divhVu + curlcurl(uh) — u curlcurlh.
Using curlcurly = grad divy — A x twice, one finds
B = —A(uh) + V(div(uh)) — ucurlcurlh + 2DhVu — divhVu
=—hAu —ulAh —2DhVu +Vudivh +h - Vu)
—ucurleurlh +2DhVu — divhVu
= —u(curlcurlh + Ah — Vdivh) — hAu+ V(h - Vu)
=—hAu+ V(h-Vu),
which implies
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—AVu=—hAu+ V(h-Vu) —curl(Vu x h). (4.7)
Let z = (Vu x h)3 denote the third (nontrivial) coordinate ®f: x 4. Then Green’s theo-
rem implies

(CUI’|(VM X h), Vp /(szpxl Zx1 Pxp) AX

_ / (Prss — Prary) dx + / 2(paynz — pryn1)dl”
2 082

—/(Vu Xh,nxVp)ydI'

=—Nu-n,h-Vp)r+NVu-Vp,h-n)r (4.8)
where we used the Lagrange identity
(axb,cxd)=(a,c)b,d)— (a,d)(b,c)
fora, b, ¢, d € R3. The Lemma follows now from (4.7) and (4.8)0

Sinceh - Vu € H}- (£2), it may serve as a test function in the adjoint equation (4.3).
Hence Lemma4.1, (2 2), (4.3) and the divergence theorem togethel |wjte= 0 imply

—(AVu,Vp)o=(h-Vu,u)r +(fh,Vp)og —(Vu-Vp,h-n)r +(g,h-Vp)r
=(h-Vu,u)r + (fp,h-n)r — div(fh), p)o
—(Vu-Vp,h-m)r+(g. h-Vp)r.
Inserting this expression into (4.4) gives
J3(0) = (h - Vu,u)r + (fp,h-n)r = (Vu-Vp,h-n)r
+ (g, h-Vp)r+h-Vg+gdivrh, p)r
1 .
= <V<§M2 + gl’), h) +(fp,h-n)r+ (gdivrh, p)r
r
—(Vu-Vp,h-n)r.
Combining the last result with (4.2), one obtains

1, 1, .
dJ(F,h):/ h-V(su?+ep)+(5u®+gp)divrh|dr
r

+(fp—Vu-Vp,n-hr. (4.9)

It is apparent that the Eulerian derivative is in fact a shape derivative. The representa-
tion (4.9) can be further simplified if the integration by parts formula holds

b
/(Vb~V+bdivrV)dF:/(a—+bdivrn)n-VdF (4.10)
n
r

, Formula . . sufficient condition -regu arltyo r.
16, F la (2.144)]. A suffici dition &2 larity of
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Theorem 4.1. Let 2 € C1Y and f € H*(U), s > 3. Then the shape derivative of J at £2
with respect to 4 € H is given by (4.9). If the integration by parts formula (4.10) holds the
shape derivative of J can be represented as

d (1 1
dJ(I, h) 2/[8_ (§u2+gp> + <§u2+gp)/< +fp—Vu- Vp:|n -hdrl,
n
r (4.11)
where « denotes the mean curvature of I".

Proof. At first we show that (4.9) is valid fof € H*(U), s > % This is a consequence of
the continuous dependence on the data of the solution of the state equation as well as the
adjoint equation

ul g2y < c(1f 122y + [ualmaery) + 18l m12cm)s

IPla2e) < clulgyzry,
with a constant > 0 which just depends of2, the continuity of the trace operator from
H*(22) » H*"Y2(I"), s > 3, and the density off1(£2) in H°(£2).
The representation (4.11) follows from (4.9) and (4.10) semﬂg%uz + gp together
with the observation that

divn =«,
holds inR2. O

Remark 4.1. The derivation of the shape derivativebtised the fact that dist/;, ") > 0
in the embedding properties &/2(I") and the regularity of and p. If 32 is connected,
HY2(I") should be replaced by the space

Hl () = {¢ € HY?(92): =0 0nd2 \ I'}.

Furthermore, in order to assure the required regularity ahd p one has to impose the
condition thatl'; andI” meet at an angle less than

5. Numerical results

In this section we indicate how the derivative information in (4.11) can be combined
with level set ideas to obtain an efficient algorithm for the solution of the shape optimiza-
tion problem (2.1)—(2.2). The level set technique was introduced in [13] to track moving
interfaces. Meanwhile this technique is well known and used for a wide range of appli-
cations. A thorough discussion of the method and many applications can be found in the
monograph [15]. We formally present the basic idea and represent a family of dafjains
t € [0, T1, by a single level set functiot : R? x [0, T] — R such that for alk € [0, T,

2, =|xeR% y(x,1) <0}, I ={xeR% y(x,1 =0}

((£20, I'p) corresponds to the pafr2, I') of the previous section). Here we are interested
in the case of2; being a small deformation of a given reference donsagrspecified by

2 ={x(t; X) =X +1th(X): X €20, 1 € (0, T1}. (5.1)



K. Ito et al. / J. Math. Anal. Appl. 314 (20065) 126-149 141

The functiony is determined by the requirement
Xelh = x(t;X)ely, te(0,T],
which can be equivalently expressed by the identity
Y(x(t; X),1)=0, 1€(0,T]
for all X € I'p. A formal differentiation leads to the level set equation

Y +Vy-h=0,
¥ (-,0) = yo, (5.2)

whereyy is any function such thaRg = {x € R?: yp(x) < 0}. The representation of the
shape derivative of

dJ( h)= f G(h-n)dr,
r
with a kernelG being determined by (4.11) suggests that any vector fiedatisfying

Vi (x,0)
[V (x, 0)]
for all x on the boundaryp may serve as a descent direction fbrat Ip. Since (5.3)

determines the deformation fietdonly on I'p, the kernelG still needs to be defined offp.
Let Gext denote a suitable extension Gfand insert

_ Vir(x,t)
h(x) = GeXt(x)7|Vl//(x,t)| (5.4)

into (5.2) to obtain the Hamilton—Jacobi equation
wt - Gext|vw| =0,
¥ (-,0) = vo. (5.5)

EvaluatingJ at 27 for T sufficiently small this choice of ensures a decrease.bby con-
struction. Summarizing, the proposed level set based steepest descent algorithm requires
at each iteration the following steps:

h(x)=—-Gx)nkx)=-Gx) (5.3)

(1) solve the state equation (2.2) and the adjoint equation (4.3) on the current d@gain
(2) compute the kernet,

(3) compute the extensiaBiet,

(4) solve the HJ-equation (5.5) far,

(5) update2g by 27 = {x e R% ¢ (x, T) < 0}.

Sincel}, t € (0, T], and Iy are close forT sufficiently small,y» and consequentl ox;
need only be known on a neighborhodidof I [2]. For the extension of; to N we use
the fast marching method of [3]. As a by-product the signed distance function

~ _ | dist(x, Ip), x € N\ Lo,
I/’O(x)_{—dist(x,ro), x € NN o,



142 K. Ito et al. / J. Math. Anal. Appl. 314 (20065) 126-149

is constructed by solving the eikonal equation
Vol =1

on N. Henceyg also serves as a level set function to represemtlt is noted that ~the
solution of the HJ-equation (5.5) remains a signed distance functinisf replaced by/g
[3]. Therefore, integrating (5.5) ov§0, T'], we obtain usingvy (-,1)| =1, € (0, T],

T
(-, T) =10+ Gext/!vw(.,sn ds = Yo+ GexT.
0

This representation fay is used in the neighborhoad. Alternatively, (5.5) may be solved
applying one of the ENO schemes discussed in [13—15]. The choice of the final time

a delicate issue. We determiffeaccording to the following heuristic which is inspired by
the Armijo—Goldstein line search strategy. Using (5.1) and (5.4) a formal expansion gives

J(I'r) =~ JIp) +dJ(To, T = J(Ip) — IIGIIiz(FO)T,
whereu, denotes the solution of (2.2) @p,, ¢ € [0, T']. The requirement
JUI'r) =aJ(I0)
for somea € (0, 1) then suggests the choice
_JUDo)

- 2
”G “LZ(F())

11— ).

We demonstrate the feasibility of this approach by means of the outer Bernoulli prob-
lem: find a domain2 and a function: € H1(£2) such that

Au=0 ing2,

u=1 onrly,

u=0 onrl,

2—Z=g onr, (5.6)

where I is the fixed inner, and” the unknown outer boundary componentsof It is
known that (5.6) has a solutioff2, u) if g is a negative constant an@; is Lipschitz
continuous [1]. A survey of the Bernoulli problem can be found in [7].

Example 1. First we consider the case whelg is given by the circle

Li={(,y): (r =12+ (y - 12 =r32}.

In this case the free boundary is a concentric circle with ragtiwghich is determined by

_1
R=rge sk

andu is given by

1 — 112+ (y—1)?
u(x,y):EgRln > )r2 =1 +1.
d
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Fig. 1.
Table 1
2

Iter. J(Ir) ||G\|L2(FT) T
1 3.15340 3928927 00722
2 0.17410 107601 01456
3 0.00521 001775 02641
4 0.00037 000132 02521
5 0.00004 000013 02414
6 0.00002 000009 01858
mean radius 0.4983
variance 0.0008
llee — ttex oo 0.0021

In the numerical example below we sgt= 0.2, R = 0.5 and calculate; from u. As an
initial guess for the free boundary we choose an excentric ellipse with axes of lefgth 0
respectively (6, rotated counterclockwise By and center a(0.9, 1.2), see Fig. 1.

Table 1 shows the convergence history of a numerical realization of the proposed al-
gorithm. The state and adjoint equation are solved by a variant of immersed interface
techniques which were introduced by Z. Li and R. Leveque [9,10] on a rectangular grid

with mesh sizér = 4—29. The parameteaz was set tax = 0.1. The algorithm terminated after

6 iterations by the conditiomGH%z(F) <tolg, toly, = 104. The intercepts of the computed
free boundary are located approxtimately on a circle with cefitdr 1) and mean radius

R,, = 0.4983 with variance ©008. The error of the computed solution at interior grid
points is|lu — u.|lco =~ 0.0021. We restart the optimization at the previously obtained in-
terface interpolated on a grid with mesh size- % using the more stringent termination
parameter tql = 10-5. Figure 2 shows the combined convergence history on a logarithmic
scale: the solid line refers to |QQ||G||§2(FT), the dashed line illustrates lgg/ (I'7). The
restart increases the initial cost, however the optimization terminates after only 3 additional
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log,o(J)
log, lIDJI

Table 2

2
Iter. J(I'r) ||G\|L2(FT) T
1 0.0000352 00002924 01082
2 0.0000016 00000069 ®088
3 0.0000002 00000007 ®094
mean radius 0.4998
variance 0.0002
lue — texlloo 0.0009

iterations at a significantly reduced cost, improved mean radius and variance. The error of
the computed solution, is reduced by a factor 2, cf. Table 2. We experimented with other
initial guesses such as concentric/excentric circles and ellipses. In any case the algorithm

terminated after a modest number of iterations at a domain which was graphically indistin-
guishable from the true solution.

Example 2. We again consider the outer Bernoulli problem. Now the fixed boundary is
L-shaped as specified by the list of cornggsl, 3.1), (5.1,3.1), (5.1,4.5), (7.1,4.5),
(7.1,7.1), (3.1,7.2), cf. Fig. 3. In this case the solution of the Bernoulli problem is not
explicitly known. Fig. 3 shows the free boundaries computed by the 2 level optimization
strategy sketched above: first we solve the problem on a grid with mesh sife2 on the
computational domaif0, 10] x [0, 10] starting from the circléx — 5)2 + (y — 5)2 = 4.22

as initial guess. Then the resulting level set function is interpolated on a 3 times finer grid
and used as an initial guess for the second run. The computed free boundaries are almost in-
distinguishable. Nevertheless, the 6 additional iterations on the finer grid, however, reduce
the cost as well aﬁ;G||i2(m by two orders of magnitude, cf. Table 3 and Fig. 4.
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Fig. 3.

Table 3

Iter. J(Ir) I1DJ |2 t

1 425073820 75076829 6060
2 25646458 26962668 8561
3 01157191 (0848614 12273
4 00115121 00092944 1147
5 0.0012156 00006600 16576
6 0.0001781 (0001228 13057
7 0.0000540 00000345 14101
1 0.0025375 (0029234 07812
2 0.0001348 00000636 19079
3 0.0000803 (0001466 04929
4 0.0000128 00000084 13723
5 0.0000020 (0000016 11400
6 0.0000004 00000003 12876

This example was also solved in [8] by a completely different technique. There, we
formulated the optimization problem

minl/ ou ZdF
r 2 on &
r

subject to the Dirichlet problem

—Au=0 ong,
u=1 only,
u=0 onrI.

The free boundary was represented by a piecewise quadratic Bezier spline, the state equa-
tion was solved by an embedding domain technique and the optimization was carried out
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Fig. 5.

by a derivative free global method. Figure 5 shows a comparison of the free boundary ob-
tained by the composite level set technique after 13 iterations with the result of the global
method after 10 000 function evaluations. The circles mark the final position of the control

nodes of the Bezier splines which were allowed to move only on the indicated segments.
A complete discussion can be found in [8].

Appendix A

Proof of Lemma3.1. Lety:T — V be alocal patch for atm — 1)-dimensional manifold
M in R", T being open imR", V open inM. Let f: M — R satisfy suppf C V. Recall
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that f is integrable oveV if 1 — f o p[det(Dy” (1) Dp(1)]/2 is integrable ovefl’. One
then defines

/f(de l/fowa)mme(ﬂD¢Unfﬂ

We also note the following result which is useful in the manipulation of the surface element.

Lemma A.1[11]. Given independent vectors x1, ..., x,—1 iINR", let X bethen xn — 1

matrix X = [x1, ..., x,—1] and let n denote the vector with coordinates
ni=(=1""tdetx(@,....i,....n),

where i indicates deletion of the ith row in X. Then n is a normal to the hyperplane
determined by x1, ..., x,,_1 of length

In| = vdetXT X).
(Hence ||n|| gives the volume of the parallelepiped spanned by x1, ..., x,-1.)
Since2 € C11, there exists a family)y, ..., 0,, of open sets ifR" coveringl” and
cl1-diffeomorphisms:; : O; — B(0, 1) such that
¢i(2N0;) ={§ € BO0,1): & <0},
ci(I'N0;)={¢ € B(O,1): & =0}.

Define Bo = {¢’ € R"1: ||&’|| < 1} and leth; : B — I" N O; stand for the restriction of
hi = c_l to {&€ € B(0, 1): &, = 0}. Thenh; : Bo — I N O; determines a local patch af,

henceF, o hi i F(I') N F,(0;) is a local patch off; = F,(I"). Using a suitable partition
of unity we may consequently assume sypg F;(I") N F;(0;). To simplify notation we
subsequently omit the index By definition of the surface integral, we have

/fl(x,)dl"t ff,o(F,oh)[de(Dg/(F,oh) D (F; o)) ]2 dt’. (A1)

From the relation reIatmg the inverse of a matrix to its algebraic complement we obtain
detDh(Dh) Te, = (adjDh) e, =71 o h, (A.2)

which is to be evaluated &', 0), &’ € Bo. Therefore o h = 7 o h. Observe that theth
coordinate ofz o 4 is given by

(fioh) = (=" tdet(Dgh(L,...,i,...,n)), i=1,...,n
From Lemma A.1 we infer that o 2 is a normal vector ta” of length
I7i o || = |detDh| | (Dh)Te, | = [detDe AT Deri)] 2. (A.3)
Using the chain rule and (A.2), we furthermore obtain
D(F,oh) Te,=(DF) T oh(Dh) Te, = (detDh) X (DF,) T ohiioh
= (detDh) " ((DF)""n) o hlii|l o h,
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wheren denotes the normalized vectdoriented such that it points to the exterior@f
Inserting this result and (A.3) with replaced byF; o i into (A.2) results in

/ft(xt)dpz
I

:[f,o(F,oﬁ)deI(DFtoh)||D(F,oh)_Te,,H dg’

Bo

:/ﬁo(F,oﬁ)deI(DFtoh)(dech)_1||(DF,)_Tn|| ohllii| o hd&'

By

:/f, o (F; o h)detDF, o h)(detDh)*|(DF,) x|
By

o h[det(Dg/hT Deih)] ™2 dg’

B / (fio F) o hdetDF) o h|(DF)~"n|| o h[detDgh™ Dyi)]™* e’

By

:/f,oﬂ detDF,|(DF) "n|dr,
r

which is the desired transformation rule. Finally we point out that in view of (A.3) we have
for f e LY(I'), suppf Cc O; N T,

fde:/foh[deI(Dg/hTDg/ﬁ)]l/zdé/=/foh|dech|||(Dh)_Te,,H e’
r Bo Bo

which is the definition of the surface integral given in [1610
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