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Abstract

In this paper we study optimal control of the Navier—Stokes equations when the control acts as a
pointwise constrained boundary condition of Dirichlet type. The problem is analyzed in the control
spacel—lééz, the optimality system and second order sufficient optimality conditions are derived. For
the numerical solution we apply a semi-smooth Newton method to a regularized version of the original
problem and show convergence properties of the method and of the regularized solutions towards the
original one.
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1. Introduction

The Navier—Stokes equations are a widely accepted model for the behavior of viscous
incompressible fluids in the presence of convection. The nonlinear nature of the equations
presented, since they were introduced in the XIXth century, many challenges to obtain
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existence and uniqueness results, as well as for the development of efficient methods for their
numerical solution. Beside many analytical techniques, such as variational solutions (cf.
[8,10,18,36) or semigroups of operators (¢14]), many numerical schemes (§£5]) and
discretization techniques (dfL9,35,39) have been applied and, in many cases, developed

in the study of the problem.

The analysis of controlling these equations has a more recent history. It appears that
such problems received increased attention since the 1980s. First investigations primarily
concentrated on control through body forces, we menti&h in this respect. After that,
distributed control was the subject of many analytical as well as humerical papers for the
stationary case (cf13,17,20,32) and time dependent problems (df,23,25,29,32} More
recently, optimal control of the Navier—Stokes equations through the action of Dirichlet
boundary conditions was analyzed[21,22,24,27For example. In some cases, numerical
results, either by solving the optimality system or by optimization methods, were obtained.

The optimal control problem with pointwise control constraints, has received signifi-
cantly less attention. Since the analysis of the problem yields a variational inequality as
optimality condition, the numerical treatment offers new challenges, which were, in gen-
eral, not explicitly studied. The unique recent reference we know ab§s8jswhere the
author applies a semi-smooth Newton method for the solution of the instationary distributed
control problem.

In the present paper, we deal with pointwise constrained boundary optimal control of the
Navier—Stokes equations. Differently from several previous contributions, where the space
Hé(Fl) is used as control space, we utilize here the sﬂﬂ#ﬁ(h) which is the natural
space from the variational point of view. Additionally, the presence of pointwise control
constraints adds new difficulties to the analysis of the problem. The numerical solution
is obtained by applying a semi-smooth Newton method to a properly penalized optimal
control problem.

The outline of the paper is as follows. In Section 2 we present existence and uniqueness
results for the state equations, as well as some regularity results. Section 3 deals with the
boundary control problem along the physical boundary. Existence results, first order nec-
essary and a second order sufficient optimality conditions are obtained. In Section 4 the
semi-smooth Newton method is applied to a regularized version of the original boundary op-
timal control problem. Convergence results of the algorithm and of the regularized solutions
to the original one are proved. Finally in Section 5, some selected numerical experiments
are presented.

2. State equations

Let us first introduce the notation to be used. We denotg,byy the inner product in the
Hilbert spaceX and by|| - ||x the associated norm. The topological duaka$ denoted by
X' and the duality pairing is expressed(as) y/ x. For theL2-inner product and norm no
subindices are used. The space of infinitely differentiable functions with compact support
in Q is denoted byZ(Q) and its dual, the distributions space, 8y(Q). HereQ denotes
a bounded regular domain with bounddry(cf. [10, p. 2). The Sobolev spac®# ™ (£2)
is the space oL.” () functions whose distributional derivatives up to ordeare also in
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L?(Q). For these spaces a norm is introduced via

1/p
lullwm.r = ( > ||Dfu||ip) :
[

j1<m

whereD/ denotes the differentiation operator with respect to the multi-index(ja, . . .,
Jjn), i.e. DJ = Ul jox it Qxdn with [j]= Y74 ji. If p =2 we denoteW™2(Q) by
H™(Q), which is a Hilbert space with the scalar product

(u, V) gm = Z (D’u, D’ v).

Lj1<m

The closure ofZ(Q) in the W7 () norm is denoted by " " (Q). If 2 is smooth enough,
thenH(Q) ={v € H(Q) : v|sq =0}. For the spacéf}(Q) the Poincaré inequality holds,
i.e.

lull <colVu| forall u e HY(Q),

wherecg is a constant dependent Qf Thus, inHol(Q) the H1-norm is equivalent to the
norm

llull g2 = IVull

andHol(Q) is a Hilbert space with the inner product

(u, U)H& = (Vu, Vv).

The dual och}(Q) is denoted byH ~1(Q). Sincem-dimensional vector-functions will
be frequently used, we introduce the bold notation for the product-spaces, for example
L2(Q) = |t L?(Q), and provide them with the Euclidean product norm. The divergence
free distributions space is denoted byand its closure irh-Ié(Q) by V, which can be also
characterized a¥ = {v € H}(®Q) : divv = 0}. Additionally, IetH(l)/2 ={v e HY2(I) :
[pv-ndl =0} andH = {v € HY(Q) : divv = 0} be subspaces ¢1¥/2(I') andH(Q)
respectively. The functiondl () :fr u-ndIis linear and bounded frotr?(I") — R and,
due to the embedding/2(I") < L2(I") with continuous injection, it is also continuous
from HY2(I') > R. HenceH(l)/2 = ker(T) is a closed linear subspace and consequently
a Hilbert space with the scalar product inducedHby2(I"). By the same arguments we
can argue that the divergence operator is a bounded linear operatddfi@ — L2(Q).
Consequently is a Hilbert space with thel1(2) norm.

Henceforth we lef2 denote a bounded regular domainiA. The stationary Navier—
Stokes equations are given by

—VAy+(-V)y+Vp=f, @
divy =0, 2)

yir=g, (3)
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wheref € H=3(Q), g € HY?and(y- V)y= (y1(dy1/0x1) + y2(dy1/dx2), y1(@y2/dx1) +

y2(0y2/0x2)).

Define the trilinear formr : H1(Q) x HY(Q) x HY(Q) — R by c(u, v, w) = ((u -
V)v, w). Multiplying (1) by test-functions € 7, a weak formulation of the Navier—Stokes
equations, is given by: fingd € H such that

a(y,v) +c(y,y,v)=(f.v)yy foralveV, (4)
Yoy = & (5)

wherey, stands for the trace operator.
Conversely, ify € H satisfies (4), then

(=vAy +(y-V)y — f, U>g’(g),g(9) =0 forallve?

and, consequently (sg&0, p. 8)), there exists a distributiop € LS(Q) such that (1) is
satisfied in the distributional sense. Egs. (2) and (3) are satisfied in a distributional and trace
theorem sense, respectively. The following result is well-known from the literature, see e.g.
[8,18,36]

Theorem 1. The trilinear form ¢ is continuous ad1(Q) x H1(Q) x H1(Q) and satisfies
(1) c(u,v,v)=0forall u € Hwithy,u=0,forall v e HL(Q).

(2) c(u, v, w) =—c(u,w,v) forall u € Hwithy,u =0,forall v, w € H1(Q).

() cu, v, w) = —c(u, w,v)forallu e H, ve H(Q), w e V.

(4) c(u,v, w) = ((Vv) w, u).

Corollary 2. The form c is continuous a3 () x H3(Q) x H3(Q).

Proof. Follows using the same steps as in the proof of Theorenil.

Theorem 3. Let Q be an open bounded domain of clagdand let f € H=1(Q). Then
problem (4), (5), with homogeneous boundary conditipfss at least one variational

solutiony € V and there exists a distributiop € L%(Q) such that(1), (2) and (3) are
satisfied. Moreovetthe solution satisfies the following estimate

1
||y||v<;||f||vu (6)
Proof. For a detailed proof s48,18,36] [

Theorem 4. If v2 > NN flv,whered"=sup, ,, ey lc@, v, w)|/(lullviviviw|v),then
the solution for(4), (5),with homogeneous boundary conditipissunique

Proof. We refer t0[8,18,36] [

For the extension of existence and uniqueness results to the non-homogeneous case,
further properties of the trilinear form have to be investigated.
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Lemma 5. For everye > 0, there exists a functiof e H(Q) such thadiv$ =0, y,5=g¢
and

le(u, §, v)|<elvl|& forall ve V.
Proof. A detailed proof can be found {86, p. 175] O

Theorem 6. Let f € H-1(Q) andg € Hé/z. Then there exists at least one solution for
the non-homogeneous probléi—(3).If || y||y is sufficiently smallso that

lc(v, y,v)|< = ||v||V forall veV

andyv satisfiesy? > 44| F||y:, with F = f + vAj — (§ - V)$, then there exists a unique
solution(y, p) for problem(1)—(3).Additionally the following estimate holds

. 2
IIy—yllvégllFllv'- )
Proof. We refer the reader §36]. O

As for the Stokes case, extra regularity of the solution can be obtained if the right hand
side and the boundary condition are smooth enough.

Theorem 7. LetQ be an open bounded domain of clad% f € L%(Q) andg € Hl/2

H3/2(I'). Theny € H?(Q) andp € HY(Q).

Proof. We refer to[11]. O

3. Optimal control problem

In this section we consider the optimal control problem of the Navier—Stokes equations,
when the control is allowed to be exerted on part of the boundary, under pointwise con-

straints. The class of admissible controls will be a subset of the Hilbert $pgifers),
wherel’; denotes an open connected subset of the bourldary

3.1. Control space
We begin with the definition of the trace space
HE2(I') = {v € LA(I'y) : there existsy € HL(Q), wlr, =0, w|r, =v}. ®)

It can be verified thaH00 (I'1) is a closed subspace BfY2(I'1) (the restriction of the
elements oHY/2(I') to I'1), which can also be defined as

Hel2(I'y) = {v € LA(I'y) : there existg € HY2(I), glr, =0, glr, =v}. (9)
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It can be verified (cf[9, p. 397) thatHl/2

product

(I'7) is a Hilbert space endowed with the scalar

(u, U)Hééz =, v)L2ry) + (—Ap)Yu, (—Ar)l/4u)|_2(pl)

= (u, U)LZ(Fl) + ((—Ar)l/zu, M)LZ(Fl)
and that the following continuous and dense injections hold:

H3(') = Hoy (') = LA(I') = (Hgy (') = H(I'y). (10)
Our control space is defined as
U = {v e HIZ () - / v.idl = o} (11)

Due to the linearity and continuity df («) = fn v-ndl from L2(I'1) — R, together

with the continuous embeddimﬁéz(n) <> L2(I'y), we conclude tha¥ is itself a Hilbert

space with the induced norm. Lét™ = {f € Hol/z(l"l) (S U)H—l/z 2 <0, for all
00 -°"'00

v € %/} be the negative polar cone @f. It is simple to verify that/™ = {on : ¢ € R}.
3.2. Problem statement
Let I'1 be an open connected subsetlofThe problem we are concerned with can be

stated as follows: givert € L2(Q), zg € HY(Q) anda > 0, find (y*, u*) € H x %44, with
Uqq ={v €U :v<ba.e}, which solves:

1
min J(y,u) ==y — z4|I2
() eH x W aq 1) =5 lly = zally + ”“”L2<F )
subject to: ()
a(y,v) +c(y,y,v)=(f,v) forallveV,
Yoy =& + HBu,
whereb ¢ H00 (I'), ge HO/2 andZ e $(H1/2(F1) HY2(I")) is defined by
_Ju inIq,
Hu = {o in I'\I';.

To describe the constraints {#?) we define the constraint operat6ér: H x %,q —>
V' x 1/ 2 by

a(yﬂ ')+C(y7yv ) - (fv ))
G(y,u) =
> u) ( Yoy — 8 — Bu
and formulate the restrictions 85y, u) =0inV’ x Hl/2
It can be seen thdd is Fréchet differentiable with the derivative, evaluatedyat:) in

the direction(w, &), given by

G'(y,u)(w, h) = (“(w, )+ C)f(g)wui %; c(w,y, .)) .
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3.3. Existence
Let us assume tha¥,; # ¢ and define7 ,; = {(y,u) e H x U4 : G(y, u) =0}.
Theorem 8. There exists an optimal solution f¢#).

Proof. Since there is som& € %,,, we know from the existence theorem of the non-
homogeneous Navier—Stokes equations that there exjstsid which satisfies:

a(y,v) +c(y,y,v)=(f,v) forallveV,
Yoy =8 + il

Additionally 7,4 # @ andJ (y, i) < oo.
Let {(yx, ux)} be a minimizing sequence i#f ;. Due to the definition o7 ,; and the
fact thatJ (yx, ux) tends to the infimumy (yx, ux) < C with C independent ok. Also,

2 1y 12 2
Ik ui) 2 Nl ye — zallg 2 31kllg — llzallfs

and consequentlif| y |l }2 ; is uniformly bounded.
Additionally, due to the definition dﬂééz(Fl) and the trace theorem,

lukllz = 1 Bukllqvzry = I170yk — &lHv2(ry
< voye vz + I1glnizry < Csllyelln + g llnvzry < oo.
Thus, |lu |4 is bounded and we may extract a weakly convergent subseqi@ncey)}
such thaty, — y* in H anduy; — u™in %.
The setfv € % : v<b} is closed and convex iHééz(Fl) and hence™ <b.
Additionally (yx, uy) satisfies the system

a(ye, v) +cO, ye, v) = (f,v) forallv eV,
YoYk = & + HBu.

In order to see thaty*, u*) is solution of the Navier—Stokes equations, the only problem
is to pass to the limit in the nonlinear foraty,, y,, v). Due to the weakly sequentially
continuity ofc(, -, -) (cf. [18, p. 286), it follows thatc(y,, y,, v) — c(y*, y*, v). Hence,
due also to the linearity and continuity @f, -) and the trace operatay™*, u*) € 7 44.
The functional/ (v, u) is weakly lower semi-continuous and it follows that
JOFu* = inf_ J(y,u). O

V., 0)€T aa

3.4. First order necessary conditions

In this subsection we establish a condition for a gairu) to satisfy the regular point
condition (cf.[40, p. 50). Thereafter the existence of Lagrange multipliers is shown.

Lemma 9. Let(y*, u*) be afeasible pair. If > . (y*), with .Z (y)=sup,cy (Ic(v, y, v)|/
||v||\2,), then(y*, u*) satisfies the regular point condition
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Proof. Given(d,e) € V' x Hcl)/2 it suffices to show the existence @b, h) € H x % .4
such that

a(w, v) +c(y*, w, v) + c(w, y*, v) = (d, V) v,
yow =e + B(h — u®).

Settings = »* and utilizing Lemma 5, there exists such thatyqw = e, divw = 0.
Introducingw = w — w the problem consists in finding € V such that:

a1(W, v) := a(W, v) + c(y*, w, v) + c(w, y*,v) = ({d, v)
—a(w, v)—c(y*, w, v)—c(w, y*,v) =: (F,v) forallveV. (12)

Clearlya1(-, -) is bilinear. Below we verify continuity and coercivity of this form. Existence
of w € V then follows from the Lax—Milgram theorem.

Continuity of the bilinear forna; follows from the properties of the fornasandc in the
following way:

lar(w, v)| = la(w, v) + c(y", w, v) + c(w, y*, v)|
<la(, v)[ + ey, w, V)| + le(w, y*, V)|
vllwliviviiv + A1y e lwlviiviiv + A wliviy* s lvlv
=+ 240y I llwlviviv.

The coercivity is obtained next:

la1(v, V)| = |a(v, v) + c(y*, v, v) + c(v, y*, V)| = |a(v, v) — c(v, v, y*)
>la(v, v)| — le(v, v, y) | = VIvlIZ — 4 (") |vlIZ
= —ANIvIZ,

and, since’ > . (y*) by hypothesis, existence af follows. [

Remark 10. If (y*, u*) satisfies the hypothesis of Theorem 6, then it also satisfies the
regular point condition. In fact, due to the first hypothesis of Theorem 6 and the boundedness
of the nonlinear form we obtain that

A~ A ~ A%
waﬁvn=ww4ﬁ—ywo+duymn<www*—%vn+ywﬁ
R %
<Aﬂf—ﬂWWﬁ+5wﬁ.

UsingF = f +vAy — (3- V)3, we get from Theorem 6 thgiy* — 3|lv <2/v|| F|v’, which
implies

2 y
wwdﬁwK;wwmwmﬁ+§mﬁ.

Since by hypothesis? > 4.1°| F||y/, we obtain that
le(v, y*, v)| < Vl[v[§-

Hence the hypothesis of Lemma 9 is satisfied.
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Theorem 11. Let (y*, u*) be a local optimal solution for the control proble(#), with

v> . (y*). Then there exist Lagrange multipliers., &) € V x Hgl/z such that for all
(w,h) e H x €(u™)

(V" = zq, wiy + (™, h) +a(l, w) + c(y*, w, 1)
+c(w, y*, 1) + (&, yow — v@h)Hal/z’Hé/z >0, (13)

where® (™) = {0(v — u™), v € Uqq, 0>0}.

Proof. Fromthe hypothesisy*, u*) satisfies the regular point condition and, consequently,

there exist multiplierg, &) € V x Hal/z such that

J' O u™(w, h) + (4,6, GO, u*)(w,h)) >0 forall (w,h) e H x €u™).
The theorem follows from

(4,0, G’y u")(w, b)) = a(Z, w) + c(y*, w, ) + c(w, y*, 1)
Yow — Bh) - . O
+ (&, yow >H01/2,H(1)/2
3.5. Optimality system
In this subsection we derive an optimality system from (13).

Lemma 12. Lety € Haol/z satisfy(, h)H—l/z 2 <0, forall h € (™). Then there exist
00 ~°"'00
JIRS Hgol/z ando € R such thatu = 5 + on and (u, h)H_l/z Hl/2 <O, forall h € A (u*),
00 - '00
with " (u*) = {0(v — u*) 1 v € Hgt (I'1), v<b, 0>0}.

Proof. Itis easy to verify tha® (u™) =% (u™) N % . From convex analysis (d6, p. 32) we
get that for closed convex con&g, K> in a Hilbert spaceX, (K1 N K2)™ ={K; + K, },
whereK~ ={f € X' : (f,x)y x <0, forallx € K}. Applying this result to#"(«*) and
9, and observing that?"(u*)~ + %~ is closed we obtain tha(u*)™ = A" w*)~ + U .
Due to the characterization @~ obtained in Section 3.1 the result followsl]

Theorem 13. Let (y*, u™) be an optimal solution for the control proble¢#’), which sat-
isfiesv > .#(y*). If f € L2(Q) andzy € H2(Q), then (y*, u*) satisfies together with
4,8 eV x Hal/z, the following optimality system

a(y*,v) +c(y*, y*,v) =(f,v) forallveV,
Yoy = & + Bu*,
a(Z,w) +c(y,w, 2) +cw,y, )+ (L, yow)Hgl/z,Hé/z
=(zg —y*,w)y forall weH,
(ou*, h) — (B*E, h)y-12 12 >0 forall h € €™,
00" -Hoo
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which corresponds to the variational formulation of

—VAY* + (y* - V)y*+ Vp=f,

divy =0,

ylr =g+ %u*,

—VAL— (y* - V)A+ (Vy) T A4+ Vo =T — A)(za — ¥,

divi=0,

Ar=0, - (14)
u= B <§(_M 24—y + qﬁﬁ) —oau* +on in Hy (T'),

u” b, 1/2

(v — b>H601/2,Hé62<0 forall v e Hoo ('), v<b,

*
,ut—=>b) —12 ,,12=0,
(,u )Hoo Hoo

whereg € Randp, ¢ € L%(Q) denote the pressure and adjoint pressuespectively

Proof. From the necessary condition we obtain, taking 0, that for allw € H,
a(Z,w) +e(y*, w, )+ c(w, y*, ) + (& Yow)y 172 iz = (2a = ¥, Wk
If, additionally, we take the test functionsf

a(Z, w)+c(y*, w, ) +c(w, y*, 1) = (V(zg — y*), Vw) + (z — y*, w)
forall w e V,

which corresponds to the variational formulation of:
—VAL = (y* - VA4 (VYDA + V= — Dz — y),
div. =0,
Ar=0.
Considering agaii as test functions space and applying integration by parts, we obtain

04 ,
- V(A/’{v w)+<v ~ 'Y()w> +C(y*’ w, /L)+C(wv y*’ i)—'_(év ’VI)Ow)H*l/Z H]-/2
on H-1/2. 41/2 o Mo

=V(zg — "), Vw) + (zg — y*,w) forallweH

)
=(zg — Y — A(zg — ¥, w) + <_6 (za — "), y0w> forall w e H,
n H-1/2 H1/2

which implies that

0
—(—VA+zg — V") + r_i, w = (&, yow),,-12 ,,12 forall w e H
<an( d y ) ¢ yO >Hl/2,Hl/2 (5 )}O )HO ’HO

and, hence,

d L
= o (vitza—y") + i in Hy 2. (15)
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The term on the right hand side of (15) is well-definedHn/2(I") (see Theorem 14
below).
Takingw = 0 in the necessary condition and replacingelds:

(au™, h) — <93* <ai(—v/1 +z4— Y+ qSﬁ) , h> >0 forallh € €u*).
n

—1/2 ,1/2
Hoo'“-Hoo

From Lemma 12 we get the existence jofe Hgol/z(Fl) ando € R such thaty =
B*©/On(—vi+zq — y*) + ¢pin) — au* + on and the following complementarity problem
holds:

(v — b>H501/2’H(1)62 <0 forallv e Hééz(rl), v<b a.e.,

Ju*—b) - =0. O
(p, u )HOO1/2’H1/2

00

Theorem 14. If the conditions of TheoretB are satisfiedthend/on(—vA+z4 —y*) + ¢n
belongs taH~Y/2(I").

Proof. First we will show thatl has some extra regularity. The variational formulation of
the adjoint equations can also be written as

a(,w) +c(y*, w, ) +c(w, y*, 2)

1 1
=(Vzg, Vw) + (z = y*, w) + = c(y*, y*, w) — =(f,w) forall w eV,
v v

which corresponds to the weak formulation of:

1 1
—NA2+V?’=Zd—y*—Aar%@*~VMr%VyﬂT%+;@*~Vbﬁ—-;f, (16)
divi=0, (17)
Jr=0 (18)

with ¥ € L3(€Q).

Proceeding as in the proof of Theorem 7 we obtain that V)y* € W-1%(Q) and
* - V)4, (Vy9 T e WL2(Q), for all o> 2. Since by assumption; € H2(Q), the
right hand side of (16) belongs W ~1%(Q). Applying the regularity results for the Stokes
equations (cf[36, p. 23), we obtain thaf. ¢ W1*(Q). Due to the embedding/1*(Q) —
L°°(Q) we obtain thatVy*)T 1 € L2(Q). Sincey* € HL(Q) — LA(Q), forall § € [1, 00)
ando; /ox; € L*(Q), fori, j =1, 2 and alle > 2, we get, taking for example= f = 4,
that(y* - V). € L2(Q). Hence

2a—y G- V)A— (VyH T e L?(Q).
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To prove the claim we expre8gon(—vA+z4 — y*) + ¢pin as(V(—vi+zqg — y*) + Q) - 11,
with | the identity matrix. Next, we verify that

, . 0
div(V(—vA1 + z4, — 1) + ¢4, O)T) = —vAl1 + Azg — AYT + g,
1
H 1 * T * ad)
div(V(=vi2 + 24, — ¥3) + ¢(0, 1)) = —vAlp + Azg, — Ays + P
2

which, due to the adjoint equations, are equal to the componeggs-of* + (y* - V)4 —
(Vy*)T) e L2(Q). Hence (cf[36, p. 7)), 8/0n(—vAi +zq — y*) + ¢t e HY2(I). O

3.6. Second order sufficient condition

In this subsection we present sufficient conditions for a gaif, u*), satisfying
v> . (y*), to be locally, respectively globally, optimal. These conditions will be satis-
fied if the controlled state is close enough to the desired one.

For the analysis let us introduce the Lagrangian for the problem:

~1/2

For ease of notation we do not distinguish here between generic variabfgse V xH,
and the Lagrange multipliers introduced in Theorem 11.

Lemma 15. The Lagrange multiplie/ satisfies

4llv <OGHelly™ — zallH,
wheref(y*)=1/(v— . (y*)) andg is the constant such thdv ||y <ollv]|lv, forallv € V.

Proof. The multiplier/ satisfies
VIAIG = (za = y* D + (A 4, y%)
<olly* = zallnllAlv + 2 )11,
which implies
v — A YNIAv <elly” — zallH
and, hence,

I2v <0Gelly* = zallh. O

Theorem 16. Let (y*, u*) be a stationary point for the constrained optimal control prob-
lem. If247°0(y*)olly* — zalln < 1, then there exists > 0 such that

(L (", u*, 4 & w, h), (w, ) =kl (w, WIF, (20)

forall (w, h) e H x %. Thus (y*, u*) is a local optimal solution of the problem
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Proof. We obtain for(w, h) € H x % that
(L7 u*, A O w, h), (w, b)) = lwlig + ol hll® + 2c(w, w, 2)
> lwlif — 247 |wlg 1 Allv + «lA]®
=1 =2/ IwllF + el ]|
> (120" elly* —zallr)lwlIg + allA?
> min(1—-24"00")elly*—zalln, )l (w, WIF, 4.
Hence, (20) holds witk =min(1 —2470(y*)o|ly* — z4lln, ). Taking in particulatw, /)

such thati € €(u*) and(w, h) € ker(G'(y*, u*)), we get (cf[33]) that(y*, u*) is a local
minimum for our problem. O

Theorem 17. The set of stationary pointg*, u*) satisfying2.4/"0(y*)olly* — z4llu <1
consists of a singleton

Proof. Let(y*,u*, p*, A*, ¢*, u*, o*)and(y, i, p, A, $, ii, &) denote two possibly differ-
ent solutions to the optimality system (14), which satisfy 8(y*)o||y* — z4lln <1 and
24°0(elly — zalln < 1.

From the seventh equation in (14) we obtain, upon taking the inner produci witk,
that

0 _ _
ollii—u*|? = <ﬂ (—(—y+y*—vz+vz*)+(¢ - ¢*>ﬁ) ,ﬁ—u*>
on —1/2 ,,1/2
HOO ’HOO
-_*"-_*7 _-_*—_*7 . 21
+{((6—0c")n,it —u )HOSL/ZVHééZ (L— " u—u >H001/2’H(%2 (22)
Considering thait — u* satisfies the incompressibility condition and applying Green’s
formula to the first term on the right hand side,
allit —u¥||? = (—vACG = 2) = AG =y + V(P — ¢, 5 — )
— (VG =y 4+ vi=vI) 4+ (p— ¢, V(G —y)

- * = *
- — W, u—u —1/2 ,1/2.
(h—p )HOO HY

Utilizing the adjoint equation of (14) and taking into account tiat— "), V(y — y*)) =
Jo(¢ — ¢*)div(y — y*) dx = 0, we get that
allii —u* P = =I5 = Y7+ ¢, 4§ — ¥ — c*, 25, 5 — y¥)
— (=Y I D+ e =y Ly A = IVGE -y
—V(VE =Y VA= 2) = (= i — )y e
Using the primal equation of (14) in variational form it then follows that
allii —u? = =11y = y*IG + (4§ — y) — e, 255 = »)
—c(y =y 9. D)+ =y Ly A =3, 7. A = A)
+c(y*, y*, 2" — }) — (=i —u*) 12 2,
HOO ’HOO
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which, from the properties of the trilinear form, yields

allit —u* |2+ 15 = Y + (G =y 5 — v D)+ -y T -y 2
=—(n—pu*, i —M*>H—1/2 Y2 (22)
00 -"'00

Due to the cone properties of andj: and the definition of/” we obtain that
allit — u* |12+ 15 — y*IG — N5 = y UGNV — A5 — y*IZ 14 lv <O.

From Lemma 15 we havgl*||v <0(y*)elly* — zalln and|| Allv <O(¥)ell§ — zaIH. There-
fore 1— A7) Ay — A | A*|lv > 0, which implies||i — u*|| + |7 — y* ||l =0 and the desired
uniqueness follows. [J

4. Semi-smooth Newton method for a class of regularized problems

In this section we analyze convergence properties of a semi-smooth Newton method
applied to constrained boundary optimal control of the Navier—Stokes equations. Direct
application of the method to the infinite dimensional problem is not possible, due to the
lack of sufficient regularity of multiplier for the pointwise control constraintin the optimality
system (14). Thus, some alternative approach will be utilized in order to have a well posed
algorithm.

Our approach is based on a regularization of the original control problem. The idea
is to use an appropriate approximation of the multiplier and to apply the semi-smooth
Newton method to this transformed problem. Besides proving super-linear convergence of
the method for each approximation, convergence of the regularized solutions to the optimal
solution has to be shown.

As we saw in Section 3.5, the optimality system for the boundary control problem of the
Navier—Stokes equations is given by

—VAy* + (y* - V)y* +Vp = f,

divy =0,

yir =g+ %u*,

—VAL— (y* - V)A+ (Vy) T A+ V= (I — A)(za — y*),

div /=0,

Alr=0, - (23)
u=#* (a(—vi +24— ¥+ ¢>ﬁ) —ou* 4ot in Hog2(I'n),

u*<b,

(v = b}y 1212 <O forallv e Hog'*(I'n), v<b,

*
,u*—>b) 12, ,12=0.
{ )Hoo Hoo

In view of previous work on optimal control for linear systems with distributed control,

a natural approach consists in reformulating the last three equations of the system as an
operator equation which involves tmeaxfunction [4,28]. In the present case, however,
sinceu is not an a.e. defined function, such a procedure does not appear to be possible.
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Utilizing a penalization method (sd80]), we approximate the last three equations of
the optimality system by

My = max(0, y(uy — b)),

wherey > 0. The resulting system is suitable for application of the semi-smooth Newton
method and will be shown to converge to the original ong as co.
Let us consider the family of regularized optimal control problems

min g = 2| 12 + L2 + = max©, y(u — b2
(Y u)=zlly — —lu — ,p(u —
(y,u)eHxu Y 2 Yl 2 ZV /

subject to

—VAy +(y-V)y+Vp=f,
—divy =0,

Yoy =& + Bu,

(#,)

wherey > 0.

Theorem 18. For everyy > Othere exists a solutio(y,, u,) € Hx to (#y).If 4 (y,) <v
then there existl,. ¢,. ;. 1,) € V x LE(Q) x R x L%(Q) such that

—VAy, + (yy - V)yy + Vpy = f,

divy, =0,

wlr =g+ Buy,

—VAZy = (v - V2 + (Vyp) T hy + Vb, = (I — D) (za — yy),

div i, =0, (24)
}vy|1“ =0,

0 , - I
1, = B* (a(—my +za—yy)+ ¢yn> —auy +oyn i Hool/z(l"l),

is satisfied in the variational sense

Proof. SinceJ,(y, u) is weakly lower semi-continuous, existence of an optimal solution
(yy, uy) to (#) can be proved by the same arguments asin Theorem 8. By Lengmai8,)
satisfies the regular point condition. Now it can be argued as in the proof of Theorem 13
that there existl,. ¢,. o,, 1t,) € V x L5(Q) x R x L2(®) such that the optimality system
(24) holds. O

The following result on the convergence(of, u,) asy — oo will be proved at the end
of this section.

Theorem 19. The family{(y;, u;)},.o contains a subsequence convergingdiin % and
the cluster point of every convergent subsequence is a solutigh)tdf

2N 0supl(y")y* — zalln <1, (25)

where0(y*) = 1/(v — .#(y*)) and thesupis taken over all solutions t¢#), then the
solution to(#) is unique and(y,, u,) converges irH x % to the solution(y*, u*) of (#).
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Based on Theorem 19, convergence of the adjoint variablgs-as>o can be obtained
as well. Assume, for example, that im« (yy, , u;,) = (3, @), and thatv > .Z(3). Then
for n sufficiently large we have > .Z(y,,) and the optimality system admits a solution.

Letd, =y, —yandd; =1, — A Then
VA3, — (B - VYA — (- VIO, + (Vyy )10, + (Vo) T4
+Vdg = (I = M)(=3y),
divd, =0,
700, =0,
and hence lim « 4,, = 2inV.
We turn to the statement of the algorithm of the semi-smooth Newton method or equiv-

alently the primal-dual active set strategy with one inner iteration for nonlinear optimal
control problems (cf[12,31)). The algorithm can be expressed as

Algorithm.

(1) Initialization: choose&ug, yo, o) € % x V x H with ygyo = g + $up and setr = 1.
(2) Until a stopping criteria is satisfied, set

Ay =1{x:y(up-1—0)>0}, I,=I1\A,.
Find the solution(y,, pn. un, 4n, ¢,, 0,) Of:
VAV + Va1 V)0 + On - VIVn-1+ Vpu = f + -1 V)yn-1,
—divy, =0,
yalr =& + Bun,

- VAin — (n - V)/ﬂhn—l — (Yn-1- V);vn + (Vyn—l)T/ln + (Vy;z)T;Ln—l + V¢n
= =MD =) = On-1* V14 (Vyu-1) A1,

—div/, =0,
}~n|F =0,
d . - Y(u, —b) in .o/
_ N 9 B B _ n ns
oy, =4 <an (za Yn V)Ln)_{_(rbnn) +opn {O in fn
|y, —b) in <, —
Set.un_{o in s, andn=n+ 1.

Let us note that the system to be solved in step (2) results from linearization
of system (24). It also corresponds to the optimality system of the following optimal
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control problem:

. 1 1
min  5(%" (xp-1, An—1, £n—1)0x, 0
(5er><91/2< n—ts An—s Cn=)0x Ox)

+<$/(xn—17 in—lv énfl)’ 5x> + 2_];) ,/:;y/n [y(up-1+ 5u - b)|2dr
subject to (26)
_VAéy + (5)) “V)yn—1+ (n—1- V)éy + Vép
=f +VAyn-1— (n-1°V)¥n-1— Vpp-1,
—divs, =0,
'))oéy - géu =—YoYn-1+8+ HBun—1 In Hl/Z(F)’

wherex,, = (v, u,) ando, = x, — x,_1.
Let us briefly comment on uniqueness of solutions to (26). Assumédhatsatisfies a
second order sufficient optimality condition in the sense that for somé,

(L (Yyo tty, Doy, EYw, ), (w, 1)) = ([ (w, WG (27)

for all (w,h) € H x %. In view of Theorem 16 this condition holds, for example, if
llyy — zalln is sufficiently small. Problem (26) is a quadratic optimization problem with
affine constraints. Its Hessidih is given by

I:I(wv h) - <$//(-xn—lv ;"n—lv énfl)(wv h)7 (w7 h)) + ?/ hz dF!

oty

for (w, h) € H x %. Consequently, if (27) holds, then

Hw, h) 2 (L (yy, wy, 2y, &) (w, b), (w, )
+ (L Cnet1. A1, En1) — L 3y 1y, Aoy EN)(w, B, (w, h))
>l (w, Wy = 20 1wk a1 = Ayllv
> (k= 2N |dn-1 = 2yl 1w, W) IF

and the Hessian to (26) is positive definitgf,_1 — 4, ||v is sufficiently small. A sufficient
condition for the existence of a Lagrange multiplié, J¢) to the first and third equality
constraint in (26) (resulting in the existence/gf= 4,_1 + 4, andg,, in the system above
(26)), is given by.#(y,) < v andy,_1 sufficiently close toy, in H. This is verified as in
Theorem 11. The requirements om,—1, 4,—1) being sufficiently close t@y,, 4,) will be
justified in Theorem 20 below.

For fixedy > 0 and a solutior{y,, u,) to (#,) we shall verify super-linear convergence
of the semi-smooth Newton method. We shall assumethat/ (y,) so that existence
of a solution to the optimality system (24) is guaranteed. We denote the increments by
Ou = Upy1 — Uy, 0y = y,41 — y, and analogously fob,, é,, 6, and introduce the
operators#” : H x H — H’ and# : H x H — H’ such that# (v, w) = (v - V)w and
H (v, w) = (Vv) w. If v=w we use the notation?’ (v) = # (v, v). Using the quadratic
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nature of the nonlinear form we get:

E1r:= (0 = ) - VIO = ) = H () = H () = A () n = ¥y)
= %%//(yy)(yn - y*y)(yn - y“/)’

E = ((yn — yy) - V) (A — }vy)
=H (Yn, In) — H Yy Iy) — H' ¥y, 2) On = Yps 2n — Ay)
= 3" 3y 2) On = Yy 2o = 29) On = Yy 2on — ),

Ez:= (Vo — )" U — )
= H(Yns In) = H gy 2) = H (s 20) n = Yy o = )
= 1" 5y 2) O = Yy Jon = 2) Oin = Vg Ion = ).

Let us also note that, due to the regularity results for the Navier—Stokes and the adjoint
equation (see Theorem 7 and the proof of Theorem 14), we obtaiEthatL 2(Q), for
i=123

Theorem 20. If v> .4 (y,), 1=2/4"|Zyllv > 0and||(yo—yy, uo—uy, 20— lHxuxV IS
sufficiently smalithen the sequendéy,,, u,, 4., 1t,,)} generated by the algorithm converges
superlinearly inH x % x V x L2(Q) to (y). uy, Ay, 1,).

Proof. Letd > 0 denote the positive constant which describes the smallness condition for
l(yo — vy, o — uy, 20 — Ap)llHxa xv- Atfirst ¢ is chosen such that

V= M(N)Z30 = M(y)>0 and 1247 =5— A lklv>0  (28)

for all (y, ) with ||y — y,lln <6 and |4 — 4,|lv <. Further below the value af will be

decreased. We proceed by induction and assumdj that y, |n < 0, [lu; —u,ll4 <6 and

4 — Ayllv <éforalli =0,...,n. Inthe induction step we show that these inequalities

also hold fori = n + 1, as well as provide the superlinear convergence estimate.
Considering the systems satisfied by the regularized soldtiom,, u;, 4y, ¢, 0y, i)

and the iterat€y,, pn, un, 4n, &5 0n, 1,), it can be verified that the system

—VAOy + (yu - V)Oy + (0y - V)y, + V6, = Eq,
—divd, =0,
5y|l" = gam
Jp0u -dl =0,
—VAS; = (yu - VIS4 — By - V) + (Vyn) T84
+(V8y) 2y + V4 = E3 — E2 + Ady — 6, (29)
divd, =0,
0,lr =0, .
ooy, + B* (5(\)5;_ +9y) — 5¢ﬁ> — gl = =0y,
5/1 =9G(y(up — b))éu + R,
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with
R = maxQ, y(uy + (un — uy) — b)) —maxQ, y(uy — b))
— G (y(uy + (uy — uy) — b)) (uy — uy)
and
_ [0 if gn <o,
Ge)x) = { 1 if g(x)>0,

holds in the variational sense.
From the Newton differentiability of thenaxfunction (cf.[28]) we know that for each
g € LP(I'n),

| max(0, g + h) —max0, g) — G(g + )l 2 =o(AlLr). (30)
From the equation fod, in (29) we obtain

VIVOIZ = ¢(Sy, Jns 02) + (S5, Oy, Jn) + (S, Yns 97)
= (E3— E2,0;) — (V6,,V9;) — (0y,0,) (31)

and, consequently, from (28) and the properties of the trilinear form

O = )IVSNEL2N 18y 1180V 1 2allv + C1llyn — ¥yl 120
— yplvId,llv = By, 6;)H-

Here and belowC; denote generic constants independeni.ofhis estimate implies the
existence of a constafb, such that

18;1v < C2(ISy lln + llyn — ¥ylI3 + 120 — 25112). (32)

From the last two equations in (29) we obtain, after taking the inner productyith

0
—(R,d,) = " 2 X N _>,
(R, 8,) = ]| 0wl +<—an(véﬂ+5}) S it 5y>H—1/2,H1/2
— 060, 1) + P(G(y(un — b))y, Ou). (33)

Applying Green’s formula to the second term on the right hand side we obtain

0 -
— - , = -V )
<an (vo, + dy) 5¢n, 0y >H_1/2’H1/2 (VAS; + AJ, 5¢, dy)

+(V(vé; +6y) — 5¢I, Véy), (34)

which, using the adjoint equations in (29), yields

0
— (o, + dy) — 0411, O
<an(V 5+ y) N, y>H_1/2’H1/2

= 10,11% = (E3 — E2, 8y) — ¢(yn, 87, 8y) — ¢(Jy, I, Oy) + ¢(By, Yu, 6;)
+ ¢(8y, Sy, An) + V(Vy, V) + VS, II2 — (31, Vy).



1308 J.C. de los Reyes, K. Kunisch / Nonlinear Analysis 62 (2005) 1289-1316

Utilizing the primal equations of (29) in variational form and taking into account that
(041, Vdy) = [ 04divd, dx =0, we obtain

0
— (0, + &y) — 0411, Oy
<an(v 770y) " )>H1/2,H1/2
= ||5y|||2-| — (E3— E2, 5y) —c(n, 5/1a 5y) - C(éya Jns 5y) + C(ay’ Yn, 5})
+ c(éyy 5)” ;Ln) + (El’ 5},) - C(Yna 5}’7 52) - C((Syv Yn,» 5A)

Considering thad, satisfies the incompressibility conditigh o, - 77 dI" =0 and using the
properties of the trilinear form, we get

—(R, 8,) = 2l 1% + 10,113 — (E3 — E2, 8y) — 2¢(Sy, 2, )
+ (E1, 0;) + p(G(qun — b))y, 3u)-

From (28) we have

10112+ (3 = AN IS IE S TRIIS N + C1llyn — ylIE1621v
+ 1yn =yl llZn = 25 lv 10y 1H).

Using (30) withz = y(u, — u,) andg = y(u, — b), we obtain||R|| = o(||lu, — u,||Lr) and,
by the injectionHY/2(I") < LP(I'), further || R|| = o(|lu, — u,ll4,). From (32) we deduce

218112+ G — NNy I3y I <OUlun — wylla) 18]l + Calllyn — ¥y 13113y lIn
+ llyn = vyl + 1 = 2118
+ 1lyn = vyl e = 2l 19y llH)-

From this estimate and the fact thgb, = %4, we deduce the existence of a const@nt
independent of such that

By, Sl <CUyn — Yy lIE + 12 — 2915) + oIy — uyllz).

Referring to (32) once again and to the last equation of (29) we obtain for an appropriately
modified constanC

By, 3us 05 Sl v Lz <CUva — yylld + 12 — 25113)
+ o(llun — uyllz)- (35)

This implies, possibly after reducingagain, that|y,+1 — yylln <9, llupy1 — uylla <9,
| Zn+1 — 4yllv < 6, as well as superlinear convergencél

Proof of Theorem 19. Let(y*, u*) denote a solution t6?). SinceJ, (y;, uy) < J,(y*, u™)
= J(y*,u"), the family {y,},.o is bounded inH, and by the trace theorefm,},. is

bounded inHééz(Fl). Consequently, there exist subsequencesyef,. o and {uy},. o,
denoted by the same symbols, aijdu) € H x HééZ(Fl) such that(y,, u,) converges
weakly inH x Hééz(Fl) to (3, ). Moreover ¥y|l max(O, y(u, — b))|1 is bounded and
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hencelim_, || max(0, u, —b)||=0. By Fatou’s Lemma, this implies that méx it —b)=0
and hencé < b, i.e. i is admissible. We also have

J (3, ) <M J (yy, uy) <M Jy (yy, uy) <J (", u™)
and hencéy, 1) is a solution ta(#). Moreover
; 2 2 O 2 o2
Jim ;= zallfy + oy 122y, = 19 = zallfy + 2z,

and therefore, utilizing the trace theoreyn,— 3, u, — i strongly inH x %. If (25) holds,
then by Theorem 17 the solution ¢#’) is unique and the whole familg,, u,) converges
strongly inH x % to (y*, u*), the solution of( ). O

5. Numerical results

In this section we present some numerical tests, which illustrate the behavior of the semi-
smooth Newton method applied to constrained boundary optimal control of the Navier—
Stokes equations.

As domain we use the chanr@l 1) x (0, 0.5) and set a step by removing the rectangular
sector(0.5, 1) x (0, 0.25) from the domain. The fluid flows from left to right and has a
parabolic inflow boundary condition with maximum value equal to one. For the outflow
boundary condition we use the so called “do nothing” conditior{831), which was shown
to be appropriate in channel simulations. For the rest of the walls a homogeneous Dirichlet
condition is imposed, which is of “no slip” type in the sectors where the control does not
act. This problem is referred to as “forward facing step flow”.

The domain was discretized using a homogeneous staggered grid, with discretization
steph, combined with a finite differences scheme. For the solution of the nonlinearity we
apply a Newton method. In order to avoid numerical instabilities and to obtain appropriate
results for high Reynolds numbers, a first order upwinding scheme is used. For the solution
of the linear system in each Newton step we use MATLAB’s sparse solver.

The simulation of the fluid is depicted iRigs. 1and 2 for Reynolds numbers 1000
and 1500, respectively. It is clear that as the Reynolds number increases, the recirculation

Fig. 1. Plot of the streamlines for the forward facing step flow Wd#= 1000.
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Fig. 2. Plot of the streamlines for the forward facing step flow W#h= 1500.

bubbles become bigger and stronger. In fact, a desirable effect of a control would be to
reduce this recirculation effect in order to avoid possible flow separation.

We consider two cases of Dirichlet boundary control. The control will adt grwhich
is part of the boundary corresponding to the lower wall after the step, between the values
0.625 and 0.75. In the first case, we allow the control to act as the normal component of the
velocity at the boundary, while the tangential component is set zero. This case corresponds
to normal suction and blowing of fluid along the prescribed wall. In the second case only the
tangential component is used as control, while the normal component remains zero. This
corresponds to the case where another fluid or a moving band acts on the other side of the
domain, with the prescribed condition at the wall.

The target of the control is to drive the fluid to an almost linear behavior, specified by the
Navier—Stokes flow, with Reynolds number 1, in the channel.

The cost functional used for the tests contains a weight for the gradient part of the norm,
ie.

1 2 B 2 %2
J(yv l/l) = E”y - Zd”LZ(Q) + E”V(y - Zd)”LZ(Q) + EHMHLZ([‘I)!

wheref; > 0 andz, is the state of the Navier—Stokes equation viRi= 1.

For the computation of the first two examples we used the regularized semi-smooth
Newton method. The method stops|if, ||, 2 < & = 10~4. For both examples, the method
requires one additional iterationdf= 10~".

5.1. Example 1

In this first case, we apply a constrained tangential optimal control to drive the stationary
Navier—Stokes flow to the desired state. The parameter values usdRkaret00Q b =
0.425 f=10"*anda = 0.01. The optimal control and its multiplier are depictedFig.
3, where, with dotted line, the unconstrained optimal control is also shown. From these
graphics, the satisfaction of the complementarity condition can be verified by inspection.
Fig. 4depicts the streamlines of the controlled statefigd5a zoomed view of the velocity
vector plot at the bubble sector.

Intuitively, one can imagine that an appropriate control action should contravene the
recirculation effect of the bubble by imposing a horizontal velocity in the opposite direction
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Fig. 3. Example 1: horizontal optimal control and its multiplier.

Fig. 4. Example 1: plot of the streamlines of the final controlled state.
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Fig. 5. Example 1: final controlled state: zoom of the vector field.
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Table 1

Example 1 = 0.00625,¢ = 10~4
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y 10 1¢ 10* 108 1010
Iter. 6 6 8 8 8
.o/ | 14 14 15 15 15
Table 2

Example 1/ = 0.005,¢ = 10~/

lteration | ] |l TG it — T tn=l,
1 25 0 0.00844382 — —

2 0 5 0.00738098 0.3399 —

3 19 6 0.00722746 0.1969 0.5792

4 18 7 0.00721617 0.0198 0.1005

5 18 7 0.00721604 0.00392 0.1665

6 18 7 0.00721604 36 x 1076 6.98x 1074
7 18 7 0.00721604 15x 10712 5.03x 1077

of the recirculation. The numerical results confirm this conjecture. In controlled flow the
bubble center and its concentration are moved to that part of the domain where the control
has no influence. In a neighborhood of the control, the recirculation disappears.

From the plot of the controlled state it can be seen that the action of the control provokes
a significant change in the behavior of the fluid. Since such changes are penalized by the
second term of the cost functional, the question about what to expfdhaseases arises.

For larger values off the design objective in the sense of reducing the recirculation
region is less successful. This can be explained by observing that the streamhings4in
are quite concentrated in the remaining bubble in front of the controlled boundary and that
as a consequence the gradient norm is large in that region. If the norm does not allow for
this behavior the bubble remains larger.

Table 1shows the iteration number of the SSN method for differexailues. As the
penalization parameter increases, the problem becomes harder to solve and more SSN
iterations are needed. The difference is, however, not significaitiife 2the evolution
of the method and the cost functional are depicted for the fixedue 13°. The data were
obtained with mesh size = 0.005.

5.2. Example 2

In this example we use normal control action along the prescribed wall section. The
unilateral constraint can be interpreted as a limited pointwise suction or injection capacity,
depending on the kind of inequality we have. For this case, the suction of fluid is restricted
pointwise by imposing a constant lower bound on the control. The parameters take the
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Fig. 6. Example 2: vertical optimal control and its multiplier.

Fig. 7. Example 2: streamlines of the final controlled state.

following values:Re= 800, b = —0.18, ff=10"*ando = 0.01.Fig. 6shows, with solid
lines, the optimal control and its multiplier and, with dotted lines, the unconstrained optimal
control. The streamlines of the final state are giveRim 7.

The action of the control consists in sucking fluid in order to eliminate the recirculation
within the control sector. A displacement of the bubble center takes place and the recir-
culation occurs earlieFig. 8 shows a zoom of the bubble, which illustrates the control
effect. The complementarity condition can be confirmed by inspection Figm6. Since
the constraint consist in a lower bound, the multiplier takes negative values.

It can be also seen from the plots that, differently from tangential control, in the case
of normal controls the qualitative properties of the controls and of the fluid do not change
significantly with . Fig. 9 shows the state reached by takifig= 0.1. In this case the
constraint remains active on the whole control domain.

Table 3shows the evolution of the primal-dual method and the cost function#l for
104, y=10'% and discretization stelp=0.005. The behavior of the methodadecreases
is given inTable 4and, as expected, it can be confirmed that with reduction of the weight,
the size of the active set becomes larger.
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Fig. 8. Example 2: final controlled state: zoom of the vector field.

Fig. 9. Example 2: streamlines of the final controlled stAte,0.1.

Table 3
Example 2/: = 0.005,6 = 104

lteration A |l J(y,u) it — 1] T ta=l,
1 20 0 0.00612187 — —

2 0 20 0.00570537 0.444 —

3 6 14 0.00556574 0.2181 0.4908

4 10 10 0.00554262 0.0812 0.3721

5 11 9 0.00554544 0.0013 0.0157

6 11 9 0.00554545 3x10°6 0.0029

7 11 9 0.00554545 Bx 10712 2.35x 1076
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Table 4

Example 11 = 0.00625,c = 104

o Iterations |.<Z|
0.1 6 3
0.01 7 11
0.001 7 12
0.0001 7 12
0.00001 7 12
References

[1] F. Abergel, R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Mech. (1990)
303-325.
[4] M. Bergounioux, K. Ito, K. Kunisch, Primal dual strategy for constrained optimal control problems, SIAM
J. Control Optim. 37 (1999) 1176-1194.
[6] F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, Berlin, 2000.
[8] P. Constantin, C. Foias, Navier Stokes Equations, The University of Chicago Press, Chicago, 1988.
[9] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2,
Springer, Berlin, 2000.
[10] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 6,
Springer, Berlin, 2000.
[11] J.C. de los Reyes, Constrained optimal control of stationary viscous incompressible fluids by primal—-dual
active set methods, Ph.D. Thesis, University of Graz, 2003.
[12] J.C. de los Reyes, K. Kunisch, A comparison of algorithms for control constrained optimal control of the
Burgers equation, Calcolo 41 (2004) 203-225.
[13] M.C. Desai, K. Ito, Optimal controls of Navier—Stokes equation, SIAM J. Control Optim. 32 (1994)
1428-1446.
[14] H. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge University Press, Cambridge,
1999.
[15] C.A.J. Fletcher, Computational Techniques for fluid Dynamics, vol. 1, Springer, Berlin, 1991.
[16] A.V. Fursikov, On some control problems and results concerning the unique solvability of a mixed boundary
value problem for the three dimensional Navier—Stokes and Euler systems, Soviet Math. Dokl. 21 (1980) 3.
[17] O. Ghattas, J. Bark, Optimal control of two- and three-dimensional incompressible Navier—Stokes flows,
Preprint.
[18] V. Girault, P.A. Raviart, Finite Element Methods for Navier Stokes Equations, Springer, Berlin, 1986.
[19] M. Griebel, T. Dornseifer, T. Neunhoeffer, Numerische Simulation in der Strdmungsmechanik, Vieweg,
Braunschweig, 1995.
[20] M.D. Gunzburger, L. Hou, T.P. Svobodny, Analysis and finite element approximation of optimal control
problems for the stationary Navier—Stokes equations with distributed and Neumann controls, Math. Comput.
57 (195) (1991) 123-151.
[21] M.D. Gunzburger, L. Hou, T.P. Svobodny, Analysis and finite element approximation of optimal control
problems for the stationary Navier—Stokes equations with Dirichlet controls, Math. Model. Numer. Anal. 25
(6) (1991) 711-748.
[22] M.D. Gunzburger, L. Hou, T.P. Svobodny, Boundary velocity control of incompressible flow with an
application to viscous drag reduction, SIAM J. Control Optim. 30 (1) (1992) 167-181.
[23] M.D. Gunzburger, S. Manservisi, Analysis and approximation of the velocity tracking problem for
Navier—Stokes flows with distributed control, SIAM J. Numer. Anal. 37 (2000) 1481-1512.
[24] M.D. Gunzburger, S. Manservisi, Analysis and approximation of the velocity tracking problem for
Navier—Stokes flows with boundary control, SIAM J. Control Optim. 39 (2000) 594—634.
[25] M.D. Gunzburger, S. Manservisi, Analysis and approximation of the velocity tracking problem for
Navier—Stokes flows with bounded distributed control, SIAM J. Control Optim. 37 (6) (1999) 1913-1945.



1316 J.C. de los Reyes, K. Kunisch / Nonlinear Analysis 62 (2005) 1289-1316

[27] M. Heinkenschloss, Formulation and analysis of sequential quadratic programming method for the optimal
Dirichlet boundary control of Navier—Stokes flow, Optimal Control, Gainesville, FL, 1997, Kluwer Academic
Publishers, Dordrecht, 1998, pp. 178-203.

[28] M. Hintermdiller, K. Ito, K. Kunisch, The primal dual active set strategy as a semi-smooth Newton method,
SIAM J. Optim. 13 (2003) 865—888.

[29] M. Hinze, K. Kunisch, Second order methods for optimal control of time dependent fluid flow, SIAM J.
Control Optim. 40 (2002) 925-946.

[30] K. Ito, K. Kunisch, Semi-smooth Newton methods for state constrained optimal control problems, Systems
Control Lett. 50 (2003) 221-228.

[31] K. Ito, K. Kunisch, The primal-dual active set method for nonlinear optimal control problems with bilateral
constraints, SIAM J. Control Optim. 43 (2004) 357-376.

[32] J.L. Lions, Control of Distributed Singular Systems, Gauthier-Villars, Paris, 1985.

[33] H. Maurer, First and second order sufficient optimality conditions in mathematical programming and optimal
control, Math. Program. Study 14 (1981) 163-177.

[35] R. Peyret, T.D. Taylor, Computational Methods for Fluid Flow, Springer, Berlin, 1985.

[36] R. Temam, Navier Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.

[37] S. Turek, Efficient Solvers for Incompressible Flow Problems, Springer, Berlin, 1999.

[38] M. Ulbrich, Constrained optimal control of Navier—Stokes flow by semismooth Newton methods, Systems
Control Lett. 48 (2003) 297-311.

[39] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, Berlin, 2001.

[40] J. Zowe, S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces,
Appl. Math. Optim. 5 (1979) 4-62.



	A semi-smooth Newton method for control constrained boundary optimal control of the Navier--Stokes equations
	Introduction
	State equations
	Optimal control problem
	Control space
	Problem statement
	Existence
	First order necessary conditions
	Optimality system
	Second order sufficient condition

	Semi-smooth Newton method for a class of regularized problems
	Numerical results
	Example 1
	Example 2

	References


