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A b s t r a c t - -  A new approach for solving finite-time horizon feedback control problems for dis- 
tributed parameter systems is proposed. It is based on model reduction by proper orthogonal decom- 
position combined with efficient numerical methods for solving the resulting low-order evolutionary 
Hamilton-Jacobi-Bellman (HJB) equation. The feasibility of the proposed methodology is demon- 
strated by means of optimal feedback control for the Burgers equation. The method for solving the 
HJB equation is first tested on several LD problems and then successfully applied to the control of 
the reduced order Burgers equation. The effect of noise is investigated, and parallelism is used for 
computational speedup. (~) 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - -  Dynamic programming, Hamilton-Jacobi-Bellman equation, Closed loop control, 
Proper orthogonal decomposition, Burgers equation. 

1.  I N T R O D U C T I O N  

Optimal feedback control for distributed parameter systems is a significant challenge due to 
the computat ional  complexity of the discretized HJB equation which still resides in a high- 
dimensional finite-dimensional space, if discretization methods based on, e.g., finite-element or 
finite-difference methods are chosen. Here, in contrast, we take the suboptimal feedback approach, 

i.e., first utilize a proper model reduction technique before addressing numerically the resulting 
(relatively) low-dimensional HJB equation. For a survey of suboptimal feedback strategies, we 

refer to [1,2], for instance. Typical model reduction techniques in the context of optimal control 
include balanced truncat ion [3, Chapter  7], reduced basis methods [4] and proper orthogonal 

decomposition, see, e.g., [5-8]. While balanced truncation is geared towards linear systems, 
the latter two reduction methods can equally well be used for nonlinear systems. Since proper 
orthogonal decomposition contains an efficient inherent mechanism for choosing the basis elements 
we use this approach in the present paper for model reduction. 

The numerical t reatment  of the evolutionary HJB equation was treated by several authors. 
In [9], a small artificial diffusion terms is added to the HJB equation to make it elliptic and 
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the modified method of characteristics is applied to solve the resulting equation. In [10], an 
upwind FDM (finite-difference method) is explored. In this approach, ghost grids are introduced 
to realize an artificial boundary condition. In the present paper, a local Lax-Friedrichs scheme is 
combined with a total variation diminishing (TVD) Runge-Kutta time stepping method to solve 
the HJB equation. 

2. H J B  E Q U A T I O N  F O R  T H E  F I N I T E - H O R I Z O N  P R O B L E M  

We consider the optimal control problem 

/o min J(x , t ,  u) = e-"SL(y(s) ,u(s))  ds, (2.1) 

subject to d y ( s )  

y(o) 

U 

where y :  [0, T] --* R z, x E ]~z, u :  [0, T] --~ 
t E (0, T] and 

= F ( y ( s ) , u ( s ) ) ,  0 < s < T ,  

= x, (2.2) 

E U, 

~k, F : P J  x ~ k - - * ~ z ,  L : ~  x l~  k ~ R , # _ > 0 ,  

u = {u:  [0,T] R k : a  < u < b},  

with a E R k and b E l~ k fixed bounds for the controls. The associated minimal value functional 

is defined by 
v(x, t) = inf J(x ,  t, u). (2.3) 

uEU 

Under well-known conditions [11] the minimal value functional satisfies the dynamic programming 
principle (DPP) 

{// } v(x,  t) = inf L (y (s; x, u) u(s)) e -"s as + v (y (7; x, u) t - ~-) e - ' ~  uEb/ ' ' ' (DPP) 

for every r E (0, t], where y(.; x, u) denotes the solution to (2.2) as a function of the initial solution 
x E R l and the control u E/~. If v is C 1, the following HJB equation can be derived from (DPP): 

t) 
+ #v(x,  t) + sup ( - FT(x ,  u )Vv(x ,  t) -- L(x,  u)) = O, 

uEU 
o) = o, 

(2.4a) 

(2.4b) 

where U = {u E ~k : a < u < b}, (x, t) E ]R l x •+, and V denotes the gradient with respect to x. 
If v is merely continuous then it can be proved [11, Chapter 3] that  it is the unique viscosity 
solution to the HJB equation. We shall not enter into details of DPP and HJB, but rather refer 

to [11], for example. 
Solving (2.4) is unfeasible for dynamical systems in higher-dimensionM spaces as they typicMly 

arise from standard discretization of partial differential equations. We shall address this issue in 
the following sections. Here we address the sup-operation in (2.4a) which can be simplified if F 

and L are separable, more precisely if 

F(x ,  u) = f ( x )  + Bu  and 
T L(x,  u) = l(x) + -~u u, (2.5) 

where B E R txk and fl > 0. Then, given x, t, and v, the supremum is characterized by the 
argument u C U satisfying 

( B T V v  + flu, w -- u)~ k ~ O, for all w C U. 
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This is equivalent to 

where Pu  denote the projection in Rk onto U. Substituting (2.6) into (2.4a) yields 

(2.6) 

1 T I T 
0 

where the dependence on (x,t) is suppressed. We next turn to the feedback synthesis, i.e., the 
construction of the optimal control u* (t) in terms of the current state y*(t). To heuristically 
derive the feedback representation, let (y*, u*) denote an optimal trajectory-optimal control pair 
on [0, T]. Then from (DPP) we obtain for t E (0, T] 

0 
~ v  (y* (t), T - t) + #v (y* (t), T - t) 

+ ( - F  T (y*( t ) ,u*( t ) )  V v  ( y * ( t ) , T  - t) - L ( y* ( t ) , u* ( t ) ) )  -- O, 

(y*(T),  o) = o, 

(2.~) 

which implies the feedback systhesis 

u*(t)  = argmax { - F  T (y*(t),  u) V v  (y* (t), T - t) - L (y*(t) ,  u)},  
uEU 

and in the separable case (2.5) 

u*(t)  = Pu  ( - ~ B T V v ( y * ( t ) , T - t ) )  . (2.8) 

3 .  L O C A L  L A X - F R I E D R I C H S  S C H E M E  A N D  T I M E  S T E P P I N G  

In this section, we describe the procedure that we used to solve the time dependent HJB 
equation. For the spatial discretization we employed a third-order local Lax-Friedrichs scheme. 
For simplicity of notation we describe the scheme for one-dimensional problems. The extension 
to the higher dimensions is straightforward. 

Let vk = V(Xk) denote a grid function defined on a uniform grid Xk with step length Ax. The 
first order forward and backward finite-difference approximations to the differentiation operator 
at xk are denoted by 

+ vk+l - Vk _ vk -- v ~ - l .  (3.1) 
V x ' k  ---- A x  ~ Vx ' k  ~ Z~X ' 

as well as third order approximations, 

5 

;~ 6 - v+v lvL 1+-%2~ 1+ (3.2/ 
= 3 - 6 ' - -  -6 v~'k+l" 

The semidiscretized form for the HJB equation vt + I~v + H ( V v )  = 0 is constructed by the 
local Lax-Friedrichs (LLF) scheme [12], 

vt + " v  = - H  ( l ( v + v  + V - v )  ) + A ( V + v '  V - v )  " ( V + v  - , (3.3) 

where 

.4 ( v + v ,  v - v )  = ma~ /:/vv , 
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with /?/vv denoting the derivative of H with respect to Vv, and the maximum taken over 
I(V-v,~7+v) = [min(~7-v,V+v),max(V-v,  U+v)]. The mechanism of the LLF scheme de- 
termines the numerical dissipation based on local quantities, without introducing an excessive 
amount of artificial viscosity. Therefore, as compared to the common Lax-Friedrichs scheme, the 
LLF scheme is efficient in capturing discontinuities with higher resolution. 

It is well-known that non-TVD time stepping schemes can generate nonphysical oscillations 
even if the spatial discretization is TVD. Therefore a TVD time stepping scheme is necessary for 
the temporal discretization. In this paper, we employ a three-stage third-order TVD Runge-Kutta 
scheme [13,14]. Expressing the evolution problem in the form vt --- L(v), this results in: 

V(I ) -~- V n + AtL(vn), 
3 1 

V(2 ) = "~V n -}- ~(V(1 ) -}- AtL(vo))) , 

1 2 
Vn÷l  -~ "~Vn -}- -~(V(2) 4- AtL(v(2))). 

The time step At should be chosen, such that 

At 
< CFL, (3.4) 

rain + IB I)) 
where CFL is the Courant-Friedrichs-Lewy (CFL) coefficient. This TVD Runge-Kutta scheme 
is an optimal three-stage three-order scheme [13] in the sense that  the associated CFL is equal 
to 1, which indicates that a fully exploited time step can be taken in the time discretization. 

We arrive at the following algorithm to solve the evolutionary HJB equation. 

Step 1. 
Step 2. 
Step 3. 

Step 4. 

Set v0 = 0, i -- 0. 
Calculate Vv~, and ui = Pu(--(1/fl)BTVv). 
Calculate the RHS of (3.3); 
and obtain vi+l via l~unge-Kutta time stepping. 
If the final time reached, then stop; 
if not set i = i + 1 and go back to Step 2. 

4 .  P O D - B A S E D  R E D U C E D - O R D E R  M E T H O D  

In this section, we briefly describe system reduction of infinite-dimensional control systems by 
proper orthogonal decomposition. For details we refer to [7,15], for example. 

4.1. T h e  A b s t r a c t  D y n a m i c a l  S y s t e m  

Let V and H be real Hilbert spaces with V densely embedded in H. By (-, ")H we denote 
the inner product in H and analogously for V. The inner product in V is given by a symmetric 
bounded, coercive, bilinear form a : V x V --* ~: 

(~, ¢ ) y  = a(~, ¢), for all ~, ¢ • V. (4.1) 

For T e (0, ~ )  let L2(0,T; V) denote the usual Lebesgue space of square integrable V-valued 

functions, and define 

W(O,T; V) = {~ • L2(O,T; V) : ~t • L2 (O,T; V*)}, 

where V* denotes the dual space of V. Furthermore, let N : V ~ V* be a nonlinear mapping, 
let ~r denote the Hilbert space of controls, and let B • £(gr, V*) be the control operator. Given 
yo • H and u • L2(0,T; gr) the abstract control system is given by 

d 
d--t (y(t), ~)H + a(y(t), V) + (g(y(t)), ~)v*,v = (B(u(t)), V)v.,v, (4.2a) 

for all ~ • V and 
y(0) = yo. (4.2b) 

Conditions which guarantee the existence of a unique solution y = y(-; yo, u) are well known from 
the literature, see e.g., [16,17]. 
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4.2. The  P O D  R e d u c t i o n  

Given n C N, let 

0 - - - - t 0 < t 2 < ' " < t n < c ~  (4 .a)  

denote a grid in the interval [0, T], and suppose that the snapshots yj = y(tj) of (4.2) are available. 
These can be computed by an independent finite-element scheme, for example. We set 

V = span {Yo,..., Y,~} C V. 

Let d {¢t}~=1 denote an orthonormal basis of ~) with d = dim)). Then each element of the ~) can 
be expressed as 

d 

Yj = E ( Y j ,  ¢i>H¢,, for j = 0 . . . . .  n. (4.4) 
i = l  

The POD method consists in choosing an orthonormal basis such that for every £ E {1, . . . ,  d} 
the mean square error between the elements yj, 0 s j < n, and the corresponding ~th partial 
sum of (4.4) is minimized on average: 

I l C d H ¢ , :  min ~ ( ¢ 1 " ' " ¢ ~ )  = ~ Y J - E ( Y J '  (4.5) 
j=O i=l 

subject to (¢~,¢j)H = 5~j, for 1 < i  <g ,  l < j < _ i .  

A solution {¢i}i=1 to (4.5) is called POD basis of rank ~. The subspace spanned by the first 
POD basis functions is denoted by V t, i.e., 

V ~ = span {¢1,. . .  ,¢~}. (4.6) 

The solution of (4.5) is characterized by the necessary optimality condition which can be written 
as an eigenvalue problem. Let :))n : ]~,~+1 __. X defined by 

n 

y~v = ~ vjy~, for v ~ R ~+1, (4.7) 
j=0 

with the adjoint y~ : X + R ~+1 given by 

y~z = ((z, Yo)g,. . . ,  <z, y,)H) r , for z e H. (4.8) 

Using a Lagrangian framework the optimality condition for (4.5) is given by 

7%¢ = A¢, (4.9) 

n where T~z = YnY*z = ~j=o(z, yj)Hyj, for z e H. By I-Iilbert-Schmit theory there exists an 
oo ,~ oo  orthonormal basis {¢~}~=o for H and a sequence { ~}~=0 E R +, such that 

T~,¢~=A~¢i, AI _> . . .  _> Ad > 0, and A i = 0 ,  f o r i > d .  (4.10) 

Moreover, Y span ~ A oo oo = {¢i}i=1. Note that { ~}~=0 as well as {~b~}~=0 depend on n. Contents 
permitting the notation of this dependence is dropped. 

The sequence t {¢~}~=~ solves the optimization problem (4.5) and is a POD basis of rank g _< d. 
In addition, we have the error formula 

- -  yj - - -  as.  ( 4 . n )  
j=O i=i H i=~+I 
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To obtain the POD approximation to (4.2a) we make the finite-dimensional ansatz 

e 

ye(t, x) = ~-~ yi(t)~bi(x). (4.12) 
i = 1  

Here we do not discretize the control variable. In our application to the Burgers equation we 
consider boundary control, and hence, gr is finite dimensional. 

We introduce the mass and stiffness matrices by 

M = ( ( m @ )  c R exe, 

S = ((~,j))  e R e×e, 

with mij = (¢j, ¢i}H, 
with si~ = a(¢~, ¢i), 

Lhe discretization of the nonlinear mapping N : R e ~ R e 

(Yl,.-.,Ye) ~ N (Yl,. . . ,Ye) = (ni) E R e, with ni = N YiCj ,¢ i  , 

V * , V  

• s well as the control input b : U E R e by 

u ~ b(u) = (b(u)d c iC e, with b(u)i = (Bu, CdH.  

]?he modal coefficients of the initial condition y0 C R e are given by (yo)i = ( Y o , ~ / i ) H  • The 
solution vector of the reduced dynamical system is denoted b y / ( t )  E l~ e. It is a solution of the 
POD-reduced order model given by 

pc(t) = F (ye ( t ) ,  u(t)), for t > 0, 
(4.13) 

yt(O) = Yo, 

~here 
F (ye, u) = M - i  ( - S S -  N (ye) + b(u)) .  

6. 1 - D  T E S T  P R O B L E M S  

To test the efficiency of the proposed method for solving the HJB equation, we first solved 
several 1-D examples. The first test problem is the 1-D Hamilton-Jacobi equation 

1 
Ct + ~ (¢2 _ 1) (¢~ - 4) = 0, ¢(x, 0) = - J l x  I. (5.1) 

the  numerical solutions in the interval [-1, 1] at T = 1 are presented in Figure 1 for a series 
)f grid systems. The larger the number of the grid points, the better the numerical solution 
~pproaches the exact solution which achieves - 1  at x = 0 [18]. The nonsmoothness in the initial 
:ondition at x = 0 is propagated to the solution at later time instances. As shown in the figure, 
:he nonsmoothness is well resolved via the proposed numerical scheme. 

Then, we will solve a 1-D optimal control problem [9] 

-f01 min -~ uJ(t)  at - x(1), (5.2a) 

subject to 2(t) = x( t )u( t ) ,  (5.25) 

x(0)  = y, 

u(t) e U = [-1, 11. 



POD-Based Feedback Control 1119 

-1.1 

-1.2 

-1.3 

-1,4 

-1.5 

-1.6 

-1.7 

-1.8 

-1.9 

-2 
-1 

/ . .... ~,-.- N=20 I 
I -+- N=4° I 

~ N = 8 0  

-~-~ N=llXl I 

f 
I I I 

-0.5 0 0.5 

Figure  1. So lu t ion  to  the  1-D HJ equat ion at T = 1. 
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i ~ ~ . ~  

0.4 ' " . . .  

t 0 - t  
x 

Figure 2. Value function (left) and the corresponding optimal control (right), c~ = 
1/2. 

The corresponding HJB equation is 

_v ,+  
--l<u<l 

v ( T , x )  = - x .  

Here, we reversed the time direction in the HJB equation, as is frequently done for finite-horizon 

optimal control problems. The initial value problem is solved for - 1  < x < 1 within the time 
horizon (0,1]. The computational results for ~ = 1/2 are plotted in the Figure 2. The value 
function is smooth in the whole domain of interest, even though the optimal control is not. 

The third test problem is the same as the second one, except that the admissible set for the 

control is U = [0, 1] and c~ = 0.001. This case can be viewed as an asymptotic problem to the 
control problem 

min - x(1), 

s.t. J:(t)  = x ( t ) u ( t ) ,  (5.3a) 

z ( 0 )  = y, 

u ( t )  e u = [0 ,1] ,  

which has the exact solution 

f - x e  l - t ,  i f  x > o,  
V(~, X) (5.4) 

- x ,  i f  x _< O. 
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Figure 3. Value function (left) and the corresponding optimal control (right), a = 
0.001. 

Figure 3 shows the value funtion and the corresponding optimal control. The value function is 
now nonsmooth at x = 0. At this location the optimal control jumps from one bound to the 
other. 

In all the 1-D test cases we only employed the first-order backward and forward-difference 
approximations to the gradient of the value function. The computational results suggest that 
this is acceptable. Unfortunately, this is not the case for suboptimal feedback control for the 
Burgers equation. We will return to this issue later on. 

6. A P P L I C A T I O N  T O  S U B O P T I M A L  
C O N T R O L  F O R  T H E  B U R G E R S  E Q U A T I O N  

In this section, the proposed method will be employed to carry out the feedback design for the 
Burgers equation. We begin with the optimal control problem for the Burgers equation; then 
the POD technique is carried out to obtain a 4-D reduced order control problem, which is of 
the same form as described in Section 2 and can be solved by the proposed method. Finally the 
computational results are presented and discussed. 

6.1. T h e  Original  O p t i m a l  Con t ro l  P r o b l e m  

Define the domains ~ = (0, 1) C •, Q = (0, T] x 12 and ~ = (0, T] x 0~. In the context of 
Section 4.1, we set H = L~(~), V = H](f~), and define 

= ~ f~ ~'¢' dx, for ~, ¢ e V, a ( ~  ¢) 

with u > 0 and B E ~:(R, V*) by 
(B~, ¢)v-,v = u ¢(0). 

For fixed ua <_ Ub, we set U~d ---- {u  e R : ua <_ u <_ ub } and define the set of admissible controls 

/A~d = {u e L2(0,T] : u(t)  e U~d, for almost all t e (0, T]}. (6.1) 

For a control u E L/~d we consider the viscous Burgers equation 

Yt - u y ~  + yy~ = O, in Q, (6.2a) 

uy~(., O) + aoy( ' ,  O) = u, in (0, T], (6.2b) 

uyx( ' ,  1) + crly(., 1) = g, in (0, T], (6.2c) 

y(0, .) = yo, in ~, (6.2d) 
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where yo E L2(~) is a given initial condition, and a0, al ,  g are real numbers. Henceforth, we 
consider weak solutions y C W(0, T; V) of (6.2) satisfying (6.2d) and 

(yt(t), ~O)V.,V -k aly(t, 1)~(1) -- o'Oy(t, O)¢p(O) 

+a(y, ~) + j~ y(t)y'(t)~dx = g~(1) - 
(6.3) 

U~(0), 

for all ~v E Hl(f~) and t E (0,T] a.e. For the functional analytic treatment of (6.2), we refer to 
[17,19], for example. We shall consider the cost functional 

r i (t)12) J(y,u)= fo (~ /~ ly(t,x)-z(x)] 2 dx + ~  e-gt dt, 

where z E L2(~) is a given desired state, and # > 0,~ > 0 are constants. 
The optimal control problem is given by 

min J(y, u), such that (y, u) e W(0, T; V) ×//~d satisfies (6.2) (P) 

as a weak solution. It is straightforward to argue the existence of an optimal control for prob- 
lem (P), e.g., see [20]. 

6.2. P O D - B a s e d  R e d u c e d  O r d e r  M o d e l  

Suppose that we have computed a POD basis utilizing, e.g., a finite-element code for the viscous 
Burgers equation and determined the basis functions as described in Section 4.2. To compute a 
POD solution of (P) we make the ansatz for the state variable. In addition to the matrices and 
vectors defined in Section 4.2 we introduce the tensor 

T = (((bi~k))) e R ~×e×~, 

and the vectors for the boundary conditions 

d = ( d i )  E R  e, w i t h d ~ = ¢ i ( 0 ) ,  

with bijk = e j ek¢ idx ,  

e = ( e i )  E R  ~, w i t h e i = ¢ , ( 1 ) .  

Then the nonlinear mapping F : R ~ × 1~ ~ R e is given by 

F (ye, u ) = M  -1 ( ( - S - ( T  : y l ) ) y  e + d ( d T c r 0 y e - - u ) -  e (eTaly~ -- g ) ) .  

The value function v, defined for any initial state yo E R ~, is 

V(yo) = inf 3~(yo,U), uEU.d 

where Je(yo) j(ye, u), with ye d = = ~]~=1 ~lb~, and ye solves the dynamical system in (4.13) with 
initial condition yo and control input u. 

6.3. Numerica l  Exper iments  

Numerical experiments are carried out for stabilization problems, i.e., z is chosen to be 0. The 
parameter settings used for the numerical tests are listed in Table 1. Boundary control is imposed 
at x = 0, i.e., we set a0 = al  = 0, and g = 0. The left graph of Figure 4 shows the solution of 
the uncontrolled Burgers equation with the initial condition yo = (1 - x) sin (37r(x - 0.5)). For 
solving the Burgers equation, the finite-element method is applied for spatial discretization and 
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Figure 4. Uncontrolled Burgers solution (left) and its POD solution (right), v = 0.05. 

the implicit Euler method is employed for the time stepping. Further details can be found in [19] 
and the references cited therein. 

Then we take the POD technique described in the previous section to construct the basis 
functions, four of which are taken to construct the reduced-order model for the Burgers equation. 

l The number of basis functions is chosen such that  the ratio ~'~i=1 )~JY'~d=l Ai > 98%. This ratio 
is an index indicating how much energy is captured by the first 4 basis functions. In the graph 
on the right of Figure 4 the coefficients of the POD solution to the uncontrolled reduced-order 
ODEs are shown. The feedback design is carried out on this resulting four-dimensional ODEs. 

Concerning the spatial domain T on which the HJB is solved we have to choose it in such a 
way that  it contains the anticipated optimal trajectory y*(-) of (2.2) for all t E [0, T]. In the case 
of stabilization a practical procedure consists in considering maxima and minima over the time 
horizon of the coordinates of the uncontrolled solution, see Figure 4, to add small safety margins 
and to let this define the polyhedric domain T on which the HJB needs to be solved. For our 
computations we took a uniform 12 × 8 x 6 x 6 discretization of this polyhedron. We next address 
the issue of possible boundary conditions. 

REMARK 6.1. If the viability assumption is satisfied for the bounded polyhedron T E R 4, i.e., if 

F(x,~) .~(x) < 0, v z  c ~', v ~ e v ,  

holds with n(-) the exterior normal to T, no boundary condition is needed for the HJB equation. 
However, in the practical implemention this condition may not be satisfied. In this case we 
imposed the artificial boundary condition 

~2V 

Ox 2 = 0, Vx ~ ~', 

as a remedy. 

This time we apply the third-order approximation for the gradients of the value function. We 
also tested the first-order approximations but the results are unsatisfactory and will therefore 
not be shown here. Recall that  the first-order approximations were sufficient for the 1-D cases in 
which much finer grid systems could be employed. The time step is set as At ---- 0.002 to satisfy 

the CFL condition (3.4). 
In numerical computations, the local Lax-Friedrichs flux is constructed independently at each 

point of the grid system. Therefore, we can apply the so-called fine-grained parallel algorithm [21] 
to speed up computations. In this parallelism, the same set of codes runs simultaneously on 
different pieces of data  on various processors. First, the required data are transferred to the 
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slaves. Upon receiving data, the slaves can perform computations, namely constructing the local 
Lax-Friedrichs flux on the specified grid points, concurrently. After the computations are done 
on all of the slaves, the data are collected from them. The distribution of the computations to 
be perfomed on each slave can be determined by the overall performance (size of memory, speed 
of CPU, etc.) of the slave computers. In this parallel process, the technique of message passing 
interface (MPI) [22] is used to transfer data between the master and slaves. 

First the discount rate, g, is set to 2. In this case, the cost functional without any control is 
0.01800. Using optimal control the cost functional is decreased to 0.00675. This value agrees well 
with the value function 0.00664, and can therefore be used as a first validation of the proposed 
procedure and its numerical implementation. The results are displayed in the first column of 
Table 2. In Figure 5 the value function and the associated optimal control are shown as a 
function of xl ,  x2 plane for constant x3 and xa, at the time instance of t = 3. The optimal state 

0 ,03  

0,025¸ 

0 .01 .  

0 .00  

o~ 
0.-~ 

0 

Table 1. Parameter settings. 

Symbol  Value Description 

0.05 viscosity coefficient 

/~ 0.05 weighting coefficient for the control 

T 3 time horizon 

z 0 desired state 

~ Ft~c~n et m ~  x4 
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Figure 5. Value function (left) and the corresponding optimal  control (right) at 
constant ~3, x4, t = 3, fl = 0.05, F = 2. 
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Figure 6. Optimal state (left) and control (right) , /3 = 0.05,/~ = 2. 
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Table 2. Computational results at j3 = 0.05. 

J w Opt. Control 0.00675 0.00886 

J w /o  Control 0.01800 0.1121 

Value Function 0.00664 0.00869 

0,05. 

0.04. 

>~ 0.02.  

o.ol -, 

V l e  Fun~an ~ ,  ~ 

+ ........ } o.e ....... ! .... 

........ ........ ..... : ..... ++ . . . . . . . . .  . . . .  
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0 ~ - 0 . 2  - 

x2 -0.1 -0,4 xl x2 

Opl]m.l ~trol  a l  co~dant XS, x4 

............. 

+o.I -0.4 xl 

Figure 7. Value function (left) and the corresponding optimal control (right) at 
constant x3, m4, t = 3, ~ = 0.05, # = 0. 
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Implicit solution of the Burgers equation (with opt. c~ntrol) 
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Figure 8. Optimal state (left) and control (right), ~ -~ 0.05, ~ = 0. 

and the optimal control are plotted in Figure 6. For the purpose of comparison, we also carry 
out the open-loop design for this case, which gives the optimal cost functional 0.00661. This is 
slightly less than what we obtained from feedback design. This open-loop design law will be used 
to demonstrate the effect of noise for open-loop control. 

We also tested the HJB equation with discount factor # -- 0. As shown in the second column 
of Table 2, the cost functional is reduced from 0.1121 to 0.00886. Meanwhile the value function 
takes the value of 0.00869. Again we observe very good agreement between the optimal cost 
functional and the value function. The value function and the optimal control at the final time 
are shown in Figure 7. In Figure 8, the optimal state and the corresponding optimal control for 
the experiment with # = 0 are plotted. 

Finally we carry out an experiment to demonstrate the effect of noise on the open-loop and 
the feedback design respectively. The control laws are those computed for # -- 2. The first test 
is carried out by imposing uniform biased noise in the interval [(7, 0.5] in the initial condition. 
In the second test, we impose uniform biased noise in the interval [0, 1] to the right-hand side 
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O, 

-0,~ 

Implicit eolution of the Burgers equation (with opt. control) 
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Figure 9.Optimal state: uniform noise of magnitude 0.5 imposed in the initial con- 
dition: open-loop design (left) and feedback design (right). 

*0.~ 

Implicit solution of the Burgers equation (with opt. control) 
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-0. 

Implicit solution of the Burgers equation (with opt. control) 
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Figure 10. Optimal state with uniform noise of magnitude i imposed on the RHS of 
Burgers equation in a patch of space-time space: open-loop design (left) and feedback 
desgin (right). 

of the Burgers equation in the space-time region (0, 1) × (0, .6). The feedback map can be 
readily retrieved from the solution of HJB equation. The resulting evolutionary optimal states 
are presented in Figure 9 and Figure 10. A comparison shows that the open-loop design fails to 
drive the state to the origin, whereas the closed loop control achieves the design objective. 
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