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Abstract. A comparison of three different but related numerical methods
for control constrained optimal control of the Burgers equation is carried
out. We develop the principal ideas of the different strategies considered and
present detailed numerical examples. Lastly, conclusions about the behavior
of the approaches are obtained.

1 Introduction

Introduced in the 1940s as a simplified model for turbulence, the Burgers
equation was used thereafter in diverse physical problems such as shock
waves, supersonic flow and acoustic transmission. Its study usually serves
as a first approximation to more complex convection diffusion phenomena,
and in many cases this model deals efficiently with the basic features of the
problem involved.

Development over the past decades has yielded important results on
existence and uniqueness for this equation in the stationary as well as in
the evolutionary cases. In the 1950s, Hopf [12] gave pioneering results by
studying an explicit solution of the time-dependent equation and observed
its behavior as time tends to infinity. Today the functional analytic setting
of the problem is well understood; see, e.g., [18].

The optimal control of this equation has a more recent history. We cite
one of the earlier papers [6] as well as [4,5,13]. A rather complete analysis
of optimal control problems and their approximation is given in [20]. This
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work contains an augmented Lagrangian-SQP method for the solution of
the control problem and its local convergence analysis.

In the present paper we consider the same class of optimal control prob-
lems as in [20], but in the case where the control is subject to pointwise
constraints. This introduces an additional nonlinearity to the optimal con-
trol problem. Its numerical treatment by super-linearly convergent methods
is the focus of the present work. Detailed numerical examples are given,
which allow us to draw conclusions about the behavior of the methods.

The paper is organized as follows. In Sect. 2 the optimal control problem
is stated and an initial optimality system is obtained. In Sect. 3, based on the
generalized equation approach, an SQP (sequential quadratic programming)
approach, with a primal-dual active set method for the inner loop, is stated
and analyzed for the solution of our problem. In Sect. 4 a nonlinear primal-
dual active set method is explained and the scheme is applied, together with
an SQP algorithm for the auxiliary nonlinear problems, to the solution of
the constrained optimal control problem. In Sect. 5 a semi-smooth Newton
method is introduced and its relationship with each of the previous methods
is shown. In Sect. 6 numerical experiments are discussed and basic features
of the implementations are explained. Lastly, in Sect. 7 conclusions, based
on experiments for the three methods, are obtained.

2 Optimal control problem

Considering the domain � = (0, 1), the optimal control problem for the
stationary Burgers equation with a tracking-type cost functional can be for-
mulated as:






min J (y, u) = 1
2

∫ 1
0 |y − zd |2dx + α

2

∫

�̃
|u|2dx

s.t. −νy ′′ + yy ′ = Bu

y(0) = y(1) = 0

u ≤ b a.e.,

(2.1)

where b ∈ L2(�̃), �̃ ⊂ �, zd ∈ H 1(�), α > 0 and

Bu =
{

u in �̃

0 in �\�̃.

The parameter ν > 0 stands for the viscosity coefficient of the fluid, which
is equal to 1

Re , where Re denotes the Reynolds number.
Next the constraints in (2.1) are expressed by means of an appropriately

defined operator. The differential equation is realized in variational form.
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By introducing

G : H 1
0 (�) × L2(�̃) → H−1(�) × L2(�̃)

(y, u) →
(

ν(y ′, ·′) + (yy ′, ·) − (Bu, ·)
b − u

)

,

the constraints in (2.1) can be expressed as G(y, u) ∈ K , where K is the
closed convex cone defined by K = {(z, t) ∈ H−1(�) × L2(�̃) : z =
0, t ≥ 0 a.e.}. The operator G is twice Fréchet differentiable (see [20],
p. 81) and its first derivative is given by

G′(y, u)(w, h) =
(

ν(w′, ·′) + ((yw)′, ·) − (Bh, ·)
−h

)

.

The Lagrangian associated to (2.1) can be written as

L(y, u, p, λ) = J (y, u) + ν(y ′, p′) + (yy ′, p) − (Bu, p) − (λ, b − u).

(2.2)

It is simple to argue the existence of a solution for (2.1). Next we verify
the regular point condition [16], which allows us to argue the existence of
Lagrange multipliers.

Theorem 2.1 The operator G′(y, u) is surjective for each (y, u) ∈
H 1

0 (�) × L2(�̃).

Proof For (f, g) ∈ H−1(�) × L2(�̃), it must shown that there exists a pair
(w, h) ∈ H 1

0 (�) × L2(�̃) such that G′(y, u)(w, h) = (f, g).
Reformulating the equation

−νw′′ + (yw)′ = f in H−1(�) (2.3)

as
((ν�)−1K − I )w = (ν�)−1f,

with K : H 1
0 (�) → H−1(�) defined by Kw = (yw)′, it can be shown, by

applying Fredholm’s alternative (cf. [20]), that (2.3) has a solution w for
each f ∈ H−1(�).

By setting h = −g and considering f + Bh as right-hand side of (2.3),
the existence of a solution w, and hence the surjectivity of G′(y, u), fol-
low. ��

With the surjectivity of G′(y, u) established, we can insure the existence
of Lagrange multipliers (p, λ) ∈ H 1

0 (�) × L2(�̃) such that, if (y, u) is the
optimal solution of the problem, then

L(y,u)(y, u, p, λ)(w, h) = (y − zd, w) + α(u, h) + ν(p′, w′)

−(yp′, w)−(B∗p, h)+(λ, h) = 0 for all (w, h) ∈ H 1
0 (�)×L2(�̃).

(2.4)
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Taking h = 0 implies that

ν(p′, w′) − (yp′, w) = (zd − y, w) for all w ∈ H 1
0 (�). (2.5)

Also setting w = 0 the following relation must hold:

α(u, h) − (B∗p, h) + (λ, h) = 0 for all h ∈ L2(�̃). (2.6)

In addition, the complementarity condition (λ, u− b) = 0, (λ, v − b) ≤ 0,

for all v ≤ b and the constraint u ≤ b must hold.
Consequently, if (y, u) is a local optimal solution of our problem, then

it must satisfy the following optimality system in the variational sense:






−νy ′′ + yy ′ = Bu

y(0) = y(1) = 0

−νp′′ − yp′ = zd − y

p(0) = p(1) = 0

B∗p − αu = λ

(λ, u − b) = 0

u ≤ b

λ ≥ 0.

(2.7)

The last system has two kinds of nonlinearities, the first appearing in
the primal equation and the second due to the presence of the inequality
constraint resulting in the complementarity condition, which is expressed
by the last three equations of (2.7).

Subsequently we discuss three related but different strategies for solving
(2.7) numerically.

3 SQP-primal dual method

A first approach to solving (2.7) consists in applying the SQP method and
in insuring in each iteration of this method that the solution satisfies the
control constraints and the complementarity condition. Such an idea can be
formalized through the general equation approach given in [1] and succes-
fully applied to the constrained optimal control of the instationary Burgers
equation in [7,19].

Under appropriate second-order conditions, the equivalence between the
SQP and the Lagrange-Newton methods holds locally and the convergence
of the algorithm can be proved for sufficiently close starting points (cf. [1]).
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3.1 Algorithm

In order to use the theory developed in [1] we define a function F : H 1
0 (�)×

L2(�̃)×H 1
0 (�)×L2(�̃) → (H 1

0 (�)×L2(�̃))′ ×L2(�̃)×H−1(�) in the
form:

F(y, u, p, λ) =



L(y,u)(y, u, p, λ)

u − b

−ν(y ′, ·′) − (yy ′, ·) + (Bu, ·)



 . (3.1)

We also define a multivalued operator T as follows:

T : H 1
0 (�) × L2(�̃) × H 1

0 (�) × L2(�̃)

→ (H 1
0 (�) × L2(�̃))′ × L2(�̃) × H−1(�)

(y, u, p, λ) → {0} × ∂�K∗ (λ) × {0},

where ∂�K∗ (λ) :=
{

{z ∈ L2(�̃) : (β − λ, z) ≤ 0, ∀β ∈ K∗} if λ ∈ K∗

∅ if λ �∈ K∗

and K∗ = K = {f ∈ L2(�̃) : f ≥ 0 a.e.}.
The necessary condition can thus be expressed as

0 ∈ F(y, u, p, λ) + T (y, u, p, λ). (3.2)

Applying Newton’s method for generalized equations (cf. [1]) to (3.2) yields
an algorithm which in the kth iteration, for xk := (yk, uk, pk, λk), computes
xk+1 as solution of

0 ∈ F(xk) + F ′(xk)







y − yk

u − uk

p − pk

λ − λk





+ T (x). (3.3)

Remark 3.1 Equation (3.3) corresponds to the first-order necessary condi-
tion of the optimization problem:






min J(y,u)(yk, uk)((y, u) − (yk, uk)) +
1

2
L′′(xk)((y, u) − (yk, uk), (y, u) − (yk, uk))

s.t. ν(y ′
k, ·′) + (yky

′
k, ·) − (Buk, ·)

+ ν(y ′ − y ′
k, ·′) + ((yk(y − yk))

′, ·) − (B(u − uk), ·) = 0

b − u ∈ K.
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With δy := y − yk, δu := u − uk, δp := p − pk and δλ := λ − λk, (3.3)
results in the equations:

ν(δ′
y, w

′) + (ykδ
′
y, w) + (y ′

kδy, w) − (Bδu, w)

= −ν(y ′
k, w

′) − (yky
′
k, w) + (Buk, w) for all w ∈ H 1

0 (�), (3.4)

(δy, w) − (δyp
′
k, w) + ν(δ′

p, w′) − (ykδ
′
p, w)

= (zd − yk, w) − ν(p′
k, w

′) + (ykp
′
k, w) for all w ∈ H 1

0 (�), (3.5)

(αδu, h) − (B∗δp, h) + (δλ, h) = (B∗pk, h)

− (λk, h) − (αuk, h) for all h ∈ L2(�̃), (3.6)

b − δu − uk ∈ ∂�K∗ (λ). (3.7)

By applying Green’s formula, the system of equations to be solved can
be written as:






−νδ′′
y + ykδ

′
y + y ′

kδy − Bδu = νy ′′
k − yky

′
k + Buk

δy(0) = δy(1) = 0

−νδ′′
p + δy − p′

kδy − ykδ
′
p = zd − yk + νp′′

k + ykp
′
k

δp(0) = δp(1) = 0

αδu − B∗δp + δλ = B∗pk − λk − αuk

uk + δu − b ≤ 0

λk + δλ ≥ 0

(λk + δλ, uk + δu − b) = 0.

(3.8)

For the solution of (3.8), the main difficulty is given by the complemen-
tarity problem expressed by the last three equations of the system. For its
solution we apply the primal-dual active set strategy [2], after reformulating
the complementarity problem in the following equivalent way:

λk + δλ = c max{0, uk + δu − b + λk + δλ

c
} for any c > 0. (3.9)

The primal-dual active set strategy is consequently applied in each SQP
iteration to solve the linearized constraint problem and the proposed active
and inactive sets in the nth iteration are

Ak
n = {x : δu + uk − b + λk + δλ

c
> 0}, (3.10)

Ik
n = {x : δu + uk − b + λk + δλ

c
≤ 0}. (3.11)

The algorithm in the kth iteration is then given in the following steps.
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Algorithm (PD)
1. Given yk, pk, uk, λk. Set δu = 0 and solve

− νδ′′
y + ykδ

′
y + y ′

kδy = νy ′′
k − yky

′
k + Buk

− νδ′′
p + δy − p′

kδy − ykδ
′
p = zd − yk + νp′′

k + ykp
′
k.

Set δλ = −αuk + B∗pk + B∗δp − λk, n = 1.
2. Determine the sets

Ak
n = {x : uk + δu − b + λk + δλ > 0},

Ik
n = {x : uk + δu − b + λk + δλ ≤ 0}.

3. If n ≥ 2 and Ak
n = Ak

n−1, stop.
4. Else, find (δy, δp) such that

− νδ′′
y + ykδ

′
y + y ′

kδy = νy ′′
k − yky

′
k +






0 if x ∈ �\�̃
b if x ∈ Ak

n
B∗(pk+δp)

α
if x ∈ Ik

n

− νδ′′
p + δy − p′

kδy − ykδ
′
p = zd − yk + νp′′

k + ykp
′
k.

Set δu =
{

b − uk if x ∈ Ak
n

1
α
(pk + δp − αuk) if x ∈ Ik

n

.

5. Set δλ = B∗pk +B∗δp −αuk −αδu −λk, update n := n+ 1 and goto 2.
In the case of high Reynolds numbers, our test examples are linked to

positive velocities and, consequently, the use of backward finite differences
in the primal equation and forward finite differences in the adjoint equation
is justified to insure stability of the finite difference discretization in those
cases (cf. [8,9]).

The finite difference discretization of Algorithm (PD) is now standard
([17], p. 77). By introducing the matrix notation:

A :=





−2 1
1 −2 1

. . .
. . .

. . .




 , D :=






1 0
−1 1 0

. . .
. . .

. . .




 ,

y =





y1
...

yn−1




 , p =






p1
...

pn−1




 , δp =






δ1
p

...

δn−1
p




 , δy =






δ1
y

...

δn−1
y




 ,

Y := diag(y) =





y1

y2
. . .




 , P := diag(p),

Z := diag(z), Act := diag(act), Inact := diag(inact),
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where act is the index vector of active points, i.e.,

acti =
{

1 if xi is active,

0 if not,

and inact is the index vector of inactive points, the first equation of (4) of
Algorithm (PD), by taking �̃ = � and dropping the iteration index, can be
written as

(

− ν

h2
A + 1

h
YD + 1

h
diag(D y), − 1

α
Inact

)(
δy

δp

)

=
(

ν

h2
A y − 1

h
(YD) y + Act b + 1

α
Inact p

)

.

Proceeding in the same way for the second equation, we get

δi
y −

(
pi+1 − pi

h

)

δi
y − ν

(
δi−1
p − 2δi

p + δi+1
p

h2

)

− yi

(
δi+1
p − δi

p

h

)

= zi − yi + ν

(
pi+1 − 2pi + pi+1

h2

)

+ yi

(
pi − pi−1

h

)

, (3.12)

which in matrix notation is equivalent to

(

I + 1

h
diag(DT p) , − ν

h2
A + 1

h
YDT

)(
δy

δp

)

=
(

Z − Y + ν

h2
A p + 1

h
(YD)p

)

.

The complete algorithm can be stated as follows.

Algorithm (SQP-PD)

1. Initialization: give y0, p0, u0, λ0 and set k = 0.
2. While ‖yk − yk−1‖+‖pk − pk−1‖+‖uk − uk−1‖+‖λk − λk−1‖ ≥ √

ε

solve PD).
Update yk+1 := yk + δy, pk+1 := pk + δp, uk+1 := uk + δu, λk+1 :=
λk + δλ.
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4 Primal dual-SQP method

An alternative approach for the solution of (2.7) consists in realizing the
control constraint and the complementarity condition first, and then solving
the resulting nonlinear problem. In this context, based on an alternative for-
mulation of the complementarity condition, iteratively a primal-dual active
set strategy is applied to (2.7) and, once the active and inactive sets are de-
fined, the control is determined for the nonlinear problem over the inactive
set only.

4.1 Algorithm

As in the previous section, we observe that the three last equations in (2.7)
are equivalent to λ = c max(0, u − b + λ

c
) for any c > 0.

With the active and inactive sets defined as

A = {x : u − b + λ

c
> 0} for all c > 0, (4.1)

I = {x : u − b + λ

c
≤ 0} for all c > 0, (4.2)

and as �̃ = �, the following system of equations must solved:





−νy ′′ + yy ′ =
{

b in A
p

α
in I

y(0) = y(1) = 0

−νp′′ − yp′ = zd − y

p(0) = p(1) = 0.

(4.3)

Thus, the nonlinear P-D method can be stated in the following steps.

Algorithm (Nonlinear P-D)

1. Initialization: given u0, solve the state and adjoint equations to obtain
y0, p0, λ0 = p0 − αu0, n = 1.

2. Put An = {x : un−1 + λn−1 > b}, In = {x : un−1 + λn−1 ≤ b}.
3. If n ≥ 2 and An = An−1, stop.
4. Otherwise, solve:






−νy ′′
n + yny

′
n =

{
b in An

pn

α
in In

yn(0) = yn(1) = 0

−νp′′
n − ynp

′
n = zd − yn

pn(0) = pn(1) = 0.

(4.4)
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5. Put un =
{

b in An

pn

α
in In

, λn = pn − αun and goto 2.

Theorem 4.1 If there exists n ≥ 1 such that An = An+1, then the algorithm
stops and the last iterate satisfies:






−νy ′′
n + yny

′
n = un

yn(0) = yn(1) = 0

−νp′′
n − ynp

′
n = zd − yn

pn(0) = pn(1) = 0,

(4.5)

with λn = 0 on In and λn > 0 on An.

Proof By construction the system (4.5) is satisfied. It remains only to verify
that un ≤ b and λn = 0 in In, and λn > 0 on An.

On In we know by construction that λn = 0. Since An = An+1,

un + λn

c
= un ≤ b.

On An we have un = b and un + λn

c
> b. Hence λn > 0.

Hence, if the algorithm stops, the last iterate satisfies the optimality
system (2.7). ��

Applying Newton’s method to (4.3) yields the equations:





−νδ′′
y + y ′δy + yδ′

y = νy ′′ − yy ′ +
{

b in A
p+δp

α
in I

δy(0) = δy(1) = 0

−νδ′′
p + δy − p′δy − δ′

py = zd − y + νp′′ + p′y
δp(0) = δp(1) = 0.

(4.6)

By considering finite differences and using the same matrix notation as
in Sect. 2, the system can be expressed as:

( − ν

h2 A + 1
α
YD + 1

h
diag(Dy) − 1

α
Inact

I + 1
h
diag(DT p) − ν

h2 A + 1
h
YDT

)(
δy

δp

)

=
(

ν

h2 A y − 1
h
(YD)y + Act b + 1

α
Inact p

Z − Y + ν

h2 A p + 1
h
(YD)p

)

. (4.7)

Algorithm (PD-SQP)

1. Initialization: given u0, solve the state and adjoint equations to obtain
y0, p0, λ0 = p0 − αu0, n = 1.

2. Put An = {xi : un−1 + λn−1 > b}, In = {xi : un−1 + λn−1 ≤ b}.
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3. If n ≥ 2 and An = An−1, stop.
4. Otherwise, with initial values yn,0 = yn−1, pn,0 = pn−1, solve iteratively,

until
∥
∥δy

∥
∥+ ∥

∥δp

∥
∥ <

√
ε is satisfied,

( − ν

h2 A + 1
α
YD + 1

h
diag(Dy) − 1

α
Inact

I + 1
h
diag(DT p) − ν

h2 A + 1
h
YDT

)(
δy

δp

)

=
(

ν

h2 A y − 1
h
(YD)y + Act b + 1

α
Inact p

Z − Y + ν

h2 A p + 1
h
(YD)p

)

(4.8)

yn,k+1 = yn,k + δy

pn,k+1 = pn,k + δp.

5. Put un =
{

b in An

pn

α
in In

, λn = pn − αun and goto 2.

5 Semi-smooth Newton method

In this section, a semi-smooth Newton method (SSN) is applied, as an alter-
native strategy, to solve the optimality system (2.7). The aim of this approach
is the simultaneous linearization of the primal equation and the complemen-
tarity condition.

In the case of linear constrained optimal control problems, the application
of the primal dual active set strategy and the semi-smooth Newton method
coincide (cf. [11]). In the present case, however, the method coincides with
the SQP-PD and PD-SQP methods, if only one primal-dual iteration or one
SQP iteration are allowed, respectively.

5.1 Algorithm

For the application of the semi-smooth Newton method, the last three equa-
tions in (2.7) are reformulated by the equivalent operator equation

C(u, λ) := λ − max(0, λ + c(u − b)) = 0.

By choosing, in particular, c = α, the complete system (2.7) can be equiv-
alently expressed as

C(u) = 0,

where C(u) = −α u + Bp − max(0, B∗p − αb) and p = p(y), y =
y(u), satisfy the primal and adjoint equations, respectively. Recall from
[11] that Max : v → max(0, v) from Lp(�) → L2(�) admits a generalized
derivative whenever p > 2. Since u → y(u) → p(y) is smoothing, u → C
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therefore admits a generalized derivative. A generalized derivative for Max
is given by

D(v) =
{

1 if v > 0

0 if v ≤ 0.

With this choice of derivative for the max-operation a Newton step can be
applied to C = 0 or, equivalently, to (2.7). The resulting system can again
be expressed in terms of an active/inactive set structure. We define these sets
as

A = {x : λ + c(u − b) > 0} and I = {x : λ + c(u − b) ≤ 0}. (5.1)

Denoting by act and inact the indicator functions for the active and inactive
sets, the system to be solved by applying a semi-smooth Newton step to
(2.7) becomes:






−νδ′′
y + y ′δy + yδ′

y = νy ′′ − yy ′ + u + δu

δy(0) = δy(1) = 0

−νδ′′
p + δy − p′δy − δ′

py = zd − y + νp′′ + p′y
δp(0) = δp(1) = 0

δp − δλ − αδu = −p + αu + λ

−cδu · act + δλ · inact = −λ + max{0, λ + c(u − b)}

(5.2)

This implies that, on A, u + δu = b and, on I, λ + δλ = 0. Consequently,
the last two equations in (5.2) imply that

u + δu =
{

b in A
p+δp

α
in I.

(5.3)

Using the same matrix notation as in previous sections, the system to be
solved, once the active and inactive sets are estimated, is given by

( − ν

h2 A + 1
α
YD + 1

h
diag(Dy) − 1

α
Inact

I + 1
h
diag(DT p) − ν

h2 A + 1
h
YDT

)(
δy

δp

)

=
(

ν

h2 A y − 1
h
(YD)y + Act b + 1

α
Inact p

Z − Y + ν

h2 A p + 1
h
(YD)p

)

. (5.4)

The complete algorithm can consequently be formulated in the following
way.
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Algorithm (SSN)

1. Initialization: give u0, y0, p0, λ0 and set k = 1.
2. Until ‖yk − yk−1‖ + ‖pk − pk−1‖ + ‖uk − uk−1‖ + ‖λk − λk−1‖ <

√
ε

set Ak = {x : uk−1 + λk−1 > b}, Ik = {x : uk−1 + λk−1 ≤ b},
solve (5.4) and update yk+1 := yk + δy, pk+1 := pk + δp,

uk+1 =
{

b in Ak

pk+1
α

in Ik

, λk+1 = pk+1 − αuk+1, k = k + 1.

The algorithm obtained shows that, besides the prediction strategy of
active and inactive sets, the linear system is solved only once in order to
obtain the increments and update the prediction of the sets. Consequently,
the semi-smooth Newton method is equivalent to the PD-SQP algorithm if
we allow the SQP to do only one iteration, and it is also equivalent to the
SQP-PD algorithm if only one primal dual step is allowed.

6 Numerical results

In this section we explain some details concerning the implementation of
the methods presented previously as well as their behavior with respect to
four examples. For each test case the graph of the solution is given and a
table, which depicts the performance of the methods, is displayed.

In the case of the SQP-PD algorithm, the chosen value of the stopping
parameter is

√
eps, where eps denotes the precision of the machine. The

algorithm is initialized with a subroutine, which starts with the parameter
values equal to zero and continues with a run of the semi-smooth Newton
algorithm until the same active sets are reached in two consecutive itera-
tions. The values of the variables (y, u, p, λ) and the active and inactive sets
obtained are used as initialization for the SQP-PD algorithm.

The norm used for the stopping criteria of the discretized problems is the
discrete L2 norm. We also remark that δuk

is initialized as 0 in each auxiliary
problem.

In the case of the PD-SQP method, the process begins with the same
initialization subroutine as for the SQP-PD. The stopping parameter value
is equal to

√
eps. The times tabulated correspond to the total time needed to

get the solution: initialization time + algorithm time.
As regards the semi-smooth Newton method, the stopping parameter

value chosen is also
√

eps and the initialization values are set to zero. As
before, the norm used for the discretized problems is the Euclidean one.

The controls, states and multipliers obtained by the three methods are
similar and the numerical l∞ difference between them is on the order of the
machine precision.
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The tables presented in this section illustrate the performance of the
methods explained. The number of iterations, total running time and con-
vergence rates are recorded.

In the first type of table, the first column corresponds to values of the
grid size and the second column shows the number of SSN iterations used
for the initialization subroutine of the SQP-PD and the PD-SQP methods.
The following three columns show the number of outer and inner iterations,
as well as the total time needed by the SQP-PD method. Analogous data are
present for the PD-SQP method in the next three columns. Lastly, in the last
two columns, the number of iterations and total time for the SSN method
are shown.

In the second type of table the convergence order is given. The tables
show the values of the convergence factors for each method. For SQP-PD,
quadratic convergence is illustrated, while for the SSN method superlinear
convergence holds. In the case of PD-SQP, the behavior of the data sug-
gests superlinear convergence. To obtain the convergence factors, we used
as exact solution the one obtained by a SSN run with a precision of eps0.9.
Due to this approximation, the final iteration of the SSN method does not
decrease. Also, due to this fact and the influence of the machine precision
in the square of the difference norm, the SQP-PD method has a large factor
in the last iterate. For these results on the convergence rates, the initializa-
tion for SQP-PD was done by setting all variables equal to zero. PD-SQP
was initialized by taking u = b and solving the primal and adjoint equa-
tions.

The numerical calculations were done on a DEC-ALPHA 500 machine
with a precision of eps = 2.22 × 10−16. The resulting linear systems were
solved exactly, using MATLAB’s sparse solver.

6.1 Example 1

The first example to be shown has very standard parameter values. In this
case with a constant value for b it is straightforward to inspect the sat-
isfaction of the complementarity condition from the graphical representa-
tion.

The parameter values used in this case are: Re = 12, α = 0.1, b =
0.3, zd = 0.3. Figure 1 shows the graph of the optimal control and its
multiplier. Figure 2 shows the final state reached with the application of the
optimal control.

The example was solved for an increasing number of grid points and the
corresponding results are shown in Table 1. The data for the convergence
order with 100 grid points are depicted in Table 2.
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Fig. 1. Example 1: optimal control and its multiplier
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Fig. 2. Example 1: final controlled state

Table 1. Comparison for Example 1

Grid Init. it it SQP it pd Time it PD it sqp Time it SS Time
20 4 2 7 0.0880 2 2 0.0439 6 0.0498
30 4 2 6 0.1074 2 2 0.0614 6 0.0698
40 4 2 6 0.1493 2 2 0.0830 6 0.0913
50 5 1 4 0.1833 2 1 0.1190 6 0.1249
60 4 2 6 0.3013 2 2 0.1541 6 0.1645
70 4 2 6 0.3884 2 2 0.2048 6 0.2262
80 4 2 6 0.5225 2 2 0.2825 6 0.2787
90 4 2 6 0.6700 2 2 0.3401 6 0.3537

100 5 1 4 0.7021 2 1 0.4442 6 0.4513
200 4 2 7 5.1414 2 2 2.4061 6 2.4572

Table 2. Convergence order for Example 1

SQP-PD PD-SQP SSN
‖uk+1−u∗‖
‖uk−u∗‖2

‖uk+1−u∗‖
‖uk−u∗‖

‖uk+1−u∗‖
‖uk−u∗‖

0.0305 0.1785 0.1581
0.0116 0.1054 0.4896
0.0598 0.0588 0.1482
0.0232 - 0.0424

3.02 ×1010 - 7.65 ×10−7

- - 1.2 ×10−6
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6.2 Example 2

For this example we make two changes in the data settings from those of the
previous example. First we decrease the value of α which, from previous
experience (cf. [3]), is known to increase the number of iterations of the
primal-dual active set method applied to linear problems. Second, we change
the desired state to be nonconstant.

The parameter values used here are: Re = 10, zd = sin(13x), b = 0.3.
The parameter α takes two values: either α = 0.01 or α = 0.0001. Figure 3
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Fig. 3. Example 2: desired state
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Fig. 4. Example 2: optimal control and its multiplier, α = 0.01

0 10 20 30 40 50 60 70 80 90 100
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Fig. 5. Example 2: final controlled state, α = 0.01
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Fig. 6. Example 2: optimal control and its multiplier, α = 0.0001
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Fig. 7. Example 2: final controlled state, α = 0.0001

Table 3. Comparison for Example 2, α = 0.01

Grid Init. it it SQP it pd Time it PD it sqp Time it SS Time
20 4 3 11 0.0905 2 2 0.0468 7 0.0566
30 5 2 10 0.1396 2 2 0.0693 7 0.0761
40 5 2 8 0.1767 2 2 0.0936 7 0.1021
50 5 2 10 0.2788 2 2 0.1287 7 0.1371
60 5 2 11 0.4035 2 1 0.1532 7 0.1813
70 5 2 8 0.4535 2 2 0.2262 7 0.2490
80 5 2 11 0.7318 2 2 0.2931 7 0.3032
90 5 2 11 0.9156 2 2 0.3780 7 0.3838

100 5 2 9 1.0376 2 2 0.4680 7 0.4838
200 5 2 10 5.7660 2 2 2.3817 7 2.4446

shows the graph of the desired state and Fig. 4 the graph of the control and
its multiplier, when α = 0.01. The corresponding optimal state is given
in Fig. 5. For α = 0.0001 these results are depicted in Figs. 6 and 7. The
performance of the methods is presented in Table 3 for α = 0.01 and in
Table 4 for α = 0.0001. The data for the convergence order are recorded in
Tables 5 and 6.
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Table 4. Comparison for Example 2, α = 0.0001

Grid Init. it it SQP it pd Time it PD it sqp Time it SS Time
20 6 3 20 0.1472 2 3 0.0640 9 0.0692
30 7 3 30 0.2915 2 3 0.0936 10 0.1045
40 7 3 20 0.3159 2 3 0.1238 10 0.1357
50 8 2 15 0.3812 2 1 0.1585 10 0.1810
60 8 3 21 0.6474 2 2 0.2258 11 0.2587
70 8 2 12 0.6012 2 2 0.2935 10 0.3050
80 9 2 14 0.8810 2 1 0.3820 11 0.4271
90 8 2 14 1.0586 2 2 0.4689 10 0.4807

100 8 2 14 1.3004 2 2 0.5690 10 0.5866
200 8 2 12 5.2132 2 2 2.3883 10 2.4222

Table 5. Convergence order for Example 2, α = 0.01

SQP-PD PD-SQP SSN
‖uk+1−u∗‖
‖uk−u∗‖2

‖uk+1−u∗‖
‖uk−u∗‖

‖uk+1−u∗‖
‖uk−u∗‖

0.0143 1.5984 2.8779
0.0077 0.3548 0.3496
0.0090 0.2266 0.2287
0.0204 0.0449 0.0448

7.5 ×1011 - 9.2 ×10−6

- - 1.5 ×10−8

- - 0.8331

Table 6. Convergence order for Example 2, α = 0.0001

SQP-PD PD-SQP SSN
‖uk+1−u∗‖
‖uk−u∗‖2

‖uk+1−u∗‖
‖uk−u∗‖

‖uk+1−u∗‖
‖uk−u∗‖

0.0161 3.6781 4.6968
0.0027 1.7695 1.7142
0.0012 0.9250 0.9307
0.0084 0.5810 0.5904

7.7 ×106 0.5549 0.5516
- 0.4307 0.4361
- 0.1370 0.1361
- - 3.0 ×10−4

- - 3.2 ×10−8

- - 9.7 ×10−4
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6.3 Example 3

This test deals with the control problem in the case where the constraint and
the desired state are not constant functions. Figure 8 shows the graph of the
control and its multiplier and Fig. 9 the final optimal state.

The parameter values are: Re = 10, α = 0.01, zd = sin(13x) and
b = sin(x2 + 4x). The behavior of the methods is depicted in Table 7 and
the convergence rates are shown in Table 8.
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Fig. 8. Example 3: optimal control and its multiplier
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Fig. 9. Example 3: final controlled state

Table 7. Comparison for Example 3

Grid Init. it it SQP it pd Time it PD it sqp Time it SS Time
20 5 2 10 0.0948 2 2 0.0497 7 0.0566
30 5 2 12 0.1544 2 2 0.0712 7 0.0772
40 4 3 15 0.2418 2 3 0.0897 7 0.1016
50 5 2 11 0.2905 2 2 0.1279 7 0.1367
60 5 2 10 0.3754 2 2 0.1718 7 0.1813
70 5 2 10 0.5018 2 2 0.2252 7 0.2362
80 5 2 10 0.6618 2 2 0.2899 7 0.3034
90 6 1 7 0.6979 2 1 0.3780 7 0.3799
100 5 2 10 1.0433 2 2 0.4530 7 0.4686
200 6 1 7 4.4075 2 1 2.2880 7 2.3054
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Table 8. Convergence order for Example 3

SQP-PD PD-SQP SSN
‖uk+1−u∗‖
‖uk−u∗‖2

‖uk+1−u∗‖
‖uk−u∗‖

‖uk+1−u∗‖
‖uk−u∗‖

0.0175 1.4244 2.6958
0.0091 0.3846 0.3806
0.0130 0.2591 0.2610
0.0179 0.0585 0.0584

3.9 ×108 - 1.9 ×10−5

- - 2.6 ×10−8

- - 0.3379

6.4 Example 4

This last example deals with the control problem under a more difficult
constraint function and a higher Reynolds number. The parameter values
are: Re = 100, α = 0.01, zd = 0.3, b = x2.

Figure 10 shows the optimal control and the multiplier for the inequality
constraint. Figure 11 depicts the final controlled state and Table 9 gives the
information about the performance of the methods. The convergence rates
are shown in Table 10.
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Fig. 10. Example 4: optimal control and its multiplier
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Fig. 11. Example 4: final controlled state
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Table 9. Comparison for Example 4

Grid Init. it it SQP it pd Time it PD it sqp Time it SS Time
20 8 3 9 0.1141 2 2 0.0692 11 0.0829
30 9 3 8 0.1667 2 2 0.1070 12 0.1219
40 9 2 4 0.1804 2 2 0.1394 11 0.1463
50 9 2 4 0.2469 2 2 0.1892 11 0.1970
60 8 3 7 0.3855 2 3 0.2460 11 0.2597
70 9 3 8 0.5427 2 3 0.3395 12 0.3559
80 10 2 6 0.6390 2 2 0.4407 12 0.4558
90 10 2 6 0.9201 2 2 0.6324 12 0.6450

100 10 2 6 1.1906 2 2 0.8090 12 0.8247
200 10 2 6 6.2728 2 2 4.1618 12 4.2057

Table 10. Convergence order for Example 4

SQP-PD PD-SQP SSN
‖uk+1−u∗‖
‖uk−u∗‖2

‖uk+1−u∗‖
‖uk−u∗‖

‖uk+1−u∗‖
‖uk−u∗‖

0.0827 0.5839 0.9499
0.0840 0.7627 0.9827
0.0954 0.7069 0.8023
0.1104 0.5751 0.7531
0.0242 0.4441 0.6995
0.4962 0.2376 0.6126

1.9 ×1014 - 0.5088
- - 0.3611
- - 0.1238
- - 2.4 ×10−4

- - 1.4 ×10−7

- - 0.0035

7 Conclusions

The numerical comparison of the methods explained shows that the PD-SQP
and the SSN methods are at least as efficient as the SQP-PD method. In all
the cases tested, the time taken by the PD-SQP algorithm was shorter than
that needed by the other two methods. The difference to the SSN method is
not as significant as that to the SQP-PD method. Thus PD-SQP is a strong
competitor to SQP-PD and SSN, which may appear, at first sight, to be the
more “natural” choices.

We also point out that PD-SQP and SQP-PD have the feature of the
primal-dual strategy that the active set is determined in finitely many steps.
The stopping criterion is utilized only for the accuracy of computing the
nonlinearity in the state equation. Mesh independence of SQP and SSN was
verified numerically and we also have strong evidence to conjecture the
mesh independence of the nonlinear primal-dual active set method.
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In all the cases, as α decreases, the number of iterations increases for all
three strategies. Also the number of iterations increases for all the methods
with increase in the difficulty of the structure of zd . For all four examples
we observed that strict complementarity holds, i.e., either λ = 0 or the
constraint is active, but these two features do not occur simultaneously.
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