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1. Introduction

A wide class of problems in applications can be expressed as a minimization problem
of a convex quadratic objective function subject to non-negativity constraints:

(1) minimize 1
2
u>Lu− f>u subject to u ∈ RN , uB ≥ 0,

where L is a symmetric, positive definite N × N matrix, N ∈ N, f ∈ RN , and B ⊂
{1, . . . , N}. By uB we refer to the components ui of the vector u ∈ RN with i ∈ B. Let D
denote the complement of B in C := {1, . . . , N}, i.e., D = C \ B. It is well-known that
the unique solution u∗ of (1) is characterized by the existence of a Lagrange multiplier
λ∗ ∈ RN such that

Lu∗ + λ∗ = f,(2a)

u∗B ≥ 0, λ∗B ≤ 0, (u∗B)>λ∗B = 0,(2b)

λ∗D = 0.(2c)

From a quadratic programming (QP) point of view the problem class (1) is of a simple
structure and many algorithms were proposed for its numerical solution; see the selected
references [3, 6, 7, 8, 17, 19, 20, 26, 27, 28]. By now, the research level in this area has
reached a high level of sophistication. However, for problems which result from discretizing
differential operators, the research level is less complete. First of all some of the classical
methods for solving QPs are sorted out by the tremendous size of the problem; e.g. [6, 7].
Frequently, algorithms for solving general QPs do not exploit structural properties of L
or B. In fact, if L is related to a discretization of some differential operator by means of
finite differences or finite elements then the matrix L will be sparse with a particular block
structure. Further, the set B may refer to nodal points at the boundary of the domain of
the underlying continuous problem. In this case, thinking of B as some arbitrary subset
of the set of indices C will disregard properties of the resulting problem like the existence
of Schur complements or invertibility of submatrices of L. Indeed, in some applications
the mapping defining u∗B as a function of u∗D and f can be related to a trace operator.

In order to substantiate our latter arguments we consider the following problems in
elasticity with boundary constraints [10, 11, 14, 12]: Let a solid occupy the domain
Ω ⊂ Rd, d = 2, 3, with the boundary ∂Ω. Consider the quadratic functional of potential
energy of the solid under a given load g ∈ (L2(Γn))d applied to the subset Γn of the
boundary ∂Ω:

J(u) := 1
2

∫

Ω

σ(u) : ε(u)−
∫

Γn

g · u,

where ε and σ are the strain and stress tensors for the displacement vector u(x) ∈ Rd,
respectively, and are defined by

ε(u) = 1
2
(∇u +∇u>) and σ(u) = c : ε(u).

The tensor c = (cijkl) describes material properties. Above L2(Γn) denotes the Hilbert
space of square integrable functions over Γn. Let B be a part of the boundary ∂Ω with
B ∩ Γn = ∅. We mention here three types of boundary constraints at B:

(S) Signorini condition: u · ν ≥ 0 on B;
(O) boundary obstacle: u · ν ≥ ψ on B;
(NP) non-penetration: [[u · ν]] ≥ 0 on B,



where the function ψ is an obstacle, ν is the normal vector at B, and [[ · ]] denotes the jump
across B in the case where B refers to a crack inside the body; see e.g. Figure 14. Case
(O) above can be reduced to (S) by a simple transformation of u . If the crack and the
corresponding data are geometrically symmetric with respect to B, then case (NP) can
be reduced to (S), too. In such a way, for all mentioned cases we arrive at the constrained
minimization problem:

(3) minimize J(u) subject to u ∈ H ⊂ (H1(Ω))d, u · ν ≥ 0 on B ⊂ ∂Ω.

Here H1(Ω) denotes the Sobolev space of functions in L2(Ω) which have distributional
derivatives in L2(Ω), and H denotes a function space excluding rigid body motions, typ-
ically by means of a Dirichlet boundary condition on a part of the boundary ∂Ω. Under
standard regularity assumptions the solution u to (3) exists uniquely, and uB = u · ν|B
is an element of (L2(B))d, or smoother. After appropriate discretization (see Section 4)
problem (3) can be written in the form (1). Consequently, in the discrete setting B refers
to grid points or nodal points on the boundary B in case of finite difference respectively
finite element discretizations. Further, the matrix L results from discretizing the first
integral in the definition of J . Due to the discretization process it typically also includes
boundary nodes. For the discretization described in Section 4 L is symmetric and positive
definite. Moreover, it is sparse and has a particular block structure corresponding to B
and D, with D denoting the grid points or nodal points in Ω \ B. The vector f results
from the discretization of g on B and f = 0 on D.

In this paper, we devise a semismooth Newton method for computing the solution
(u∗, λ∗) of (2) iteratively. It operates on the reformulation of (2b) based on the nonlinear
complementarity problem (NCP) function

φ(a, b) = a−max(αb + a, 0), a, b ∈ R,

where α > 0 is arbitrarily fixed. In fact, the following equivalence holds true:

(4) φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≤ 0, ab = 0.

For v, w ∈ R|B| one defines

Φ(v, w) = (φ(v1, w1), . . . , φ(v|B|, w|B|))
>.

If Φ(v, w) = 0, then the complementarity relation (4) is satisfied for the components vi, wi

of the vectors v, w. This allows us to rewrite (2) as

Lu∗ + λ∗ = f,(5a)

Φ(u∗B, λ∗B) = 0,(5b)

λ∗D = 0.(5c)

Due to the nondifferentiability of Φ, Newton techniques for computing the solution of (5)
have to work with generalizations of the derivative of a function. The resulting methods
are called generalized Newton methods; see e.g. [15, 16, 21, 22, 23, 24, 25].

The semismooth Newton method which we propose in this paper is related to the al-
gorithm analyzed in [9]. Its local convergence properties rely on the semismoothness
property of the max-operator involved in (5b). The concept of semismoothness of a func-
tion was originally introduced by Mifflin in [18] and extended to RN by Qi and Sun in
[24]. In [4] the notion of a slanting function is introduced which is related to semismooth-
ness properties of a function. In fact, according to [4] a mapping F : D ⊂ Y → Z is



called slantly differentiable in an open subset U ⊂ D if there exists a family of mappings
G : U → L(Y, Z) such that

(6) lim
h→0

1

‖h‖‖F (y + h)− F (y)−G(y + h)h‖ = 0

for every y ∈ U . The mapping G is called a slanting function for F in U . Above,
Y, Z denote Banach spaces, and D is an open subset of Y . A significant amount of
research work is devoted to generalized or semismooth Newton methods. In addition
to the above references we only refer to the recent monograph [13] and the references
therein. In general, under an additional boundedness assumption the semismoothness or
the slanting property are sufficient for proving the locally superlinear rate of convergence
for the respective generalized Newton’s method [4, 9, 16, 24].

Typically, these results on the local rate of convergence are in general terms without
exploiting the structure of the problem e.g. resulting from discretizing a variational
inequality problem involving partial differential operators. In [9] it was observed that the
convergence results can be strengthened when assuming that L comes from discretizing
second order elliptic differential operators. In fact, one can prove global convergence with
locally superlinear rate for the corresponding semismooth Newton method. Further, under
the assumption that L is a nonsingular M-matrix, i.e. L is invertible, Lii > 0 for all i ∈ C
and Lij ≤ 0 for i 6= j, with i, j ∈ C, for B = C it is shown that the primal iterates converge
monotonically. In the present paper we pick up the latter point of view and show that
our semismooth Newton method exhibits the aforementioned convergence properties for
solving (5) in cases where L is a nonsingular M-matrix and B ⊂ C. Further, monotonicity
of the primal iterates will be argued for problems where the Schur complement of L is
a sufficiently small perturbation of an M-matrix. These assertions extend the results
obtained in [9] and give a theoretical account for the behavior of the method which can
be observed in numerical practice.

Motivated by (3), the numerical tests in this paper focus on boundary constrained
problems. The test problems cover the scalar-valued problem with boundary obstacle,
the vector-valued Signorini problem with an obstacle, and the symmetric crack problem.
In the first case, the matrix L is the discrete Laplace operator with homogeneous Dirichlet
boundary conditions on a part of the boundary. Hence, L is an M-matrix. For the second
problem class mentioned above, L depends on the Lamé parameters and is a discretization
of the second order elliptic differential operator occurring in the Lamé equation. Differ-
ently from the first case, the Schur complement of L is no longer an M-matrix. It is
merely a small perturbation of an M-matrix. A similar observation corresponding to L
and its Schur complement is true in the case of the symmetric crack problem.

The rest of the paper is organized as follows. In Section 2 we introduce the algorithm.
We first derive it as a semismooth Newton method. Motivated by the nonsmoothness of
the involved operator we then interpret the method as a primal-dual active set strategy.
We end Section 2 by stating a result on the locally superlinear convergence of our method.
Section 3 is devoted to the analysis of global as well as monotone convergence properties
of the algorithm. Finally, in Section 4 we report on numerical results attained by our
algorithm for the discretizations of a scalar-valued problem with a boundary obstacle, a
vector-valued Signorini problem and a symmetric crack problem.



2. The algorithm and its local convergence

In this section we introduce the semismooth Newton method for computing the solution
(u∗, λ∗) of (5). In [9] it is shown that it is equivalent to the primal-dual active set method
introduced in [1]. In the sequel we use the splitting of vectors and matrices into blocks
corresponding to the subsets D and B of C as follows:

L =

(
LDD LDB

LBD LBB

)
, u =

(
uD

uB

)
, f =

(
fD

fB

)
.

With this notation, the complementarity problem (5) can be written as
(

LDD LDB

LBD LBB

)(
uD

uB

)
+

(
0
λB

)
=

(
fD

fB

)
,(7a)

Φ(uB, λB) = 0.(7b)

For defining the algorithm we introduce F : RN × R|B|,

F (y) =




LDDuD + LDBuB − fD

LBDuD + LBBuB + λB − fB

Φ(uB, λB)


 , y =




uD

uB

λB


 .

Thus, (7) can be written as

(8) F (y) = 0.

Let

χS = diag(s1, . . . , sN), with si =

{
1 if i ∈ S,
0 if i /∈ S.

and define

(9) A(y) = {i ∈ B : ui + αλi < 0}, I(y) = {i ∈ B : ui + αλi ≥ 0}.
Then it can be verified that for every y ∈ RN × R|B| the matrix

(10) G(y) =




LDD LDB 0
LBD LBB EB

0 χA(y) −αχI(y)




satisfies

(11) lim
‖h‖→0

1

‖h‖‖F (y + h)− F (y)−G(y + h)h‖ = 0.

Above, EB denotes the unit matrix in R|B|×|B|. According to Definition 1.1 in [9] (compare
also (6)), G is a slanting function for F . Thus, G serves as a generalized derivative of the
nondifferentiable mapping F .

The semismooth Newton method for computing the solution y∗ of F (y) = 0 is defined
as follows: For some initial guess y0 sufficiently close to y∗ compute

(12) yk+1 = yk −G(yk)−1F (yk), k = 0, 1, 2, . . . .

From the general local convergence results for Newton iterations like (12), we deduce the
following variant. In its formulation, for a |B| × |B|-matrix Q and index sets R, S ⊂ B,
we use QRS = (Qrs) with r ∈ R and s ∈ S.



Theorem 2.1. The semismooth Newton iteration (12) converges superlinearly to y∗ with
F (y∗) = 0 provided that y0 is sufficiently close to y∗ and that for all index sets I ⊂ B
the inverse matrix of LBDL−1

DDLDB − LBB exists and that there exists a constant β > 0
independently of I such that

(13) ‖((LBDL−1
DDLDB − LBB)II)

−1‖ ≤ β.

Proof. Let y and g = (gD, gB, gλ)
> ∈ RN × R|B| be arbitrarily fixed. We show that there

exists a unique z = (zD, zB, zλ)
> ∈ RN × R|B| such that G(y)z = g. Note that the latter

equation is equivalent to

(14) χA(y)zB + αχI(y)SzB = gλ + αχI(y)(gB − LBDL−1
DDgD) =: g̃,

with S := LBB − LBDL−1
DDLDB. Since I(y) ∩ A(y) = ∅, we obtain from (14) that zi = g̃i

for all i ∈ A(y). Hence, zI(y) is uniquely defined by

SI(y)I(y)zI(y) = 1
α
g̃I(y) − SI(y)A(y)g̃A(y).

The positive definiteness of L and assumption (13) guarantee the existence of a constant
β̄ > 0 independently of y, and I(y), A(y) such that

‖z‖ ≤ β̄‖g‖.
This proves that G(y)−1 exists and is uniformly bounded. Now, the standard convergence
proof–see e.g. the proof of Theorem 1.1 in [9]–yields the locally superlinear convergence
of the Newton iteration (12). ¤

According to e.g. [5] the matrix

(15) S = LBB − LBDL−1
DDLDB

defined in the proof of Theorem 3.1 is called the Schur complement of LDD in L.
In our numerical tests we report on the following implementation of (12). In [9] the

subsequent algorithm is referred to as primal-dual active set strategy.

Algorithm 1.

(0) Choose (u0, λ0
B) ∈ RN × R|B|; set k = 0.

(1) Decompose the index set B into

Ak = {i ∈ B : uk
i + αλk

i < 0},(16a)

Ik = {i ∈ B : uk
i + αλk

i ≥ 0}.(16b)

(2) If k ≥ 1 and Ak = Ak−1 then STOP; else go to step 3.
(3) Solve for (uk+1, λk+1

B ) ∈ RN × R|B|:(
LDD LDB

LBD LBB

)(
uk+1

D

uk+1
B

)
+

(
0

λk+1
B

)
=

(
fD

fB

)
,(17a)

uk+1
i = 0 for all i ∈ Ak, λk+1

i = 0 for all i ∈ Ik.(17b)

(4) Set k = k + 1 and go to step 1.

Note that Algorithm 1 and the Newton process (12) are equivalent. In fact, the first two
equations in (12) coincide with (17a). The equations (16) and (17b) realize the Newton
step for the nonsmooth, i.e. third, equation in (12). In order to see this, recall that the
third equation in (12) is given by

(18) χA(yk)(u
k+1
B − uk

B)− αχI(yk)(λ
k+1
B − λk

B) = −uk
B + max(uk

B + αλk
B, 0).



For i ∈ I(yk) = Ik we have uk
i + αλk

i ≥ 0. Thus, (18) yields λk+1
i = 0 for i ∈ Ik. For

i ∈ A(yk) = Ak we have uk
i + αλk

i < 0, and we obtain from (18) the equality uk+1
i = 0.

Combining the two cases we recover (17b). As a consequence the system in (17) is well-
defined and, under the assumptions of Theorem 2.1, it admits a unique solution.

The stopping rule in step 2 of Algorithm 1 is motivated by the following considerations.
For i ∈ Ak−1 we have uk

i = 0, and for i ∈ Ik−1 we obtain λk
i = 0. Hence, if we assume

that Ak−1 = Ak, then from (16a) we infer λk
i < 0 for all i ∈ Ak, and uk

i ≥ 0 for
all i ∈ Ik by (16b). This, together with (17a), proves that the iterate (uk, λk

B) =: yk

upon termination of Algorithm 1 in step 2 satisfies F (yk) = 0. Let us emphasize that
the successful termination occurs after a finite number of iterations. Indeed, since there
exists only a finite number of choices for Ak with Ak 6= An for n 6= k (and analogously for
Ik), Theorem 2.1 yields the finite step convergence.

3. Global convergence results

In Theorem 2.1 we investigated the local convergence properties of Algorithm 1. In
this section we derive additional global convergence results. The key ingredient is the
M-matrix property of the iteration matrix of Algorithm 1 operating on uB. Let us recall
the definition of a nonsingular M-matrix.

Definition 3.1. A matrix Q ∈ RN×N is a nonsingular M-matrix if Q is invertible, Qii > 0
for all i ∈ {1, . . . , N} and Qij ≤ 0 for all i, j ∈ {1, . . . , N} with i 6= j.

In [2] it is argued that if Q is a nonsingular M-matrix, then Q−1 ≥ 0 in an elementwise
sense.

The following convergence result applies in the case where L results from discretizing e.g.
the scalar-valued problem with a boundary obstacle or the distributed obstacle problem
where the obstacle acts only on a subset of the domain. The second part of the proof of
the next theorem is similar to the proof of Theorem 3.2 in [9]. For the sake of completeness
and for later reference we provide the entire proof.

Theorem 3.1. Let L ∈ RN×N be an M-matrix. Then the iterates (uk, λk
B) of Algorithm 1

converge to (u∗, λ∗B) for arbitrary initial data (u0, λ0
B) ∈ RN × R|B|. The local rate of

convergence is superlinear. Moreover, the following monotonicity and feasibility relations
hold true:

(19) u∗B ≥ uk+1
B ≥ uk

B for all k ≥ 1 and uk
B ≥ 0 for all k ≥ 2.

Proof. Note that the subsystem (17a) is equivalent to

(20) (LBB − LBDL−1
DDLDB)uB + λB = fB − LBDL−1

DDfD =: f̃ .

Now we make use of the Schur complement S of L defined in (15). Hence, step 3 of
Algorithm 1 computes the solution (uk+1, λk+1

B ) of the system

SuB + λB = f̃ ,(21a)

ui = 0 for all i ∈ Ak, λi = 0 for all i ∈ Ik.(21b)

In [5] it is shown that the Schur complement of a nonsingular M-matrix is a nonsingular
M-matrix again. Thus, S is a nonsingular M-matrix. As a consequence we have

(22) S−1
II ≥ 0 and S−1

II SIA ≤ 0



for arbitrary index sets A, I ⊂ B. With these sign properties we now argue the mono-
tonicity of {uk

B}. First note that for k ≥ 1 (17b) yields uk
i λ

k
i = 0 for all i ∈ B. For

i ∈ Ak we have either λk
i = 0, which implies uk

i < 0, or λk
i < 0, which yields uk

i = 0. As a
consequence, we have

(23) uk
i ≤ 0 = uk+1

i for all i ∈ Ak.

Analogously, we obtain

(24) λk
i ≥ 0 = λk+1

i for all i ∈ Ik.

The Newton step for (21a) yields

(25) S(uk+1
B − uk

B) + (λk+1
B − λk

B) = 0.

Splitting this equation according to the partition (Ak, Ik) of B results in

uk+1
Ik − uk

Ik = −S−1
IkIkSIkAk(uk+1

Ak − uk
Ak)− S−1

IkIk(λ
k+1
Ik − λk

Ik) ≥ 0

Thus, from (22)–(25) we infer uk+1
B ≥ uk

B for all k ≥ 1.
The feasibility of uk

B for k ≥ 2 can be argued as follows: Due to the monotonicity of
{uk

B}k≥1 it is sufficient to show u2
B ≥ 0. For this purpose let V := {i ∈ B : u1

i < 0} denote
the set of indices for which the constraint is violated. For i ∈ V we have λ1

i = 0. Hence,
u1

i +αλ1
i < 0 and consequently i ∈ A1. Since u2

A1 = 0 and u2
B ≥ u1

B it follows that u2
B ≥ 0.

Next we show that uk
B ≤ u∗B for all k ≥ 2. To this end, observe that

f̃Ik = λ∗Ik + SIkIku∗Ik + SIkAku∗Ak = SIkIkuk+1
Ik

for k ≥ 1. From this we obtain

SIkIk(uk+1
Ik − u∗Ik) = λ∗Ik + SIkAku∗Ak .

Since λ∗ ≤ 0 and u∗B ≥ 0, the M-matrix properties of S imply uk+1
B ≤ u∗B.

Next we consider {λk
B}. Let (k−, i), k− ≥ 1, denote an index pair with λk−

i > 0. Then

i ∈ Ak−−1. Thus, i ∈ Ik− and, hence, λk−+1
i = 0. Since uk

B ≥ 0 for k ≥ 2, we have

uk−+1
i + αλk−+1

i ≥ 0. Consequently i ∈ Ik−+1 and by induction i ∈ Ik for all k ≥ k−.
Hence, there exists an index k̄ ∈ N such that λk

B ≤ 0 for all k ≥ k̄.
The monotonicity of {uk

B}k≥1 and 0 ≤ uk
B ≤ u∗B for all k ≥ 2 imply the existence of

ūB ≥ 0 with limk uk
B = ūB. Further, due to λk

B = f̃ − Suk
B there exists λ̄B ≤ 0 with

limk λk
B = λ̄B. Since uk

i λ
k
i = 0 for all i ∈ B and for all k ≥ 1, we obtain (ūB, λ̄B) =

(u∗B, λ∗B).
The locally superlinear convergence follows from Theorem 2.1 and the fact that S is a

nonsingular M-matrix. ¤
Let us interpret the proof of Theorem 3.1. Concerning the properties of {λk

B} observe
that there exists an index kλ ≥ 1 such that λk

B ≤ 0 for all k ≥ kλ. Since uk
B ≥ 0 for all

k ≥ 2 and the pair (uk
B, λk

B) satisfies (17a) for all k ≥ 1, we have that Algorithm 1 stops
at iteration k∗ = max{kλ, 2}+ 1 if u0

B is infeasible. If the initial choice u0
B is feasible, i.e.

u0
B ≥ 0, then k∗ = max{kλ, 1}+ 1.
In many applications L is positive definite, but not an M-matrix. Important problem

classes of this type are given by the vector-valued Signorini problem with a boundary ob-
stacle and the symmetric crack problem. In these cases S (from the proof of Theorem 3.1)
is no longer an M-matrix. On the other hand, when studying the matrix entries of S, one
often finds that the diagonal elements are positive (like for M-matrices) and only some



off-diagonal elements are positive, thus destroying the M-matrix property of S. Further,
typically in each row of S the positive off-diagonal elements are small compared to the ab-
solute value of the other elements of the same row; see Figure 7 in Section 4. Consequently,
one may consider S = M + K with M ∈ RN×N an M-matrix and K ∈ RN×N a small
perturbation. For scalar-valued continuous problems this situation was considered in [9,
Thm. 3.4]. Since the proof of this result does not depend on the scalar-valuedness of the
problem, it also applies in the case of a vector-valued problem. Below, for K ∈ RN×N the
norm ‖K‖1 denotes the subordinate matrix norm when RN is endowed with the `1-norm.

Theorem 3.2. Assume that S = M + K with M ∈ RN×N a nonsingular M-matrix and
with K ∈ RN×N a perturbation such that ‖K‖1 is sufficiently small. Then Algorithm 1
is well-defined, and limk→∞(uk, λk

B) = (u∗, λ∗B) with u∗ the unique solution of (1) with
corresponding multiplier λ∗B. Moreover, the local convergence rate is superlinear.

Proof. See the proof of [9, Thm. 3.4]. ¤

In our numerical test runs of Algorithm 1 for the vector-valued problems mentioned
earlier, we typically observe that the iterates converge monotonically even in cases where
S = M + K, with M and K as above. The next results give a theoretical justification for
this observation in numerical practice. We denote

(26) TII =
∞∑

l=1

(−M−1
II KII)

l,

which is well-defined for ‖M−1
II KII‖ < 1. We further define

UIA = TIIM
−1
II MIA + M−1

II KIA + TIIM
−1
II KIA,

VII = TIIM
−1
II .

Theorem 3.3. Assume that S = M + K with M ∈ RN×N a nonsingular M-matrix and
K ∈ RN×N a perturbation such that ‖K‖1 is sufficiently small. For all k ∈ N and for all
(Ik, Ak) defined by Algorithm 1 suppose that

(
M−1

IkIk + VIkIk

) ≥ 0(27a)

and there exists an index k0 ∈ N with

either
(
M−1

Ik0Ik0
MIk0Ak0 + UIk0Ak0

) ≤ 0(27b)

or uk0
B feasible.(27c)

Then

u∗B ≥ uk+1
B ≥ uk

B ≥ 0 for all k ≥ k0.

Proof. The global and locally superlinear convergence of the iterates (uk, λk
B) to (u∗, λ∗B)

follow from Theorem 3.2.
Let us turn to the monotonicity of the primal iterates. The smallness requirement for

‖K‖1 implies the existence of TIkIk for all k. Then the inverse of SIkIk exists and can be
expressed as

(28) S−1
IkIk = (EIk + TIkIk)M−1

IkIk ,



where EIk denotes the unit matrix in R|Ik|×|Ik|. Utilizing the above identity in equation
(25) yields

duk
Ik = −S−1

IkIkSIkAkduk
Ak − S−1

IkIkdλk
Ik

= −(EIk + TIkIk)M−1
IkIk(MIkAk + KIkAk)duk

Ak

−(EIk + TIkIk)M−1
IkIkdλk

Ik

= (M−1
IkIkMIkAk + UIkAk)(−duk

Ak) + (M−1
IkIk + VIkIk)(−dλk

Ik),(29)

where duk
Ak = uk+1

Ak − uk
Ak , dλk

Ik = λk+1
Ik − λk

Ik , and analogously duk
Ik .

(i) Let us assume that (27a) and (27c) are satisfied. Since uk0
B ≥ 0, we have

Ik0 = {i ∈ B : uk0
i + αλk0

i ≥ 0} ⊇ Ik0−1, Ak0 ⊆ Ak0−1.

As a consequence, uk0+1
Ak0

= uk0

Ak0
which implies duk0

Ak0
= 0 . From (24) we recall that

dλk0

Ik0
≤ 0. Hence (29) and assumption (27a) imply that

uk0+1
Ik0

= uk0

Ik0
+ (M−1

Ik0Ik0
+ VIk0Ik0 )(−dλk0

Ik0
) ≥ uk0

Ik0
≥ 0.

Thus, we obtain uk0+1
B ≥ uk0

B ≥ 0, i.e. uk0+1
B is feasible. By induction we have uk+1

B ≥
uk

B ≥ 0 for all k ≥ k0. The property u∗B ≥ uk
B for all k ≥ k0 is an immediate consequence

of the convergence and monotonicity of {uk
B}k≥k0 . This proves the assertion in case of

(27a) and (27c).
(ii) Now we suppose that (27a) and (27b) hold. Let V k0 := {i ∈ B : uk0

i < 0}. From
(17b) we obtain λk0

V k0
= 0. Hence, V k0 ⊆ Ak0 which yields uk0+1

V k0
= 0 again by (17b).

Further note that uk0

Ik0
≥ 0. From (29) we infer

uk0+1
Ik0

= uk0

Ik0
+ (M−1

Ik0Ik0
MIk0Ak0 + UIk0Ak0 )(−uk0+1

Ak0
+ uk0

Ak0
)

+ (M−1
Ik0Ik0

+ VIk0Ik0 )(−dλk0

Ik0
)

≥ uk0

Ik0
+ (M−1

Ik0Ik0
MIk0Ak0 + UIk0Ak0 )uAk0

≥ uk0

Ik0
(≥ 0).

For the last inequality we used uk0

Ak0
≤ 0 and (27b), and for the next to the last we utilized

dλk0

Ik0
≤ 0 (by (24)) and assumption (27a). Since uk0+1

Ak0
= 0 we have uk0+1

B ≥ 0 and uk0+1
B

is feasible. Now we can argue as in case (i) to prove the assertion.
¤

Conditions (27a) and (27b) hold if there exist constants εi ≥ 0, i = 1, . . . 4, with
0 ≤ ε1 < ε2 ,0 ≤ ε4 < ε3, and ε1 and ε4 sufficiently small, such that for all k ∈ N and for
all (Ik, Ak) defined by Algorithm 1

|min(0, (VIkIk)ij)| ≤ ε1, (M−1
IkIk)ij ≥ ε2,(30)

(M−1
Ik0Ik0

MIk0Ak0 )mn ≤ −ε3, |max(0, (UIk0Ak0 )mn)| ≤ ε4,(31)

for all i, j ∈ Ik and m ∈ Ik0 , n ∈ Ak0 for some k0 ∈ N. In fact, (30) implies that (27a)
is satisfied, and from (31) we infer that (27b) is fulfilled. The conditions on M−1

IkIk and

M−1
IkIkMIkAk in (30) and (31) are satisfied for the standard finite difference or finite ele-

ment discretizations of the differential operators appearing in the vector-valued Signorini
problem and the symmetric crack problem; see Section 4. This is also true for many other
practically relevant problems involving second order linear elliptic differential operators.



Thus, it is realistic to assume that ε1 (ε4) are small compared to ε2 (ε3). Note that the case
ε1 = 0, and ε4 = 0 for all k ∈ N corresponds to the monotonicity assertion of Theorem 3.1.
Indeed, in this case K = 0.

In our numerical practice typically assumptions (27a) and (27c) of Theorem 3.3 as well
as assumption (32) for the initialization stated in the following theorem are satisfied. For
convenience we recall that step 3 in the kth iteration of Algorithm 1 computes the solution
(uk+1

B , λk+1
B ) of the system

SuB + λB = f̃ ,

ui = 0 for all i ∈ Ak, λk+1
i = 0 for all i ∈ Ik.

Theorem 3.4. Assume that S = M + K with M ∈ RN×N a nonsingular M-matrix
and with K ∈ RN×N a perturbation such that ‖K‖1 is sufficiently small. Suppose that

Algorithm 1 is initialized with λ0
B = 0 and u0

B = S−1f̃ ∈ R|B|. If

(32) u0
I0 +

(
M−1

I0I0MI0A0 + UI0A0

)
u0

A0 ≥ 0,

and (27a) is satisfied, then the iterates {uk
B} converge monotonically to u∗B with a locally

superlinear rate. Moreover, uk
B ≥ 0 for all k ≥ 1.

Proof. The global and locally superlinear convergence of the iterates (uk, λk
B) to (u∗, λ∗B)

follow from Theorem 3.2.
Let V = {i ∈ B : u0

i < 0}. Since λ0
B = 0 and α > 0, we have

A0 = {i ∈ B : u0
i + αλ0

i < 0} = V and I0 = {i ∈ B : u0
i ≥ 0}.

The update strategy of Algorithm 1 yields u1
i = 0 for all i ∈ A0 and λ1

i = 0 for all i ∈ I0.
Thus, du0

i = u1
i − u0

i > 0 for all i ∈ A0 and dλ0
i = λ1

i − λ0
i = 0 for all i ∈ I0. From (29)

and assumption (32) we infer

u1
I0 = u0

I0 +
(
M−1

I0I0MI0A0 + UI0A0

)
u0

A0 ≥ 0.

As a consequence u1
B ≥ 0, i.e. u1

B is feasible. Since, in addition, λ1
i = 0 for all i ∈ I0,

we have I0 ⊆ I1. This implies A1 ⊆ A0 and further u2
A1 − u1

A1 = du1
A1 = 0. From (24)

we infer that dλ1
I1 ≤ 0. Hence, assumption (27a) and (29) yield u2

I1 − u1
I1 = du1

I1 ≥ 0.

Therefore we have u2
B ≥ u1

B ≥ 0. By induction we get uk+1
B ≥ uk

B ≥ 0 for all k ≥ 1 which
proves the assertion. ¤

Observe that condition (32) is automatically satisfied in the case where S is an M-
matrix. In general, (32) excludes the situation where Uij > 0 and −u0

j > 0, for i ∈ I0 and

j ∈ A0, are large.

4. Numerical results

In this section we report on numerical results obtain from an implementation of Algo-
rithm 1. We also discuss the convergence results of Sections 2 and 3 on the numerical
level. The test problems are a scalar-valued problem with a boundary obstacle, a vector-
valued Signorini problem, and a symmetric crack problem. For the respective problem
we give a brief description of the continuous formulation, an adequate discretization, and
we relate the properties of the discrete operator L to the assumptions of our convergence
theorems.



4.1. The scalar-valued problem with a boundary obstacle. Let Ω ⊂ R2 denote a
bounded domain with a Lipschitz boundary ∂Ω. We assume that ∂Ω consists of disjoint
and nonempty components Γd, Γn and Γc. Similar to (3) we introduce the objective
functional

J(u) := 1
2

∫
Ω
∇u>∇u dx− ∫

Γn
gu ds.

We define H1 := {u ∈ H1(Ω) : u = 0 a.e. on Γd} and consider the minimization problem

minimize J(u) over u ∈ H1

subject to u ≥ ψ a.e. on Γc,
(33)

with the obstacle ψ ∈ C0,1(Γc) satisfying ψ ≤ 0 a.e. on Γc∩Γd. It is well-known that (33)
admits a unique solution in H1.

For our numerical calculations we take the following data: Ω = (0, 1)2, Γd = {x =
1, 0 ≤ y ≤ 1}, Γc = {0 < x < 1, y = 0}, Γn = {x = 0, 0 ≤ y ≤ 1} ∪ {0 < x < 1, y = 1}.
We assume that g(x, y) = −0.001 on {x = 0, 0 ≤ y ≤ 1} and g(x, y) = 0 on {0 < x <
1, y = 1}. The obstacle is prescribed on Γc and is defined as ψ(x, y) = 0.004(sin(πx)− 1).
For convenience, in Figure 1 we illustrate the geometrical situation.
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Figure 1. Example 1: The scalar-valued problem with the boundary ob-
stacle.

For the discretization of H1 we use linear finite elements which reflect the homogeneous
Dirichlet boundary condition on Γd. The resulting matrix L is positive definite, and it
is a nonsingular M-matrix. It corresponds to the discretization of the Laplace operator
with homogeneous Dirichlet boundary conditions on Γd. As a consequence, the results of
Theorem 3.1 apply. Let N denote the number of nodes in Ω̄\Γd. We split C = {1, . . . , N}
into B, which corresponds to nodes on Γc, and D, which contains the indices of nodes in
Ω̄ \ (Γd ∪ Γc). Let ψB denote the restriction of ψ onto the nodal points on Γc yielding

ψB ∈ R|B|. The simple transformation ũB = uB − ψB, f̃D = fD − LDBψB, and f̃B =
fB − LBBψB allows us to recast the discrete version of (33) as a problem of the type (1).

For ease of reference we rename the quantities ũ and f̃ by u and f again.
We initialize Algorithm 1 by the solution to the unconstrained problem, i.e., u0 = L−1f .

Further we set λ0
B = 0. The parameter α is fixed to α = 0.001(max u0/ max λ0). For the

mesh-size h = 0.025, with N = 1
h
(1 + 1

h
) = 1640, Algorithm 1 terminates at iteration 5



with the solution to the problem. In Figure 2 and Figure 3 we display the iterates uk
B and

λk
B, respectively. The primal iterates in Figure 2 clearly exhibit the monotonous behavior

as expected from Theorem 3.1. Further, combining both figures one finds uk
i λ

k
i = 0 for

all i ∈ B. Figure 4 shows the indicator functions for Ik for all iterations k. Again,
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Figure 3. Iterations λk
B of the multipliers.

the monotonicity becomes evident. In fact, one observes I0 ⊆ I1 ⊆ . . . ⊆ I4. Finally, in
Figure 5 we depict the quotients

qk :=
‖uk+1 − u∗‖2

H1(Ω)

‖uk − u∗‖2
H1(Ω)

=

∫
Ω
|∇(uk+1 − u∗)|2 dx∫

Ω
|∇(uk − u∗)|2 dx

.

Here u∗ denotes the numerical solution of the discrete problem. We present the results
for several mesh-sizes h. The corresponding number of iterations until the successful
termination of Algorithm 1 can be found in Table 1. For fixed mesh size h the results
in Figure 5 suggest a superlinear convergence behavior of {uk

B}. Further, it appears that
qk depends only moderately on the mesh-size h of the discretization. This observation is
also supported by the results report on in Table 1
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Figure 4. History of the indicator functions for Ik.
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Figure 5. Behavior of qk for various mesh-sizes.

h 0.05 0.025 0.0125 0.00625 0.003125
# it 2 4 5 6 7

Table 1. Number of iterations (# it) for different mesh-sizes h.

4.2. The vector-valued Signorini problem with an obstacle. With Ω, ∂Ω, Γd, Γn

and Γc as in Section 4.1 we consider the energy functional

J(u) := 1
2
b(u, u)− 〈g, u〉Γn ,

where b denotes the bilinear form

b(u, v) =

∫

Ω

[(κ + 1)u1,xv1,x + u1,yv1,y + u1,yv2,x + (κ− 1)u1,xv2,y

+ (κ− 1)u2,yv1,x + u2,xv1,y + u2,xv2,x + (κ + 1)u2,yv2,y] dx



and the pairing 〈·, ·〉Γn is given by

〈g, u〉Γc =

∫

Γc

g>u ds.

Above u, v and g denote the vectors u = (u1, u2)
>, v = (v1, v2)

> and g = (g1, g2)
> ∈

(L2(Γn))2. Further subscripts x and y denote differentiation with respect to the respective
variables. Note that the bilinear form b corresponds to the Lamé system

−∆u1 − κ(u1,x + u2,y)x = 0,

−∆u2 − κ(u1,x + u2,y)y = 0.
(34)

Here and above κ = (µ + λ)/µ depends on the Lamé coefficients µ > 0 and λ with
µ + λ > 0. See e.g. [12] for more details on equations of the Lamé type.

We define H2 := {u ∈ (H1(Ω))2 : u1 = u2 = 0 a.e. on Γd} and consider the minimiza-
tion problem

minimize J(u) over u ∈ H2

subject to u2 ≥ ψ a.e. on Γc,
(35)

with the obstacle ψ ∈ C0,1(Γc) satisfying ψ ≤ 0 a.e. on Γc ∩ Γd. The bilinear form b is
elliptic on H2, and it is well-known that (33) admits a unique solution in H2. In Figure 6
we give a graphical account for the problem under consideration.
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Figure 6. Example 2: The vector-valued Signorini problem with an ob-
stacle.

Note that u1 and u2 describe horizontal displacements in the plane z = 0.
We discretize H2 by linear finite elements which satisfy the homogeneous Dirichlet

boundary conditions satisfied on Γd. Let N̂ denote the total number of nodes. We
suppose that the vector of unknowns is ordered as

u = ((u1)1, (u2)1, (u1)2, (u2)2, (u1)3, (u2)3, . . . , (u1)N̂ , (u2)N̂)> ∈ R2N̂ .

The stiffness matrix L ∈ R2N̂×2N̂ is obtained from the finite element representation of
the bilinear form b. Due to the ellipticity property of b, the matrix L is positive definite.



But, in contrast to the scalar-valued case in Section 4.1, it is not an M-matrix. We denote
by B the set of indices corresponding to (u2)i with nodal points located on Γc. Further

C = {1, . . . , 2N̂} and D = C\B. Let ψB denote the restriction of ψ to the nodal points on

Γc, and let f ∈ R2N̂ with f>u representing the discretization of 〈g, u〉Γc . Setting N = 2N̂
and performing the simple transformation of uB ≥ ψB into uB ≥ 0 as in Section 4.1, we
arrive at a problem of type (1) which is equivalent to an appropriate discretization of
(35).

Let us categorize the problem under consideration with respect to our convergence re-
sults in Section 3. As noted above, L fails to be an M-matrix. Also the Schur complement
S, which corresponds to the iteration matrix with respect to uB, lacks the M-matrix prop-
erty. However, the assumption of Theorem 3.2 is likely to be satisfied. In fact, Sii > 0 for
all i ∈ B. Let Kij = max(0, Sij) with i, j ∈ B and i 6= j, and define Kii = 0 for all i ∈ B.
Then one obtains S = M + K with M a nonsingular M-matrix. In Figure 7 we display
the `1-norm of S and the `1-norm of K multiplied by 100, respectively. We plot these
norms in dependence on κ and the mesh-size h. The problem data are specified below.
First note that the norms depend only slightly on h for sufficiently small h. With respect
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Figure 7. `1-norms of S (upper graphs) and K (lower graphs).

to κ one finds that the larger κ becomes the smaller the `1-norm of K is. This latter fact
is interesting since for κ = 0 the Lamé system admits no solution. From Figure 7 we can
see that ‖K‖1 becomes large when κ > 0 is small. On the other hand, we typically have
‖K‖1/‖S‖1 ≤ 0.01 for κ ≥ 1. This clearly indicates that K can be considered as a small
perturbation of M , and the assumptions of Theorem 3.2 are likely to be satisfied. In fact,
the results reported on below show that Algorithm 1 is globally convergent with a fast
local rate.

For our test of Algorithm 1 discussed below, we recall that Ω, Γd, Γn, and Γc are like
in Section 4.1. Unless otherwise stated, we use κ = 1 and α = 0.001(max u0/ max λ0).
Further we have

g = (g1, g2)
> =

{
(0,−0.001)> on {x = 0, 0 ≤ y ≤ 1}
(0, 0)> on {0 < x < 1, y = 1}

and ψ(x, y) = 0.004(sin(πx)−1) for (x, y) ∈ Γc. The algorithm is initialized by u0 = L−1f
and λB = 0.



In Figures 8–10 we show the iterates (uk
2)B, the multipliers λk

B, and the indicator func-
tions of Ik for all iterations k.
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Figure 8. Iterations (uk
2)B of the displacements.
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Figure 9. Iterations λk
B of the multipliers.

The conclusions concerning the monotonicity of {uk
B} and of the indicator functions of

Ik are as in Section 4.1. Further, we checked the conditions of Theorem 3.4. In fact, (27a)
and (28) are satisfied; see Figure 8. As a consequence we observe monotone convergence
of the primal iterates (uk

2)B. In Figure 11 we depict the quotients

qk =
‖uk+1 − u∗‖2

(H1(Ω))2

‖uk − u∗‖2
(H1(Ω))2

.

for various mesh-sizes h. The results presented in Figure 11 clearly indicate a fast local
convergence property of Algorithm 1 for solving the vector-valued Signorini problem.

Next we investigate the dependence of the number of iterations until successful termi-
nation for various mesh-sizes h and coefficients κ > 0. The corresponding results can be
found in Table 2 and Table 3. The figures in Table 2 indicate a moderate dependence
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Figure 10. History of the indicator functions for Ik.
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Figure 11. Behavior of qk for various mesh-sizes.

h 0.05 0.025 0.0125 0.00625
# it 5 6 7 8

Table 2. Number of iterations (# it) for different mesh-sizes h.

κ 0.5 1.0 1.5 2 2.5 3
# it 6 6 6 5 6 6

Table 3. Number of iterations (# it) for different coefficients κ > 0.

of the number of iterations #it on the mesh-size h of the discretization. From Table 3 we
see that #it is essentially independent of κ > 0. We also tested alternative initializations
and found that Algorithm 1 converged for all of our initializations.

Finally, we test whether our observations depend on the structure of the active re-
spectively inactive sets. In Figure 12 we display the iterates (uk

2)B for the obstacle
ψ(x, y) = 0.004(sin(9πx) − 1) with (x, y) ∈ Γc. As can be seen from Figure 13, which
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Figure 12. Iterations (uk
2)B of the displacements.

shows the indicator functions of Ik for all iterations k, the inactive set consists of several
disjoint components. Like in the previous case, the iterates depicted in Figure 12 con-
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Figure 13. History of the indicator functions for Ik.

verge monotonically. The latter example shows that Algorithm 1 copes successfully with
complex active and inactive set structures.

4.3. The symmetric crack problem. Symmetric crack problems are commonly consid-
ered in fracture mechanics when investigating the mode-1 model of a crack. We consider
the following version. Let O ∈ R2 be a bounded domain which is symmetric with respect
to the x-axis, i.e.,

O = O
+ ∪O

−
, O± = O ∩ {±y > 0}, O

+ ∩O
−

= Γs.

Here Γs ⊂ {y = 0} is an interface between O+ and O−. We assume that the crack Γc

occupies a part of Γs. Under symmetric boundary conditions imposed on ∂O one can



consider the following crack problem which is stated in Ω := O+ only:

minimize J(u) over u ∈ H2

subject to u2 ≥ 0 a.e. on Γc, u2 = 0 a.e. on Γs \ Γc,
(36)

where the objective functional is defined by

J(u) := 1
2
b(u, u)− 〈g, u〉Γn ,

see Section 4.2 for the precise definitions of J and H2. Note that u2 ≥ 0 a.e. on Γc is
called non-penetration condition, since it is related to non-penetration of opposite crack
faces. Problem (36) is well-defined and admits a unique solution in H2.

We apply a finite element discretization similar to the one in the previous section. The
resulting problem is of the type (1) with the additional condition (u2)i = 0 for indices
i which belong to nodal points on Γs \ Γc. Since J and H2 are like in Section 4.2, the
matrix L is positive definite, but it is not an M-matrix. A similar investigation to the one
carried out in the previous section yields that the Schur complement S can be expressed
as S = M + K with M a nonsingular M-matrix and K a sufficiently small perturbation.
Consequently, Theorems 3.2 and 3.3 are likely to be applicable.

Below we report on the results obtain from Algorithm 1 applied to the following exam-
ple:

Ω = {0 < x < 1, 0 < y < 0.5}, Γd = {x = 1, 0 ≤ y ≤ 0.5},
Γs = {0 < x < 1, y = 0}, Γn = Γ1

n ∪ Γ2
n,

Γ1
n = {x = 0, 0 ≤ y ≤ 0.5}, Γ2

n = {0 < x < 1, y = 0.5}.
We consider a so-called multi-crack Γc consisting of three pieces:

Γc = Γ1
c ∪ Γ2

c ∪ Γ3
c , Γ1

c = {0 < x < 0.1, y = 0},
Γ2

c = {0.2 < x < 0.8, y = 0}, Γ3
c = {0.9 < x < 1, y = 0}.

The geometrical situation is depicted in Figure 14.
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We choose κ = 1 and α = 0.001(max u0/ max λ0). Further we have

g = (g1, g2)
> =

{
(0,−0.001)> on Γ1

n,
(0, 0)> on Γ2

n.

In Figure 15–17 we show, for h = 0.025, (uk
2)B, λk

B and the indicator functions of the
inactive sets Ik for all iterations k. The algorithm stops after 4 iterations at the optimal
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Figure 15. Iterations (uk
2)B of the displacements.
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Figure 16. Iterations λk
B of the multipliers.

solution. From Figure 16 it can be seen that the Lagrange multipliers takes on negative
as well as positive values in nodes on Γs \ Γc. This is due to the fact that (u2)i = 0 in
these nodes is kept as an explicit constraint. Since it is of equality type, the corresponding
multipliers admit no sign condition. Figure 17 indicates that all nodes are active on Γ1

c .
The nodes on Γ3

c are all inactive, and on Γ2
c there are both active nodes and inactive

ones. This behavior can also be inferred from Figure 15. In Table 4 we report on the #it
for various mesh-sizes h. Similar to the problem considered in the previous section, we
conclude that #it depends only moderately on the mesh-size of discretization.
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Figure 17. History of the indicator functions for Ik.

h 0.05 0.025 0.0125 0.00625
# it 3 4 5 7

Table 4. Number of iterations (# it) for different mesh-sizes h.

Finally, let us point out that this example illustrates that there is no maximum princi-
ple for the Lamé problem in general. In fact, the negative load g2 applied on Γ1

n yields a
positive displacement u2 on Γc. This behavior would not occur in case of the existence of
a maximum principle.
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