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Abstract

In this paper we study optimal control of the Navier–Stokes equations when the control acts as a
pointwise constrained boundary condition of Dirichlet type. The problem is analyzed in the control

spaceH1/2
00 , the optimality system and second order sufficient optimality conditions are derived. For

the numerical solutionwe apply a semi-smoothNewtonmethod to a regularized version of the original
problem and show convergence properties of the method and of the regularized solutions towards the
original one.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Navier–Stokes equations are a widely accepted model for the behavior of viscous
incompressible fluids in the presence of convection. The nonlinear nature of the equations
presented, since they were introduced in the XIXth century, many challenges to obtain
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existenceanduniqueness results, aswell as for thedevelopment of efficientmethods for their
numerical solution. Beside many analytical techniques, such as variational solutions (cf.
[8,10,18,36]) or semigroups of operators (cf.[14]), many numerical schemes (cf.[15]) and
discretization techniques (cf.[19,35,39]) have been applied and, in many cases, developed
in the study of the problem.
The analysis of controlling these equations has a more recent history. It appears that

such problems received increased attention since the 1980s. First investigations primarily
concentrated on control through body forces, we mention[16] in this respect. After that,
distributed control was the subject of many analytical as well as numerical papers for the
stationary case (cf.[13,17,20,32]) and time dependent problems (cf.[1,23,25,29,32]). More
recently, optimal control of the Navier–Stokes equations through the action of Dirichlet
boundary conditions was analyzed, in[21,22,24,27]for example. In some cases, numerical
results, either by solving the optimality system or by optimization methods, were obtained.
The optimal control problem with pointwise control constraints, has received signifi-

cantly less attention. Since the analysis of the problem yields a variational inequality as
optimality condition, the numerical treatment offers new challenges, which were, in gen-
eral, not explicitly studied. The unique recent reference we know about is[38], where the
author applies a semi-smooth Newtonmethod for the solution of the instationary distributed
control problem.
In the present paper, we deal with pointwise constrained boundary optimal control of the

Navier–Stokes equations. Differently from several previous contributions, where the space
H1
0(�1) is used as control space, we utilize here the spaceH1/2

00 (�1) which is the natural
space from the variational point of view. Additionally, the presence of pointwise control
constraints adds new difficulties to the analysis of the problem. The numerical solution
is obtained by applying a semi-smooth Newton method to a properly penalized optimal
control problem.
The outline of the paper is as follows. In Section 2 we present existence and uniqueness

results for the state equations, as well as some regularity results. Section 3 deals with the
boundary control problem along the physical boundary. Existence results, first order nec-
essary and a second order sufficient optimality conditions are obtained. In Section 4 the
semi-smoothNewtonmethod is applied to a regularized version of the original boundary op-
timal control problem. Convergence results of the algorithm and of the regularized solutions
to the original one are proved. Finally in Section 5, some selected numerical experiments
are presented.

2. State equations

Let us first introduce the notation to be used.We denote by(·, ·)X the inner product in the
Hilbert spaceX and by‖ · ‖X the associated norm. The topological dual ofX is denoted by
X′ and the duality pairing is expressed as〈·, ·〉X′,X. For theL

2-inner product and norm no
subindices are used. The space of infinitely differentiable functions with compact support
in � is denoted byD(�) and its dual, the distributions space, byD′(�). Here� denotes
a bounded regular domain with boundary� (cf. [10, p. 2]). The Sobolev spaceWm,p(�)

is the space ofLp(�) functions whose distributional derivatives up to orderm are also in
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Lp(�). For these spaces a norm is introduced via

‖u‖Wm,p =

 ∑

[j ]�m

‖Dju‖pLp


1/p

,

whereDj denotes the differentiation operator with respect to the multi-indexj = (j1, . . . ,

jn), i.e.Dj = �[j ]/�xj1 · · · �xjn, with [j ] = ∑n
i=1 ji . If p = 2 we denoteWm,2(�) by

Hm(�), which is a Hilbert space with the scalar product

(u, v)Hm =
∑

[j ]�m

(Dju,Djv).

The closure ofD(�) in theWm,p(�) norm is denoted byWm,p
0 (�). If � is smooth enough,

thenH 1
0 (�)={v ∈ H 1(�) : v|�� =0}. For the spaceH 1

0 (�) the Poincaré inequality holds,
i.e.

‖u‖�c0‖∇u‖ for all u ∈ H 1
0 (�),

wherec0 is a constant dependent of�. Thus, inH 1
0 (�) theH 1-norm is equivalent to the

norm

‖u‖H1
0

= ‖∇u‖

andH 1
0 (�) is a Hilbert space with the inner product

(u, v)H1
0

= (∇u,∇v).

The dual ofH 1
0 (�) is denoted byH−1(�). Sincem-dimensional vector-functions will

be frequently used, we introduce the bold notation for the product-spaces, for example
L2(�)=∏m

i=1L
2(�), and provide them with the Euclidean product norm. The divergence

free distributions space is denoted byV and its closure inH1
0(�) byV, which can be also

characterized asV = {v ∈ H1
0(�) : div v = 0}. Additionally, letH1/2

0 = {v ∈ H1/2(�) :∫
� v · �nd� = 0} andH = {v ∈ H1(�) : div v = 0} be subspaces ofH1/2(�) andH1(�)

respectively. The functionalT (u)=∫
� u · �nd� is linear and bounded fromL2(�) → R and,

due to the embeddingH1/2(�) ↪→ L2(�) with continuous injection, it is also continuous
from H1/2(�) → R. HenceH1/2

0 = ker(T ) is a closed linear subspace and consequently
a Hilbert space with the scalar product induced byH1/2(�). By the same arguments we
can argue that the divergence operator is a bounded linear operator fromH1(�) → L2(�).
ConsequentlyH is a Hilbert space with theH1(�) norm.
Henceforth we let� denote a bounded regular domain inR2. The stationary Navier–

Stokes equations are given by

−��y + (y · ∇)y + ∇p = f , (1)

div y = 0, (2)

y|� = g, (3)
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wheref ∈ H−1(�), g ∈ H1/2
0 and(y ·∇)y=(y1(�y1/�x1)+y2(�y1/�x2), y1(�y2/�x1)+

y2(�y2/�x2)).
Define the trilinear formc : H1(�) × H1(�) × H1(�) → R by c(u, v,w) = ((u ·

∇)v,w). Multiplying (1) by test-functionsv ∈ V, aweak formulation of theNavier–Stokes
equations, is given by: findy ∈ H such that

a(y, v) + c(y, y, v) = 〈f, v〉V ′,V for all v ∈ V, (4)

�0y = g, (5)

where�0 stands for the trace operator.
Conversely, ify ∈ H satisfies (4), then

〈−��y + (y · ∇)y − f, v〉D′(�),D(�) = 0 for all v ∈ V

and, consequently (see[10, p. 8]), there exists a distributionp ∈ L2
0(�) such that (1) is

satisfied in the distributional sense. Eqs. (2) and (3) are satisfied in a distributional and trace
theorem sense, respectively. The following result is well-known from the literature, see e.g.
[8,18,36].

Theorem 1. The trilinear form c is continuous onH1(�)×H1(�)×H1(�) and satisfies:

(1) c(u, v, v) = 0 for all u ∈ H with �nu = 0, for all v ∈ H1(�).

(2) c(u, v,w) = −c(u,w, v) for all u ∈ H with �nu = 0, for all v,w ∈ H1(�).

(3) c(u, v,w) = −c(u,w, v) for all u ∈ H, v ∈ H1(�), w ∈ V.
(4) c(u, v,w) = ((∇v)Tw, u).

Corollary 2. The form c is continuous onH1
0(�) × H1

0(�) × H1
0(�).

Proof. Follows using the same steps as in the proof of Theorem 1.�

Theorem 3. Let� be an open bounded domain of classC2 and letf ∈ H−1(�). Then,
problem (4), (5), with homogeneous boundary conditions, has at least one variational
solutiony ∈ V and there exists a distributionp ∈ L2

0(�) such that(1), (2) and (3) are
satisfied. Moreover, the solution satisfies the following estimate:

‖y‖V � 1

�
‖f ‖V ′ . (6)

Proof. For a detailed proof see[8,18,36]. �

Theorem 4. If �2>N‖f ‖V ′ ,whereN=supu,v,w∈V |c(u, v,w)|/(‖u‖V‖v‖V‖w‖V), then
the solution for(4), (5),with homogeneous boundary conditions, is unique.

Proof. We refer to[8,18,36]. �

For the extension of existence and uniqueness results to the non-homogeneous case,
further properties of the trilinear form have to be investigated.
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Lemma 5. For every�>0, there exists a function̂y ∈ H1(�) such thatdiv ŷ=0, �0ŷ=g

and

|c(v, ŷ, v)|��‖v‖2V for all v ∈ V.

Proof. A detailed proof can be found in[36, p. 175]. �

Theorem 6. Let f ∈ H−1(�) andg ∈ H1/2
0 . Then, there exists at least one solution for

the non-homogeneous problem(1)–(3).If ‖ŷ‖H is sufficiently small, so that

|c(v, ŷ, v)|� �
2
‖v‖2V for all v ∈ V

and� satisfies�2>4N‖F‖V ′ , with F = f + ��ŷ − (ŷ · ∇)ŷ, then there exists a unique
solution(y, p) for problem(1)–(3).Additionally the following estimate holds:

‖y − ŷ‖V � 2

�
‖F‖V ′ . (7)

Proof. We refer the reader to[36]. �

As for the Stokes case, extra regularity of the solution can be obtained if the right hand
side and the boundary condition are smooth enough.

Theorem 7. Let� be an open bounded domain of classC2, f ∈ L2(�) andg ∈ H1/2
0 ∩

H3/2(�). Theny ∈ H2(�) andp ∈ H 1(�).

Proof. We refer to[11]. �

3. Optimal control problem

In this section we consider the optimal control problem of the Navier–Stokes equations,
when the control is allowed to be exerted on part of the boundary, under pointwise con-
straints. The class of admissible controls will be a subset of the Hilbert spaceH1/2

00 (�1),

where�1 denotes an open connected subset of the boundary�.

3.1. Control space

We begin with the definition of the trace space

H1/2
00 (�1) = {v ∈ L2(�1) : there existsw ∈ H1(�), w|�2 = 0, w|�1 = v}. (8)

It can be verified thatH1/2
00 (�1) is a closed subspace ofH1/2(�1) (the restriction of the

elements ofH1/2(�) to�1), which can also be defined as

H1/2
00 (�1) = {v ∈ L2(�1) : there existsg ∈ H1/2(�), g|�2 = 0, g|�1 = v}. (9)
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It can be verified (cf.[9, p. 397]) thatH1/2
00 (�1) is a Hilbert space endowed with the scalar

product

(u, v)H1/2
00

= (u, v)L2(�1)
+ ((−��)

1/4u, (−��)
1/4u)L2(�1)

= (u, v)L2(�1)
+ ((−��)

1/2u, u)L2(�1)

and that the following continuous and dense injections hold:

H1
0(�1) ↪→ H1/2

00 (�1) ↪→ L2(�1) ↪→ (H1/2
00 (�1))

′ ↪→ H−1(�1). (10)

Our control space is defined as

U =
{
v ∈ H1/2

00 (�1) :
∫
�1

v · �nd� = 0

}
. (11)

Due to the linearity and continuity ofT (u) = ∫
�1

v · �nd� from L2(�1) → R, together

with the continuous embeddingH1/2
00 (�1) ↪→ L2(�1), we conclude thatU is itself a Hilbert

space with the induced norm. LetU− = {f ∈ H−1/2
00 (�1) : 〈f, v〉H−1/2

00 ,H1/2
00

�0, for all

v ∈ U} be the negative polar cone ofU. It is simple to verify thatU− = {��n : � ∈ R}.
3.2. Problem statement

Let �1 be an open connected subset of�. The problem we are concerned with can be
stated as follows: givenf ∈ L2(�), zd ∈ H1(�) and�>0, find(y∗, u∗) ∈ H ×Uad , with
Uad = {v ∈ U : v�b a.e.}, which solves:


min

(y,u)∈H×Uad

J (y, u) = 1

2
‖y − zd‖2H + �

2
‖u‖2L2(�1)

subject to:
a(y, v) + c(y, y, v) = (f, v) for all v ∈ V,
�0y = g + Bu,

(P)

whereb ∈ H1/2
00 (�1), g ∈ H1/2

0 andB ∈ L(H1/2
00 (�1),H1/2(�)) is defined by

Bu =
{
u in �1,

0 in�\�1.

To describe the constraints in(P) we define the constraint operatorG : H × Uad −→
V ′ × H1/2

0 by

G(y, u) =
(
a(y, ·) + c(y, y, ·) − (f, ·)

�0y − g − Bu

)

and formulate the restrictions asG(y, u) = 0 inV ′ × H1/2
0 .

It can be seen thatG is Fréchet differentiable with the derivative, evaluated at(y, u) in
the direction(w, h), given by

G′(y, u)(w, h) =
(
a(w, ·) + c(y,w, ·) + c(w, y, ·)

�0w − Bh

)
.
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3.3. Existence

Let us assume thatUad �= ∅ and defineTad = {(y, u) ∈ H × Uad : G(y, u) = 0}.

Theorem 8. There exists an optimal solution for(P).

Proof. Since there is somêu ∈ Uad , we know from the existence theorem of the non-
homogeneous Navier–Stokes equations that there exists ay ∈ H which satisfies:

a(y, v) + c(y, y, v) = (f, v) for all v ∈ V,

�0y = g + Bû.

AdditionallyTad �= ∅ andJ (y, û)<∞.
Let {(yk, uk)} be a minimizing sequence inTad . Due to the definition ofTad and the

fact thatJ (yk, uk) tends to the infimum,J (yk, uk)�C with C independent ofk. Also,

J (yk, uk)�‖yk − zd‖2H � 1
2‖yk‖2H − ‖zd‖2H ,

and consequently{‖yk‖H}∞k=1 is uniformly bounded.

Additionally, due to the definition ofH1/2
00 (�1) and the trace theorem,

‖uk‖U = ‖Buk‖H1/2(�) = ‖�0yk − g‖H1/2(�)

�‖�0yk‖H1/2(�) + ‖g‖H1/2(�)�C3‖yk‖H + ‖g‖H1/2(�) <∞.

Thus,‖uk‖U is bounded and we may extract a weakly convergent subsequence{(yk, uk)}
such thatyk ⇀ y∗ in H anduk ⇀ u∗ inU.
The set{v ∈ U : v�b} is closed and convex inH1/2

00 (�1) and henceu∗ �b.
Additionally (yk, uk) satisfies the system

a(yk, v) + c(yk, yk, v) = (f, v) for all v ∈ V,

�0yk = g + Buk.

In order to see that(y∗, u∗) is solution of the Navier–Stokes equations, the only problem
is to pass to the limit in the nonlinear formc(yn, yn, v). Due to the weakly sequentially
continuity ofc(·, ·, ·) (cf. [18, p. 286]), it follows thatc(yn, yn, v) → c(y∗, y∗, v). Hence,
due also to the linearity and continuity ofa(·, ·) and the trace operator,(y∗, u∗) ∈ Tad .
The functionalJ (y, u) is weakly lower semi-continuous and it follows that

J (y∗, u∗) = inf
(y,u)∈Tad

J (y, u). �

3.4. First order necessary conditions

In this subsection we establish a condition for a pair(y, u) to satisfy the regular point
condition (cf.[40, p. 50]). Thereafter the existence of Lagrange multipliers is shown.

Lemma 9. Let(y∗, u∗) be a feasible pair. If�>M(y∗),withM(y)=supv∈V (|c(v, y, v)|/
‖v‖2V), then(y∗, u∗) satisfies the regular point condition.
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Proof. Given (d, e) ∈ V ′ × H1/2
0 it suffices to show the existence of(w, h) ∈ H × Uad

such that

a(w, v) + c(y∗, w, v) + c(w, y∗, v) = 〈d, v〉V ′,V ,

�0w = e + B(h − u∗).

Settingh = u∗ and utilizing Lemma 5, there exists̄w such that�0w̄ = e, div w̄ = 0.
Introducingŵ = w − w̄ the problem consists in findinĝw ∈ V such that:

a1(ŵ, v) := a(ŵ, v) + c(y∗, ŵ, v) + c(ŵ, y∗, v) = 〈d, v〉
−a(w̄, v)−c(y∗, w̄, v)−c(w̄, y∗, v) =: 〈F, v〉 for all v ∈ V. (12)

Clearlya1(·, ·) is bilinear. Belowwe verify continuity and coercivity of this form. Existence
of ŵ ∈ V then follows from the Lax–Milgram theorem.
Continuity of the bilinear forma1 follows from the properties of the formsa andc in the

following way:

|a1(w, v)| = |a(w, v) + c(y∗, w, v) + c(w, y∗, v)|
� |a(w, v)| + |c(y∗, w, v)| + |c(w, y∗, v)|
��‖w‖V‖v‖V + N‖y∗‖H‖w‖V‖v‖V + N‖w‖V‖y∗‖H‖v‖V
= (� + 2N‖y∗‖H)‖w‖V‖v‖V .

The coercivity is obtained next:

|a1(v, v)| = |a(v, v) + c(y∗, v, v) + c(v, y∗, v)| = |a(v, v) − c(v, v, y∗)|
� |a(v, v)| − |c(v, v, y∗)|��‖v‖2V − M(y∗)‖v‖2V
= (� − M(y∗))‖v‖2V ,

and, since�>M(y∗) by hypothesis, existence ofŵ follows. �

Remark 10. If (y∗, u∗) satisfies the hypothesis of Theorem 6, then it also satisfies the
regular point condition. In fact, due to the first hypothesis ofTheorem6and the boundedness
of the nonlinear form we obtain that

|c(v, y∗, v)| = |c(v, y∗ − ŷ, v) + c(v, ŷ, v)|� |c(v, y∗ − ŷ, v)| + �
2
‖v‖2V

�N‖y∗ − ŷ‖V‖v‖2V + �
2
‖v‖2V .

UsingF =f +��ŷ− (ŷ ·∇)ŷ,we get from Theorem 6 that‖y∗ − ŷ‖V �2/�‖F‖V ′ ,which
implies

|c(v, y∗, v)|� 2

�
N‖F‖V ′ ‖v‖2V + �

2
‖v‖2V .

Since by hypothesis�2>4N‖F‖V ′ , we obtain that

|c(v, y∗, v)|< �‖v‖2V .
Hence the hypothesis of Lemma 9 is satisfied.
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Theorem 11. Let (y∗, u∗) be a local optimal solution for the control problem(P), with
�>M(y∗). Then, there exist Lagrange multipliers(	, 
) ∈ V × H−1/2

0 such that for all
(w, h) ∈ H × C(u∗)

(y∗ − zd, w)H + (�u∗, h) + a(	, w) + c(y∗, w, 	)
+ c(w, y∗, 	) + 〈
, �0w − Bh〉H−1/2

0 ,H1/2
0

�0, (13)

whereC(u∗) = {�(v − u∗), v ∈ Uad , ��0}.

Proof. From thehypothesis,(y∗, u∗) satisfies the regular point conditionand, consequently,
there exist multipliers(	, 
) ∈ V × H−1/2

0 such that

J ′(y∗, u∗)(w, h) + 〈(	, 
),G′(y∗, u∗)(w, h)〉�0 for all (w, h) ∈ H × C(u∗).

The theorem follows from

〈(	, 
),G′(y∗, u∗)(w, h)〉 = a(	, w) + c(y∗, w, 	) + c(w, y∗, 	)
+ 〈
, �0w − Bh〉H−1/2

0 ,H1/2
0
. �

3.5. Optimality system

In this subsection we derive an optimality system from (13).

Lemma 12. Let� ∈ H−1/2
00 satisfy〈�, h〉H−1/2

00 ,H1/2
00

�0, for all h ∈ C(u∗). Then there exist


 ∈ H−1/2
00 and� ∈ R such that
 = � + ��n and〈
, h〉H−1/2

00 ,H1/2
00

�0, for all h ∈ K(u∗),

withK(u∗) = {�(v − u∗) : v ∈ H1/2
00 (�1), v�b, ��0}.

Proof. It is easy to verify thatC(u∗)=K(u∗)∩U. From convex analysis (cf.[6, p. 32]) we

get that for closed convex conesK1,K2 in a Hilbert spaceX, (K1 ∩K2)
− = {K−

1 + K−
2 },

whereK− = {f ∈ X′ : 〈f, x〉X′,X�0, for all x ∈ K}. Applying this result toK(u∗) and
U, and observing thatK(u∗)− + U− is closed we obtain thatC(u∗)− = K(u∗)− + U−.
Due to the characterization ofU− obtained in Section 3.1 the result follows.�

Theorem 13. Let (y∗, u∗) be an optimal solution for the control problem(P), which sat-
isfies�>M(y∗). If f ∈ L2(�) and zd ∈ H2(�), then (y∗, u∗) satisfies, together with
(	, 
) ∈ V × H−1/2

0 , the following optimality system:




a(y∗, v) + c(y∗, y∗, v) = (f, v) for all v ∈ V,
�0y = g + Bu∗,
a(	, w) + c(y,w, 	) + c(w, y, 	) + 〈
, �0w〉H−1/2

0 ,H1/2
0=(zd − y∗, w)H for all w ∈ H,

(�u∗, h) − 〈B∗
, h〉H−1/2
00 ,H1/2

00
�0 for all h ∈ C(u∗),
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which corresponds to the variational formulation of:


−��y∗ + (y∗ · ∇)y∗ + ∇p = f,

div y = 0,
y|� = g + Bu∗,
−��	 − (y∗ · ∇)	 + (∇y∗)T	 + ∇� = (I − �)(zd − y∗),
div 	 = 0,
	|� = 0,


 = B∗
(

�
�n

(−�	 + zd − y∗) + ��n
)

− �u∗ + ��n in H1/2
00 (�1),

u∗ �b,

〈
, v − b〉H−1/2
00 ,H1/2

00
�0 for all v ∈ H1/2

00 (�1), v�b,

〈
, u∗ − b〉H−1/2
00 ,H1/2

00
= 0,

(14)

where� ∈ R andp,� ∈ L2
0(�) denote the pressure and adjoint pressure, respectively.

Proof. From the necessary condition we obtain, takingh = 0, that for allw ∈ H,

a(	, w) + c(y∗, w, 	) + c(w, y∗, 	) + 〈
, �0w〉H−1/2
0 ,H1/2

0
= (zd − y,w)H .

If, additionally, we take the test functions inV,

a(	, w) + c(y∗, w, 	) + c(w, y∗, 	) = (∇(zd − y∗),∇w) + (z − y∗, w)

for all w ∈ V,

which corresponds to the variational formulation of:

−��	 − (y∗ · ∇)	 + (∇y∗)T	 + ∇� = (I − �)(zd − y∗),

div 	 = 0,

	|� = 0.

Considering againH as test functions space and applying integration by parts, we obtain

− �(�	, w)+
〈
�

�	
�n

, �0w
〉
H−1/2,H1/2

+c(y∗, w, 	)+c(w, y∗, 	)+〈
, �0w〉H−1/2
0 ,H1/2

0

= (∇(zd − y∗),∇w) + (zd − y∗, w) for all w ∈ H

= (zd − y∗ − �(zd − y∗), w) +
〈

�
�n

(zd − y∗), �0w
〉
H−1/2,H1/2

for all w ∈ H,

which implies that〈
�
�n

(−�	 + zd − y∗) + ��n, �0w
〉
H−1/2,H1/2

= 〈
, �0w〉H−1/2
0 ,H1/2

0
for all w ∈ H

and, hence,


 = �
�n

(−�	 + zd − y∗) + ��n in H−1/2
0 . (15)
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The term on the right hand side of (15) is well-defined inH−1/2(�) (see Theorem 14
below).
Takingw = 0 in the necessary condition and replacing
 yields:

(�u∗, h) −
〈
B∗

(
�
�n

(−�	 + zd − y∗) + ��n
)
, h

〉
H−1/2
00 ,H1/2

00

�0 for all h ∈ C(u∗).

From Lemma 12 we get the existence of
 ∈ H−1/2
00 (�1) and � ∈ R such that
 =

B∗(�/�n(−�	 + zd − y∗)+ ��n)− �u∗ + ��n and the following complementarity problem
holds:

〈
, v − b〉H−1/2
00 ,H1/2

00
�0 for all v ∈ H1/2

00 (�1), v�b a.e.,

〈
, u∗ − b〉H−1/2
00 ,H1/2

00
= 0. �

Theorem 14. If the conditions of Theorem13are satisfied, then�/�n(−�	+zd −y∗)+��n
belongs toH−1/2(�).

Proof. First we will show that	 has some extra regularity. The variational formulation of
the adjoint equations can also be written as

a(	, w) + c(y∗, w, 	) + c(w, y∗, 	)

= (∇zd,∇w) + (z − y∗, w) + 1

�
c(y∗, y∗, w) − 1

�
(f,w) for all w ∈ V,

which corresponds to the weak formulation of:

−��	+∇� = zd−y∗−�zd+(y∗ · ∇)	−(∇y∗)T	+1

�
(y∗ · ∇)y∗ − 1

�
f , (16)

div 	 = 0, (17)

	|� = 0 (18)

with � ∈ L2
0(�).

Proceeding as in the proof of Theorem 7 we obtain that(y∗ · ∇)y∗ ∈ W−1,�(�) and
(y∗ · ∇)	, (∇y∗)T	 ∈ W−1,�(�), for all �>2. Since by assumptionzd ∈ H2(�), the
right hand side of (16) belongs toW−1,�(�).Applying the regularity results for the Stokes
equations (cf.[36, p. 23]), we obtain that	 ∈ W1,�(�).Due to the embeddingW1,�(�) ↪→
L∞(�)we obtain that(∇y∗)T	 ∈ L2(�). Sincey∗ ∈ H1(�) ↪→ L�(�), for all � ∈ [1,∞)

and�	i/�xj ∈ L�(�), for i, j = 1,2 and all�>2, we get, taking for example� = � = 4,
that(y∗ · ∇)	 ∈ L2(�). Hence

zd − y∗ + (y∗ · ∇)	 − (∇y∗)T	 ∈ L2(�).
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To prove the claim we express�/�n(−�	+ zd −y∗)+��n as(∇(−�	+ zd −y∗)+�I ) · �n,
with I the identity matrix. Next, we verify that

div(∇(−�	1 + zd1 − y∗
1) + �(1,0)T) = −��	1 + �zd1 − �y∗

1 + ��
�x1

,

div(∇(−�	2 + zd2 − y∗
2) + �(0,1)T) = −��	2 + �zd2 − �y∗

2 + ��
�x2

,

which, due to the adjoint equations, are equal to the components ofzd − y∗ + (y∗ · ∇)	 −
(∇y∗)T	 ∈ L2(�). Hence (cf.[36, p. 7]), �/�n(−�	 + zd − y∗) + ��n ∈ H−1/2(�). �

3.6. Second order sufficient condition

In this subsection we present sufficient conditions for a pair(y∗, u∗), satisfying
�>M(y∗), to be locally, respectively globally, optimal. These conditions will be satis-
fied if the controlled state is close enough to the desired one.
For the analysis let us introduce the Lagrangian for the problem:

L(y, u, 	, 
) = J (y, u) + 〈(	, 
),G(y, u)〉
(V×H−1/2

0 ),(V ′×H1/2
0 )

. (19)

For easeof notationwedonot distinguishherebetweengeneric variables(	, 
) ∈ V×H−1/2
0

and the Lagrange multipliers introduced in Theorem 11.

Lemma 15. The Lagrange multiplier	 satisfies:

‖	‖V ��(y∗)�‖y∗ − zd‖H ,
where�(y∗)=1/(�−M(y∗)) and� is the constant such that‖v‖H ��‖v‖V, for all v ∈ V.

Proof. The multiplier	 satisfies

�‖	‖2V = (zd − y∗, 	)H + c(	, 	, y∗)
��‖y∗ − zd‖H‖	‖V + M(y∗)‖	‖2V ,

which implies

(� − M(y∗))‖	‖V ��‖y∗ − zd‖H
and, hence,

‖	‖V ��(y∗)�‖y∗ − zd‖H . �

Theorem 16. Let (y∗, u∗) be a stationary point for the constrained optimal control prob-
lem. If2N�(y∗)�‖y∗ − zd‖H <1, then there exists�>0 such that

〈L′′(y∗, u∗, 	, 
)(w, h), (w, h)〉��‖(w, h)‖2H×U (20)

for all (w, h) ∈ H × U. Thus, (y∗, u∗) is a local optimal solution of the problem.
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Proof. We obtain for(w, h) ∈ H × U that

〈L′′(y∗, u∗, 	, 
)(w, h), (w, h)〉 = ‖w‖2H + �‖h‖2 + 2c(w,w, 	)

�‖w‖2H − 2N‖w‖2H‖	‖V + �‖h‖2
= (1− 2N‖	‖V)‖w‖2H + �‖h‖2
�(1−2N�(y∗)�‖y∗−zd‖H)‖w‖2H + �‖h‖2
� min(1−2N�(y∗)�‖y∗−zd‖H , �)‖(w, h)‖2H×U.

Hence, (20) holds with�=min(1−2N�(y∗)�‖y∗ − zd‖H , �). Taking in particular(w, h)

such thath ∈ C(u∗) and(w, h) ∈ ker(G′(y∗, u∗)), we get (cf.[33]) that(y∗, u∗) is a local
minimum for our problem. �

Theorem 17. The set of stationary points(y∗, u∗) satisfying2N�(y∗)�‖y∗ − zd‖H <1
consists of a singleton.

Proof. Let (y∗, u∗, p∗, 	∗,�∗,
∗,�∗) and(ȳ, ū, p̄, 	̄, �̄, 
̄, �̄) denote two possibly differ-
ent solutions to the optimality system (14), which satisfy 2N�(y∗)�‖y∗ − zd‖H <1 and
2N�(ȳ)�‖ȳ − zd‖H <1.
From the seventh equation in (14) we obtain, upon taking the inner product withū− u∗,

that

�‖ū−u∗‖2 =
〈
B∗

(
�
�n

(−ȳ+y∗−�	̄+�	∗)+(�̄ − �∗)�n
)
,ū−u∗

〉
H−1/2
00 ,H1/2

00

+ 〈(�̄ − �∗)�n, ū − u∗〉H−1/2
00 ,H1/2

00
− 〈
̄ − 
∗, ū − u∗〉H−1/2

00 ,H1/2
00
. (21)

Considering that̄u − u∗ satisfies the incompressibility condition and applying Green’s
formula to the first term on the right hand side,

�‖ū − u∗‖2 = (−��(	̄ − 	∗) − �(ȳ − y∗) + ∇(�̄ − �∗), ȳ − y∗)
− (∇(ȳ − y∗ + �	̄ − �	∗) + (�̄ − �∗)I,∇(ȳ − y∗))
− 〈
̄ − 
∗, ū − u∗〉H−1/2

00 ,H1/2
00
.

Utilizing the adjoint equation of (14) and taking into account that((�̄−�∗)I,∇(ȳ−y∗))=∫
�(�̄ − �∗)div(ȳ − y∗)dx = 0, we get that

�‖ū − u∗‖2 = − ‖ȳ − y∗‖2 + c(ȳ, 	̄, ȳ − y∗) − c(y∗, 	∗, ȳ − y∗)
− c(ȳ − y∗, ȳ, 	̄) + c(ȳ − y∗, y∗, 	∗) − ‖∇(ȳ − y∗)‖2
− �(∇(ȳ − y∗),∇(	̄ − 	∗)) − 〈
̄ − 
∗, ū − u∗〉H−1/2

00 ,H1/2
00
.

Using the primal equation of (14) in variational form it then follows that

�‖ū − u∗‖2 = − ‖ȳ − y∗‖2H + c(ȳ, 	̄, ȳ − y∗) − c(y∗, 	∗, ȳ − y∗)
− c(ȳ − y∗, ȳ, 	̄) + c(ȳ − y∗, y∗, 	∗) − c(ȳ, ȳ, 	∗ − 	̄)

+ c(y∗, y∗, 	∗ − 	̄) − 〈
̄ − 
∗, ū − u∗〉H−1/2
00 ,H1/2

00
,
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which, from the properties of the trilinear form, yields

�‖ū − u∗‖2 + ‖ȳ − y∗‖2H + c(ȳ − y∗, ȳ − y∗, 	̄) + c(ȳ − y∗, ȳ − y∗, 	∗)
= −〈
̄ − 
∗, ū − u∗〉H−1/2

00 ,H1/2
00
. (22)

Due to the cone properties of
∗ and
̄ and the definition ofN we obtain that

�‖ū − u∗‖2 + ‖ȳ − y∗‖2H − N‖ȳ − y∗‖2H‖	̄‖V − N‖ȳ − y∗‖2H‖	∗‖V �0.

From Lemma 15 we have‖	∗‖V ��(y∗)�‖y∗ − zd‖H and‖	̄‖V ��(ȳ)�‖ȳ − zd‖H . There-
fore 1−N‖	̄‖V −N‖	∗‖V >0,which implies‖ū−u∗‖+‖ȳ−y∗‖H =0 and the desired
uniqueness follows. �

4. Semi-smooth Newton method for a class of regularized problems

In this section we analyze convergence properties of a semi-smooth Newton method
applied to constrained boundary optimal control of the Navier–Stokes equations. Direct
application of the method to the infinite dimensional problem is not possible, due to the
lackof sufficient regularity ofmultiplier for thepointwise control constraint in theoptimality
system (14). Thus, some alternative approach will be utilized in order to have a well posed
algorithm.
Our approach is based on a regularization of the original control problem. The idea

is to use an appropriate approximation of the multiplier and to apply the semi-smooth
Newton method to this transformed problem. Besides proving super-linear convergence of
the method for each approximation, convergence of the regularized solutions to the optimal
solution has to be shown.
As we saw in Section 3.5, the optimality system for the boundary control problem of the

Navier–Stokes equations is given by


−��y∗ + (y∗ · ∇)y∗ + ∇p = f,

div y = 0,
y|� = g + Bu∗,
−��	 − (y∗ · ∇)	 + (∇y∗)T	 + ∇� = (I − �)(zd − y∗),
div 	 = 0,
	|� = 0,


 = B∗
(

�
�n

(−�	 + zd − y∗) + ��n
)

− �u∗ + ��n in H−1/2
00 (�1),

u∗ �b,

〈
, v − b〉H−1/2
00 ,H1/2

00
�0 for all v ∈ H−1/2

00 (�1), v�b,

〈
, u∗ − b〉H−1/2
00 ,H1/2

00
= 0.

(23)

In view of previous work on optimal control for linear systems with distributed control,
a natural approach consists in reformulating the last three equations of the system as an
operator equation which involves themax function [4,28]. In the present case, however,
since
 is not an a.e. defined function, such a procedure does not appear to be possible.
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Utilizing a penalization method (see[30]), we approximate the last three equations of
the optimality system by


� =max(0, �(u� − b)),

where�>0. The resulting system is suitable for application of the semi-smooth Newton
method and will be shown to converge to the original one as� → ∞.
Let us consider the family of regularized optimal control problems



min
(y,u)∈H×U

J�(y, u) = 1

2
‖y − zd‖2H + �

2
‖u‖2 + 1

2�
‖max(0, �(u − b))‖2

subject to
−��y + (y · ∇)y + ∇p = f,

−div y = 0,
�0y = g + Bu,

(P�)

where�>0.

Theorem 18. For every�>0 there exists a solution(y�, u�) ∈ H×U to(P�). IfM(y�)< �
then there exist(	�,��,��,
�) ∈ V × L2

0(�) × R × L2(�) such that


−��y� + (y� · ∇)y� + ∇p� = f,

div y� = 0,
y�|� = g + Bu�,

−��	� − (y� · ∇)	� + (∇y�)
T	� + ∇�� = (I − �)(zd − y�),

div 	� = 0,
	�|� = 0,


� = B∗
(

�
�n

(−�	� + zd − y�) + ���n
)

− �u� + ���n in H−1/2
00 (�1),


� =max(0, �(u� − b))

(24)

is satisfied in the variational sense.

Proof. SinceJ�(y, u) is weakly lower semi-continuous, existence of an optimal solution
(y�, u�) to(P�) canbeprovedby the sameargumentsas inTheorem8.ByLemma9,(y�, u�)

satisfies the regular point condition. Now it can be argued as in the proof of Theorem 13
that there exist(	�,��,��,
�) ∈ V ×L2

0(�)× R × L2(�) such that the optimality system
(24) holds. �

The following result on the convergence of(y�, u�) as� → ∞ will be proved at the end
of this section.

Theorem 19. The family{(y�, u�)}�>0 contains a subsequence converging inH × U and
the cluster point of every convergent subsequence is a solution to(P). If

2N� sup�(y∗)‖y∗ − zd‖H <1, (25)

where�(y∗) = 1/(� − M(y∗)) and thesup is taken over all solutions to(P), then the
solution to(P) is unique and(y�, u�) converges inH × U to the solution(y∗, u∗) of (P).
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Based on Theorem 19, convergence of the adjoint variables as� → ∞ can be obtained
as well. Assume, for example, that limn→∞(y�n , u�n) = (ŷ, û), and that�>M(ŷ). Then
for n sufficiently large we have�>M(y�n) and the optimality system admits a solution.

Let �y = y�n − ŷ and�	 = 	�n − 	̂. Then




−���	 − (�y · ∇)	̂ − (y�n · ∇)�	 + (∇y�n)
T�	 + (∇�y)T	̂

+∇�� = (I − �)(−�y),
div �	 = 0,
�0�	 = 0,

and hence limn→∞ 	�n = 	̂ in V.
We turn to the statement of the algorithm of the semi-smooth Newton method or equiv-

alently the primal-dual active set strategy with one inner iteration for nonlinear optimal
control problems (cf.[12,31]). The algorithm can be expressed as

Algorithm.

(1) Initialization: choose(u0, y0, 	0) ∈ U × V × H with �0y0 = g + Bu0 and setn = 1.
(2) Until a stopping criteria is satisfied, set

An = {x : �(un−1 − b)>0}, In = �1\An.

Find the solution(yn, pn, un, 	n,�n,�n) of:

−��yn + (yn−1 · ∇)yn + (yn · ∇)yn−1 + ∇pn = f + (yn−1 · ∇)yn−1,

−div yn = 0,

yn|� = g + Bun,

− ��	n − (yn · ∇)	n−1 − (yn−1 · ∇)	n + (∇yn−1)
T	n + (∇yn)

T	n−1 + ∇�n

= (I − �)(zd − yn) − (yn−1 · ∇)	n−1 + (∇yn−1)
T	n−1,

−div 	n = 0,

	n|� = 0,

�un = B∗
(

�
�n

(zd − yn − �	n) + �n�n
)

+ �n�n −
{

�(un − b) in An,

0 in In.

Set
n =
{

�(un − b) in An

0 in In
andn = n + 1.

Let us note that the system to be solved in step (2) results from linearization
of system (24). It also corresponds to the optimality system of the following optimal
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control problem:




min
�x∈H×U

1
2〈L′′(xn−1, 	n−1, 
n−1)�x, �x〉

+〈L′(xn−1, 	n−1, 
n−1), �x〉 + 1

2�

∫
An

|�(un−1 + �u − b)|2 d�
subject to
−���y + (�y · ∇)yn−1 + (yn−1 · ∇)�y + ∇�p

=f + ��yn−1 − (yn−1 · ∇)yn−1 − ∇pn−1,

−div�y = 0,
�0�y − B�u = −�0yn−1 + g + Bun−1 in H1/2(�),

(26)

wherexn = (yn, un) and�x = xn − xn−1.

Let us briefly comment on uniqueness of solutions to (26). Assume that(P�) satisfies a
second order sufficient optimality condition in the sense that for some�>0,

〈L′′(y�, u�, 	�, 
�)(w, h), (w, h)〉�‖(w, h)‖2H×U, (27)

for all (w, h) ∈ H × U. In view of Theorem 16 this condition holds, for example, if
‖y� − zd‖H is sufficiently small. Problem (26) is a quadratic optimization problem with
affine constraints. Its Hessian̄H is given by

H̄ (w, h) = 〈L′′(xn−1, 	n−1, 
n−1)(w, h), (w, h)〉 + �
∫
An

h2 d�,

for (w, h) ∈ H × U. Consequently, if (27) holds, then

H̄ (w, h)�〈L′′(y�, u�, 	�, 
�)(w, h), (w, h)〉
+ 〈(L′′(xn−1, 	n−1, 
n−1) − L′′(y�, u�, 	�, 
�))(w, h), (w, h)〉

��‖(w, h)‖2H×U − 2N‖w‖H‖	n−1 − 	�‖V
�(� − 2N‖	n−1 − 	�‖V)‖(w, h)‖2H×U,

and the Hessian to (26) is positive definite if‖	n−1−	�‖V is sufficiently small. A sufficient
condition for the existence of a Lagrange multiplier(�	, �
) to the first and third equality
constraint in (26) (resulting in the existence of	n = 	n−1 + �	 and�n in the system above
(26)), is given byM(y�)< � andyn−1 sufficiently close toy� in H. This is verified as in
Theorem 11. The requirements on(yn−1, 	n−1) being sufficiently close to(y�, 	�) will be
justified in Theorem 20 below.
For fixed�>0 and a solution(y�, u�) to (P�) we shall verify super-linear convergence

of the semi-smooth Newton method. We shall assume that�>M(y�) so that existence
of a solution to the optimality system (24) is guaranteed. We denote the increments by
�u := un+1 − u�, �y := yn+1 − y� and analogously for�	, �p, �
 and introduce the
operatorsH : H × H → H ′ andH̃ : H × H → H ′ such thatH(v,w) = (v · ∇)w and
H̃(v,w) = (∇v)Tw. If v = w we use the notationH(v) = H(v, v). Using the quadratic
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nature of the nonlinear form we get:

E1 := ((yn − y�) · ∇)(yn − y�) = H(yn) − H(y�) − H′(y�)(yn − y�)

= 1
2H

′′(y�)(yn − y�)(yn − y�),

E2 := ((yn − y�) · ∇)(	n − 	�)

=H(yn, 	n) − H(y�, 	�) − H′(y�, 	�)(yn − y�, 	n − 	�)

= 1
2H

′′(y�, 	�)(yn − y�, 	n − 	�)(yn − y�, 	n − 	�),

E3 := (∇(yn − y�))
T(	n − 	�)

= H̃(yn, 	n) − H̃(y�, 	�) − H̃
′
(y�, 	�)(yn − y�, 	n − 	�)

= 1
2H̃

′′
(y�, 	�)(yn − y�, 	n − 	�)(yn − y�, 	n − 	�).

Let us also note that, due to the regularity results for the Navier–Stokes and the adjoint
equation (see Theorem 7 and the proof of Theorem 14), we obtain thatEi ∈ L2(�), for
i = 1,2,3.

Theorem 20. If �>M(y�), 1−2N‖	�‖V >0and‖(y0−y�, u0−u�, 	0−	�)‖H×U×V is
sufficiently small, then the sequence{(yn, un, 	n,
n)}generated by the algorithmconverges
superlinearly inH × U × V × L2(�) to (y�, u�, 	�,
�).

Proof. Let �>0 denote the positive constant which describes the smallness condition for
‖(y0 − y�, u0 − u�, 	0 − 	�)‖H×U×V .At first � is chosen such that

� − M(y)� 1
2(� − M(y�))>0 and 1− 2N‖	‖V � 1

2 − N‖	�‖V >0 (28)

for all (y, 	) with ‖y − y�‖H < � and‖	 − 	�‖V < �. Further below the value of� will be
decreased.We proceed by induction and assume that‖yi − y�‖H < �, ‖ui − u�‖U< � and
‖	i − 	�‖V < � for all i = 0, . . . , n. In the induction step we show that these inequalities
also hold fori = n + 1, as well as provide the superlinear convergence estimate.
Considering the systems satisfied by the regularized solution(y�, p�, u�, 	�, 
�,��,
�)

and the iterate(yn, pn, un, 	n, 
n,�n,
n), it can be verified that the system


−���y + (yn · ∇)�y + (�y · ∇)yn + ∇�p = E1,

−div �y = 0,
�y |� = B�u,∫
� �u · �nd� = 0,

−���	 − (yn · ∇)�	 − (�y · ∇)	n + (∇yn)
T�	

+(∇�y)T	n + ∇�� = E3 − E2 + ��y − �y,
div �	 = 0,
�	|� = 0,

��u + B∗
(

�
�n

(��	 + �y) − ���n
)

− ���n = −�
,

�
 = �G(�(un − b))�u + R,

(29)
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with

R = max(0, �(u� + (un − u�) − b)) −max(0, �(u� − b))

− �G(�(u� + (un − u�) − b))(un − u�)

and

G(g)(x) =
{
0 if g(x)�0,
1 if g(x)>0,

holds in the variational sense.
From the Newton differentiability of themaxfunction (cf.[28]) we know that for each

g ∈ Lp(�1),

‖max(0, g + h) −max(0, g) − G(g + h)h‖L2 = o(‖h‖Lp). (30)

From the equation for�	 in (29) we obtain

�‖∇�	‖2 − c(�y, 	n, �	) + c(�	, �y, 	n) + c(�	, yn, �	)

= (E3 − E2, �	) − (∇�y,∇�	) − (�y, �	) (31)

and, consequently, from (28) and the properties of the trilinear form

1
2(� − M(y�))‖∇�	‖2�2N‖�y‖H‖�	‖V‖	n‖V + C1‖yn − y�‖H‖	n

− 	�‖V‖�	‖V − (�y, �	)H .

Here and belowCi denote generic constants independent ofn. This estimate implies the
existence of a constantC2, such that

‖�	‖V �C2(‖�y‖H + ‖yn − y�‖2H + ‖	n − 	�‖2V). (32)

From the last two equations in (29) we obtain, after taking the inner product with�u,

−(R, �u) = �‖�u‖2 +
〈

�
�n

(��	 + �y) − ���n, �y
〉
H−1/2,H1/2

− ��(�u, �n) + �(G(�(un − b))�u, �u). (33)

Applying Green’s formula to the second term on the right hand side we obtain〈
�
�n

(��	 + �y) − ���n, �y
〉
H−1/2,H1/2

= (���	 + ��y − ∇��, �y)

+ (∇(��	 + �y) − ��I,∇�y), (34)

which, using the adjoint equations in (29), yields〈
�
�n

(��	 + �y) − ���n, �y
〉
H−1/2,H1/2

= ‖�y‖2 − (E3 − E2, �y) − c(yn, �	, �y) − c(�y, 	n, �y) + c(�y, yn, �	)

+ c(�y, �y, 	n) + �(∇�y,∇�	) + ‖∇�y‖2 − (��I,∇�y).
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Utilizing the primal equations of (29) in variational form and taking into account that
(��I,∇�y) = ∫

� �� div �y dx = 0, we obtain〈
�
�n

(��	 + �y) − ���n, �y
〉
H−1/2,H1/2

= ‖�y‖2H − (E3 − E2, �y) − c(yn, �	, �y) − c(�y, 	n, �y) + c(�y, yn, �	)

+ c(�y, �y, 	n) + (E1, �	) − c(yn, �y, �	) − c(�y, yn, �	).

Considering that�u satisfies the incompressibility condition
∫
� �u · �nd� = 0 and using the

properties of the trilinear form, we get

−(R, �u) = �‖�u‖2 + ‖�y‖2H − (E3 − E2, �y) − 2c(�y, 	n, �y)
+ (E1, �	) + �(G(�(un − b))�u, �u).

From (28) we have

�‖�u‖2 + (12 − N‖	�‖V)‖�y‖2H �‖R‖‖�u‖ + C1(‖yn − y�‖2H‖�	‖V
+ ‖yn − y�‖H‖	n − 	�‖V‖�y‖H).

Using (30) withh= �(un − u�) andg = �(u� − b), we obtain‖R‖ = o(‖un − u�‖Lp ) and,
by the injectionH1/2(�) ↪→ Lp(�), further‖R‖ = o(‖un − u�‖U). From (32) we deduce

�‖�u‖2 + (12 − N‖	�‖V)‖�y‖2H �o(‖un − u�‖U)‖�u‖ + C3(‖yn − y�‖2H‖�y‖H
+ ‖yn − y�‖4H + ‖	n − 	�‖4V
+ ‖yn − y�‖H‖	n − 	�‖V‖�y‖H).

From this estimate and the fact that�0�y = B�u we deduce the existence of a constantC
independent ofn such that

‖(�y, �u)‖H×U�C(‖yn − y�‖2H + ‖	n − 	�‖2V) + o(‖un − u�‖U).
Referring to (32) once again and to the last equation of (29) we obtain for an appropriately
modified constantC

‖(�y, �u, �	, �
)‖H×U×V×L2(�)�C(‖yn − y�‖2H + ‖	n − 	�‖2V)
+ o(‖un − u�‖U). (35)

This implies, possibly after reducing� again, that‖yn+1 − y�‖H < �, ‖un+1 − u�‖U< �,
‖	n+1 − 	�‖V < �, as well as superlinear convergence.�

Proof of Theorem 19. Let (y∗, u∗) denote a solution to(P). SinceJ�(y�, u�)�J�(y
∗, u∗)

= J (y∗, u∗), the family {y�}�>0 is bounded inH, and by the trace theorem{u�}�>0 is

bounded inH1/2
00 (�1). Consequently, there exist subsequences of{y�}�>0 and {u�}�>0,

denoted by the same symbols, and(ŷ, û) ∈ H × H1/2
00 (�1) such that(y�, u�) converges

weakly inH × H1/2
00 (�1) to (ŷ, û). Moreover 1/�‖max(0, �(u� − b))‖2 is bounded and
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hence lim�→∞‖max(0, u�−b)‖=0.ByFatou’s Lemma, this implies thatmax(0, û−b)=0
and hencêu�b, i.e. û is admissible. We also have

J (ŷ, û)� limJ (y�, u�)� limJ�(y�, u�)�J (y∗, u∗)

and hence(ŷ, û) is a solution to(P). Moreover

lim
�→∞ ‖y� − zd‖2H + �‖u�‖2L2(�1)

= ‖ŷ − zd‖2H + �‖û‖2L2(�1)
,

and therefore, utilizing the trace theorem,y� → ŷ, u� → û strongly inH×U. If (25) holds,
then by Theorem 17 the solution to(P) is unique and the whole family(y�, u�) converges
strongly inH × U to (y∗, u∗), the solution of(P). �

5. Numerical results

In this section we present some numerical tests, which illustrate the behavior of the semi-
smooth Newton method applied to constrained boundary optimal control of the Navier–
Stokes equations.
As domain we use the channel(0,1)×(0,0.5) and set a step by removing the rectangular

sector(0.5,1) × (0,0.25) from the domain. The fluid flows from left to right and has a
parabolic inflow boundary condition with maximum value equal to one. For the outflow
boundary condition we use the so called “do nothing” condition (cf.[37]), whichwas shown
to be appropriate in channel simulations. For the rest of the walls a homogeneous Dirichlet
condition is imposed, which is of “no slip” type in the sectors where the control does not
act. This problem is referred to as “forward facing step flow”.
The domain was discretized using a homogeneous staggered grid, with discretization

steph, combined with a finite differences scheme. For the solution of the nonlinearity we
apply a Newton method. In order to avoid numerical instabilities and to obtain appropriate
results for high Reynolds numbers, a first order upwinding scheme is used. For the solution
of the linear system in each Newton step we use MATLAB’s sparse solver.
The simulation of the fluid is depicted inFigs. 1and2 for Reynolds numbers 1000

and 1500, respectively. It is clear that as the Reynolds number increases, the recirculation

Fig. 1. Plot of the streamlines for the forward facing step flow withRe= 1000.
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Fig. 2. Plot of the streamlines for the forward facing step flow withRe= 1500.

bubbles become bigger and stronger. In fact, a desirable effect of a control would be to
reduce this recirculation effect in order to avoid possible flow separation.
We consider two cases of Dirichlet boundary control. The control will act on�1, which

is part of the boundary corresponding to the lower wall after the step, between the values
0.625 and 0.75. In the first case, we allow the control to act as the normal component of the
velocity at the boundary, while the tangential component is set zero. This case corresponds
to normal suction and blowing of fluid along the prescribed wall. In the second case only the
tangential component is used as control, while the normal component remains zero. This
corresponds to the case where another fluid or a moving band acts on the other side of the
domain, with the prescribed condition at the wall.
The target of the control is to drive the fluid to an almost linear behavior, specified by the

Navier–Stokes flow, with Reynolds number 1, in the channel.
The cost functional used for the tests contains a weight for the gradient part of the norm,

i.e.:

J (y, u) = 1

2
‖y − zd‖2L2(�)

+ �
2
‖∇(y − zd)‖2L2(�)

+ �
2
‖u‖2L2(�1)

,

where�>0 andzd is the state of the Navier–Stokes equation withRe= 1.
For the computation of the first two examples we used the regularized semi-smooth

Newton method. The method stops if‖�x‖L2 < � = 10−4. For both examples, the method
requires one additional iteration if� = 10−7.

5.1. Example 1

In this first case, we apply a constrained tangential optimal control to drive the stationary
Navier–Stokes flow to the desired state. The parameter values used are:Re= 1000, b =
0.425, � = 10−4 and� = 0.01. The optimal control and its multiplier are depicted inFig.
3, where, with dotted line, the unconstrained optimal control is also shown. From these
graphics, the satisfaction of the complementarity condition can be verified by inspection.
Fig. 4depicts the streamlines of the controlled state andFig. 5a zoomed view of the velocity
vector plot at the bubble sector.
Intuitively, one can imagine that an appropriate control action should contravene the

recirculation effect of the bubble by imposing a horizontal velocity in the opposite direction



J.C. de los Reyes, K. Kunisch / Nonlinear Analysis 62 (2005) 1289–1316 1311

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

Fig. 3. Example 1: horizontal optimal control and its multiplier.
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Fig. 4. Example 1: plot of the streamlines of the final controlled state.
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Fig. 5. Example 1: final controlled state: zoom of the vector field.



1312 J.C. de los Reyes, K. Kunisch / Nonlinear Analysis 62 (2005) 1289–1316

Table 1
Example 1,h = 0.00625,� = 10−4

� 10 102 104 108 1010

Iter. 6 6 8 8 8
|A| 14 14 15 15 15

Table 2
Example 1,h = 0.005,� = 10−7

Iteration |An| |In| J (y, u) ‖un − un−1‖ ‖un−un−1‖‖un−1−un−2‖

1 25 0 0.00844382 — —
2 0 25 0.00738098 0.3399 —
3 19 6 0.00722746 0.1969 0.5792
4 18 7 0.00721617 0.0198 0.1005
5 18 7 0.00721604 0.00392 0.1665
6 18 7 0.00721604 2.36× 10−6 6.98× 10−4

7 18 7 0.00721604 1.15× 10−12 5.03× 10−7

of the recirculation. The numerical results confirm this conjecture. In controlled flow the
bubble center and its concentration are moved to that part of the domain where the control
has no influence. In a neighborhood of the control, the recirculation disappears.
From the plot of the controlled state it can be seen that the action of the control provokes

a significant change in the behavior of the fluid. Since such changes are penalized by the
second term of the cost functional, the question about what to expect as� increases arises.
For larger values of� the design objective in the sense of reducing the recirculation

region is less successful. This can be explained by observing that the streamlines inFig. 4
are quite concentrated in the remaining bubble in front of the controlled boundary and that
as a consequence the gradient norm is large in that region. If the norm does not allow for
this behavior the bubble remains larger.
Table 1shows the iteration number of the SSN method for different� values. As the

penalization parameter increases, the problem becomes harder to solve and more SSN
iterations are needed. The difference is, however, not significant. InTable 2the evolution
of the method and the cost functional are depicted for the fixed� value 1010. The data were
obtained with mesh sizeh = 0.005.

5.2. Example 2

In this example we use normal control action along the prescribed wall section. The
unilateral constraint can be interpreted as a limited pointwise suction or injection capacity,
depending on the kind of inequality we have. For this case, the suction of fluid is restricted
pointwise by imposing a constant lower bound on the control. The parameters take the
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Fig. 6. Example 2: vertical optimal control and its multiplier.

Γ1

Fig. 7. Example 2: streamlines of the final controlled state.

following values:Re= 800, b = −0.18, � = 10−4 and� = 0.01.Fig. 6shows, with solid
lines, the optimal control and itsmultiplier and, with dotted lines, the unconstrained optimal
control. The streamlines of the final state are given inFig. 7.
The action of the control consists in sucking fluid in order to eliminate the recirculation

within the control sector. A displacement of the bubble center takes place and the recir-
culation occurs earlier.Fig. 8 shows a zoom of the bubble, which illustrates the control
effect. The complementarity condition can be confirmed by inspection fromFig. 6. Since
the constraint consist in a lower bound, the multiplier takes negative values.
It can be also seen from the plots that, differently from tangential control, in the case

of normal controls the qualitative properties of the controls and of the fluid do not change
significantly with�. Fig. 9 shows the state reached by taking� = 0.1. In this case the
constraint remains active on the whole control domain.
Table 3shows the evolution of the primal–dual method and the cost functional for� =

10−4, �=1010 and discretization steph=0.005. The behavior of themethod as� decreases
is given inTable 4and, as expected, it can be confirmed that with reduction of the weight,
the size of the active set becomes larger.
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Fig. 8. Example 2: final controlled state: zoom of the vector field.
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Fig. 9. Example 2: streamlines of the final controlled state,� = 0.1.

Table 3
Example 2,h = 0.005,� = 10−4

Iteration |An| |In| J (y, u) ‖un − un−1‖ ‖un−un−1‖‖un−1−un−2‖

1 20 0 0.00612187 — —
2 0 20 0.00570537 0.444 —
3 6 14 0.00556574 0.2181 0.4908
4 10 10 0.00554262 0.0812 0.3721
5 11 9 0.00554544 0.0013 0.0157
6 11 9 0.00554545 3.7× 10−6 0.0029
7 11 9 0.00554545 8.7× 10−12 2.35× 10−6
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Table 4
Example 1,h = 0.00625,� = 10−4

� Iterations |A|

0.1 6 3
0.01 7 11
0.001 7 12
0.0001 7 12
0.00001 7 12
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