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Abstract. It is demonstrated that the predual for problems with total bounded variation regu-
larization terms can be expressed as a bilaterally constrained optimization problem. Existence of a
Lagrange multiplier and an optimality system are established. This allows us to utilize efficient op-
timization methods developed for problems with box constraints in the context of bounded variation
formulations. Here, in particular, the primal-dual active set method, considered as a semismooth
Newton method, is analyzed, and superlinear convergence is proved. As a by-product we obtain that
the Lagrange multiplier associated with the box constraints acts as an edge detector. Numerical
results for image denoising and zooming/resizing show the efficiency of the new approach.
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1. Introduction and notation. This work is concerned with the study of the
problem ⎧⎨

⎩ min
1

2

∫
Ω

|Ku− f |2dx +
α

2

∫
Ω

|u|2dx + β

∫
Ω

|Du|
over u ∈ BV(Ω),

(1.1)

where Ω is a simply connected domain in R
2 with Lipschitz continuous boundary ∂Ω,

f ∈ L2(Ω), β > 0, α ≥ 0 are given, and K ∈ L(L2(Ω)). By K∗ we denote the adjoint
of K. We assume that K∗K is invertible or α > 0. Further, BV(Ω) denotes the space
of functions of bounded variation. A function u is in BV(Ω) if the BV seminorm
defined by ∫

Ω

|Du| = sup

{∫
Ω

u div�v : �v ∈ (C∞
0 (Ω))2, |�v(x)|�∞ ≤ 1

}

is finite. It is well known [16] that BV(Ω) ⊂ L2(Ω) for Ω ⊂ R
2 , and that u �→

|u|L2 +
∫
Ω
|Du| defines a norm on BV(Ω). If K = identity, then (1.1) is the well-known

image restoration problem with BV-regularization term. It consists of recovering the
true image u from the noisy image f . It is well known [9] that (1.1) admits a unique
solution u∗ ∈ BV(Ω) . BV-regularization, differently from regularization by means of∫
Ω
|∇u|2 dx, for example, is known to be preferable due to its ability to preserve edges

in the original image during the reconstruction process. Since the pioneering work in
[23], the literature on (1.1) has grown tremendously. We give some selected references
[1, 5, 7, 12, 14, 18] and refer to the recent monograph [25] for further references.
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1312 M. HINTERMÜLLER AND K. KUNISCH

The original formulation has been extended in various directions including concepts
of reconstruction of images with multiple scales; see, e.g., [2, 4, 6, 19].

Despite its favorable properties for reconstruction of images, and especially images
with blocky structure, problem (1.1) poses some severe difficulties. On the analytical
level these are related to the fact that (1.1) is posed in a nonreflexive Banach space,
the dual of which is difficult to characterize [16, 19], and on the numerical level the
optimality system related to (1.1) consists of a nonlinear partial differential equation,
which is not directly amenable to numerical implementations.

In the present work we show the remarkable result that while the dual of the non-
reflexive Banach space problem (1.1) has a complicated measure theoretic structure,
its predual can be characterized in a well-known Hilbert space setting. Specifically,
the predual to (1.1) is a quadratic optimization problem with bilateral constraints.
For such problems the literature provides a variety of possible algorithms. Here we
describe and analyze two variants of semismooth Newton methods. We prove their
superlinear convergence and provide numerical examples for some denoising and zoom-
ing problems. In practice these algorithms are globally convergent without the need
for line searches. As a by-product we obtain that the Lagrange multiplier associated
with the box constraints acts as an edge detector. We show numerically that the
edge detecting property does not require any postprocessing on the multiplier such as
thresholding or sharpening techniques.

Let us briefly mention a few alternatives that have been investigated for treating
(1.1) numerically. In [23] a time marching scheme to solve the necessary optimality
condition related to (1.1) is used. Time marching is also essential for the work in,
e.g., [6]. In [19, 26] fixed point iteration schemes are applied to the optimality system
using primal variables only. The optimality system based on the primal and dual
variables is the basis for the schemes in [19] and [8]. In the former an augmented
Lagrangian-based active set strategy is used; in the latter a Newton method is ap-
plied. Compared to the formulations used in earlier work, ours appears to have the
advantage of being of significantly simpler structure since only a quadratic problem
with affine box constraints must be solved. In earlier work, if analysis is carried out,
then frequently

∫
Ω
|Du| is replaced by

∫
Ω

√
δ + |∇u|2dx,(1.2)

for δ > 0. In our approach the algorithms are well posed for δ = 0, and for the
discretized formulations we have superlinear convergence, still with δ = 0.

The paper is organized as follows. In the remainder of this section we recall some
facts from convex analysis and summarize the function space notation that will be
used. In section 2 we characterize the predual of (1.1) in the sense of Fenchel. We shall
point out the close connection, for 1D (one–dimensional) problems, between our algo-
rithm and the taut-string algorithm well known in nonparametric regression analysis
[11, 21]. Section 3 is devoted to the description and convergence proof for a class of
regularized problems. Semismooth Newton methods for the predual problems are de-
veloped in section 4. Superlinear convergence for the regularized infinite-dimensional
problems, and for the discretized predual problems without extra regularization, is
proved. Section 5 is devoted to a numerical feasibility study of our results.

We recall the Fenchel duality theorem in infinite-dimensional spaces in a form that
is convenient for our work; see, e.g., [3, 13] for details. Let V and Y be Banach spaces
with topological duals denoted by V ∗ and Y ∗, respectively. Further, let Λ ∈ L(V, Y )
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TOTAL BOUNDED VARIATION REGULARIZATION 1313

and let F : V → R ∪ {∞}, G : Y → R ∪ {∞} be convex lower semicontinuous
functionals not identically equal to ∞, and assume that there exists v0 ∈ V such that
F(v0) < ∞, G(Λv0) < ∞, and G is continuous at Λv0. Then we have

inf
u∈V

F(u) + G(Λu) = sup
p∈Y ∗

−F∗(Λ∗p) − G∗(−p),(1.3)

where F∗ : V ∗ → R ∪ {∞} denotes the conjugate of F defined by

F∗(v∗) = sup
v∈V

〈v, v∗〉V,V ∗ −F(v).

Under the conditions imposed on F and G, it is known that the problem on the
right-hand side of (1.3) admits a solution. Moreover, (ū, p̄) are solutions to the two
optimization problems in (1.3) if and only if

Λ∗p̄ ∈ ∂F(ū),(1.4a)

−p̄ ∈ ∂G(Λū),(1.4b)

where ∂F denotes the subdifferential of the convex functional F .
To compute, formally, the Fenchel dual to (1.1) we set Λ = ∇,

F(u) =
1

2
|Ku− f |2 +

α

2
|u|2 and G(�p) = β

∫
Ω

|�p|�1dx,

where u and �p denote a scalar and a 2D vector-valued function, respectively. Further,
| · | denotes the L2(Ω)-norm and | · |�1 stands for the �1-norm on R

n. For the convex
conjugates we find

F∗(v) =
1

2
(v + K∗f,B−1(v + K∗f)) − 1

2
|f |2 and G∗(�p) = I[−β�1,β�1](�p),

where �1 is the 2D vector field with 1 in both coordinates, B = α I +K∗K, and

I[−β�1,β�1](�p) =

{
0 if − β�1 ≤ �p(x) ≤ β�1 for almost every (a.e.) x ∈ Ω,
∞ otherwise.

Thus, formally the dual to (1.1) is given by{
inf 1

2 |div �p + K∗f |2B
s.t. − β�1 ≤ �p(x) ≤ β�1 for a.e. x ∈ Ω,

(1.5)

where |v|2B = (v,B−1v), and the relationship (1.4) applied to the solutions of (1.1)
and (1.5) implies that

div �p = Bu− K∗f, �p = β

(
uxi

|uxi |

)n

i=1

on {x : uxi(x) �= 0 for all i}.(1.6)

The functional analytic statement corresponding to (1.6) is given in (2.3), (2.4) below.
We note that nondifferentiability due to the BV-term in (1.1) is replaced by the

bilateral constraints in the formal dual (1.5).
In the next section we shall put (1.5) into a proper functional analytical frame-

work. For this purpose we require some notation which we summarize next. Let
IL2(Ω) = L2(Ω)× L2(Ω) endowed with the Hilbert space inner product structure and
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1314 M. HINTERMÜLLER AND K. KUNISCH

norm. If the context suggests to do so, then we shall distinguish between vector
fields �v ∈ IL2(Ω) and scalar functions v ∈ L2(Ω) by using an arrow on top of the
letter. Analogously we set IH1

0(Ω) = H1
0 (Ω) × H1

0 (Ω). We denote L2
0(Ω) = {v ∈

L2(Ω) :
∫
Ω
vdx = 0}, H0(div) = {�v ∈ IL2(Ω) : div�v ∈ L2(Ω), �v · n = 0 on ∂Ω},

where n is the outer normal to ∂Ω. The space H0(div) is endowed with |�v|2H0(div) =

|�v|2
IL2(Ω)

+ |div�v|2L2 as norm. Further, we put H0(div 0) = {�v ∈ H0(div) : div�v =

0 almost everywhere in Ω}. It is well known that

IL2(Ω) = grad H1(Ω) ⊕H0(div 0);(1.7)

cf. [10, p. 216], for example. Moreover,

H0(div) = H0(div 0)⊥ ⊕H0(div 0),(1.8)

with

H0(div 0)⊥ = {�v ∈ gradH1(Ω) : div�v ∈ L2(Ω), �v · n = 0 on ∂Ω},

and div : H0(div 0)⊥ ⊂ H0(div) → L2
0(Ω) is a homeomorphism. In fact, it is injective

by construction, and for every f ∈ L2
0(Ω) there exists, by the Lax–Milgram lemma,

ϕ ∈ H1(Ω) such that

div∇ϕ = f in Ω, ∇ϕ · n = 0 on ∂Ω,

with ∇ϕ ∈ H0(div 0)⊥. Hence, by the closed mapping theorem we have

div ∈ L(H0(div)⊥, L2
0(Ω)).

Finally, let Pdiv and Pdiv⊥ denote the orthogonal projections in IL2(Ω) onto H0(div 0)
and grad H1(Ω), respectively. Note that the restrictions of Pdiv and Pdiv⊥ to H0(div 0)
coincide with the orthogonal projections in H0(div) onto H0(div 0) and H0(div 0)⊥.

2. The Fenchel predual. The section is devoted to the study of the problems⎧⎨
⎩ min

1

2
|div �p + K∗f |2B over �p ∈ H0(div)

s.t. − β�1 ≤ �p ≤ β�1,
(2.1)

and ⎧⎨
⎩ min

1

2
|div �p + K∗f |2B + γ

2 |Pdiv�p|2 over �p ∈ H0(div)

s.t. − β�1 ≤ �p ≤ β�1,
(2.2)

where γ > 0 is given, and we recall that for v ∈ L2(Ω) we set |v|2B = (v,B−1v)L2 .
Proposition 2.1. Both (2.1) and (2.2), admit a solution. The solution to (2.2)

is unique.
Proof. Existence of a solution to (2.1) as well as (2.2) can be proved by standard

arguments. To verify uniqueness of the solution to (2.2) we note that the set of feasible
�p is convex. Hence it suffices to verify strict convexity of J(�p) = 1

2 |div �p + K∗f |2B +
γ
2 |Pdiv�p|2. To ascertain strict convexity of J we use the fact that the second derivative
satisfies

J ′′(�p, �p) = |div �p |2B + γ|Pdiv�p |2 ≥ κ|�p |2H0(div)
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TOTAL BOUNDED VARIATION REGULARIZATION 1315

for a constant κ > 0 independent of �p ∈ H0(div). Here we have used (1.6) and the sub-
sequent comments. Hence J is even uniformly convex, and uniqueness
follows.

Theorem 2.2. The Fenchel dual to (2.1) is given by (1.1), and the solutions u∗

of (1.1) and �p ∗of (2.1) are related by

Bu∗ = div �p ∗ + K∗f,(2.3)

〈(−div)∗u∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ H0(div),(2.4)

with −β�1 ≤ �p ≤ β�1.
Alternatively, (2.1) can be considered as the predual of the original problem (1.1).

If (2.1) is a zero-residue problem, i.e., �p ∗ satisfies div �p ∗ = −K∗f , then the addi-
tional penalty term in (2.2) chooses from among all solutions the one which minimizes
|Pdiv�p

∗|.
Proof of Theorem 2.2. We apply Fenchel duality as recalled in section 1 with V =

H0(div), Y = Y ∗ = L2(Ω), Λ = −div, G : Y → R given by G(v) = 1
2 |v − K∗f |2B , and

F : V → R defined by F(�p ) = I[−β�1,β�1](�p ). The convex conjugate G∗ : L2(Ω) → R

of G is given by

G∗(v) =
1

2
|Kv + f |2 +

α

2
|v|2 − 1

2
|f |2.

Further, the conjugate F∗ : H0(div)∗ → R of F is given by

F∗(�q) = sup
�p∈S1

〈�q, �p 〉H0(div)∗,H0(div) for �q ∈ H0(div)∗,(2.5)

where S1 = {�p ∈ H0(div) : −β�1 ≤ �p ≤ β�1}. Let us set

S2 = {�p ∈ C1
0 (Ω) × C1

0 (Ω) : −β�1 ≤ �p ≤ β�1}.

The set S2 is dense in the topology of H0(div) in S1. In fact, let �p be an arbitrary
element of S1. Since (D(Ω))2 is dense in H0(div) (see, e.g., [15, p. 26]), there exists
a sequence �pn ∈ (D(Ω))2 converging in H0(div) to �p. Let P denote the canonical
projection in H0(div) onto the closed convex subset S1 and note that, since �p ∈ S1,

|�p− P�pn|H0(div) ≤ |�p− �pn|H0(div) + |�pn − P�pn|H0(div)

≤ 2|�p− �pn|H0(div) → 0 for n → ∞.

Hence limn→∞ |�p−P�pn|H0(div) = 0 and S2 is dense in S1. Returning to (2.5), we have

for v ∈ L2(Ω) and (−div)∗ ∈ L(L2(Ω), V ∗),

F∗((−div)∗v) = sup
�p∈S2

(v,−div �p ),

which can be +∞. By the definition of the functions of bounded variation it is finite
if and only if v ∈ BV(Ω) (see [16, p. 3]) and

F∗((−div)∗v) = β

∫
Ω

|Dv| < ∞ for v ∈ BV(Ω).

The dual problem to (2.1) is found to be

min
1

2
|Ku− f |2 +

α

2
|u|2 + β

∫
Ω

|Du| over u ∈ BV(Ω).
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1316 M. HINTERMÜLLER AND K. KUNISCH

From (1.4), moreover, we find

〈(−div)∗u∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all p ∈ S1

and

Bu∗ = div �p ∗ + K∗f.

We obtain the following optimality system.
Corollary 2.3. Let �p ∗ ∈ H0(div) be a solution to (2.1). Then there exists

�λ∗ ∈ H0(div)∗ such that

div∗ B−1 div �p ∗ + div∗ B−1K∗f + �λ∗ = 0,(2.6)

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ H0(div),(2.7)

with −β�1 ≤ �p ≤ β�1.
For convenience we also specify the variational form of (2.6) which holds in

H0(div)∗ :

(B−1 div �p ∗,div�v )L2 + (B−1K∗f,div�v )L2 + 〈�λ∗, �v 〉H0(div)∗,H0(div) = 0

for all �v ∈ H0(div).

Proof of Corollary 2.3. Set �λ∗ = −div∗ u∗ ∈ H0(div)∗ and apply div∗ B−1 to

obtain (2.6). For this choice of �λ∗, equation (2.7) follows from (2.4).
The optimality system for (2.2) is given next.
Corollary 2.4. Let �p ∗ ∈ H0(div)∗ denote the solution to (2.2). Then there

exists �λ∗ ∈ H0(div)∗ such that

div∗ B−1 div �p ∗ + div∗ B−1K∗f + γPdiv�p
∗ + �λ∗ = 0,(2.8)

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ H0(div),(2.9)

with −β�1 ≤ �p ≤ β�1.
Proof. We only sketch the proof here since the assertion will also follow from

the proof of Theorem 3.1 below. By (1.6), every �v ∈ H0(div) can be decomposed
according to �v = �v1 + �v2 ∈ H0(div 0)⊥ ⊕ H0(div 0). The functional in (2.2) is then
separable, and (2.2) can be expressed as

min
�p∈H0(div)

F(�p) + G1(Λ1�p1) + G2(Λ2�p2),

where F is defined in the proof of Theorem 2.2, G1 and Λ1 coincide with G and Λ
from the proof of Theorem 2.2, and we set

G2 : IL2(Ω) → R, G2(�p) =
γ

2
|�p |2

IL2(Ω)
,

Λ2 ∈ L(H0(div 0), IL2(Ω)) with Λ2 the canonical injection. From general results in
convex analysis (e.g., [13, p. 61]), there exist �u ∗

1 ∈ IL2(Ω) and �u ∗
2 ∈ IL2(Ω) such that

B�u ∗
1 = div �p ∗

1 + K∗f = div �p ∗ + K∗f,

−�u ∗
2 = γ�p ∗

2 = γPdiv�p
∗
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TOTAL BOUNDED VARIATION REGULARIZATION 1317

and

〈−div∗ �u ∗
1 + �u ∗

2 , �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ S1.

The claim follows with �λ∗ = −div∗ �u ∗
1 + �u ∗

2 .
We end this section with the following remarks.
Remark 1.
• In our numerical tests, in many cases we can set γ = 0. This suggests the

conjecture that the constraints −β�1 ≤ �p ≤ β�1 imply some type of uniqueness.
• We point out the close connection between (2.1) and the taut-string algorithm

well known in regression analysis [11, 21]. Here we have K = I, α = 0. A
continuous version of the taut-string algorithm can be expressed as⎧⎨

⎩ min

∫ 1

0

√
1 + |wx|2dx,

s.t. F − β ≤ w ≤ F + β,
(2.10)

where F (x) =
∫ x

0
f(s)ds. The denoised image u is obtained from u = wx.

Observe that the change of variables p = w − F transforms (2.10) into⎧⎨
⎩ min

∫ 1

0

√
1 + |px + f |2dx,

s.t. − β ≤ p ≤ β
(2.11)

and u = px + f . Thus, except for the square root in (2.11), we obtain (2.1).

3. A family of regularized problems. To treat (2.1) and (2.2) numerically
one can discretize these box constrained problems and implement one’s algorithm
of choice for the resulting finite-dimensional quadratic optimization problems with
affine constraints. With such an approach the infinite-dimensional structure tends
to get covered up. One of the features that can be pointed out by considering (2.6)
and (2.8) of the optimality systems is that the leading differential operator is not
smoothing (see (1.7)) as it is for obstacle-type problems, nor is it a compact pertur-
bation of the identity operator as, for instance, for control constrained optimal control
problems [17]. This complicates the convergence analysis for semismooth Newton al-
gorithms; see [17, 24]. Therefore we describe in this section a family of approximating
problems which have more amenable properties for Newton-type algorithms in an
infinite-dimensional setting. A second difficulty with (2.1), (2.2) is related to the fact
that β will typically be chosen as a small constant so that the resulting problems are
close to bottleneck problems. We shall see in section 5 that the algorithms we propose
are able to deal efficiently with such constraints.

As announced above, we focus in this section on a family of approximating prob-
lems given by

⎧⎪⎨
⎪⎩

min
1

2c
|∇�p |2 +

1

2
|div �p + K∗f |2B +

γ

2
|Pdiv�p |2

+
1

2c
|max(0, c(�p− β�1))|2 +

1

2c
|min(0, c(�p + β�1))|2 over �p ∈ IH1

0(Ω),

(3.1)

where c > 0. Let �pc denote the unique solution to (3.1). It satisfies the optimality
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1318 M. HINTERMÜLLER AND K. KUNISCH

condition

− 1

c
∆�pc −∇B−1 div �pc −∇B−1K∗f + γPdiv�pc + �λc = 0,(3.2a)

�λc = max(0, c(�pc − β�1)) + min(0, c(�pc + β�1)).(3.2b)

Next we address convergence as c → ∞.
Theorem 3.1. The family {(�pc, �λc)}c>0 converges weakly in H0(div) × IH1

0(Ω)
∗

to the unique solution (�p ∗, �λ∗) of (2.8), (2.9). Moreover, the convergence of �pc to �p ∗

is strong in H0(div).
Proof. Recall the variational form of (2.8) given by

(div �p ∗,div�v )B + (K∗f,div�v )B + γ(Pdiv�p
∗,Pdiv�v ) + 〈�λ∗, �v 〉H0(div)∗,H0(div) = 0

(3.3)

for all �v ∈ H0(div). To verify uniqueness, let us suppose that (�pi, �λi) ∈ H0(div) ×
H0(div)∗, i = 1, 2, are two solution pairs to (2.8), (2.9). For δ�p = �p2−�p1, δ�λ = �λ2−�λ1

we have

(B−1 div δ�p,div�v ) + γ(Pdivδ�p,Pdiv�v ) + 〈δ�λ,�v 〉H0(div)∗,H0(div) = 0(3.4)

for all �v ∈ H0(div), and

〈δ�λ, δ�p 〉H0(div)∗,H0(div) ≥ 0.

With �v = δ�p in (3.4) we obtain

|B−1 div δ�p |2 + γ|Pdivδ�p |2 ≤ 0,

and hence �p1 = �p2. From (3.3) we deduce that �λ1 = �λ2. Thus uniqueness is estab-
lished, and we can henceforth rely on subsequential arguments.

In the following computation we consider the coordinates �λi
c, i = 1, 2, of �λc. We

have for the pointwise a.e. evaluation at x ∈ Ω

�λi
c �p

i
c =

(
max(0, c(�p i

c − β)) + min(0, c(�p i
c + β))

)
�p i
c

=

⎧⎨
⎩

c(�p i
c − β)�p i

c if �p i
c ≥ β,

0 if |�p i
c | = β,

c(�p i
c + β)�p i

c if �p i
c ≤ β.

It follows that

(�λi
c, �p

i
c)L2(Ω) ≥

1

c
|�λi

c|2L2(Ω)
for i = 1, 2,

and consequently

(�λc, �pc)IL2(Ω) ≥
1

c
|�λc|2IL2(Ω)

for every c > 0.(3.5)

From (3.2) and (3.5) we deduce that

1

c
|∇�pc|2 + |div �pc|2B + γ|Pdiv�pc|2 ≤ |div �pc|B |K∗f |B
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TOTAL BOUNDED VARIATION REGULARIZATION 1319

and hence

1

c
|∇�pc|2 +

1

2
|div �pc|2B + γ|Pdiv�pc|2 ≤ 1

2
|K∗f |B .(3.6)

We further estimate

|�λc|IH1
0(Ω)

∗ = sup
|�v |

IH1
0(Ω)

=1

〈�λc, �v 〉IH1
0(Ω)

∗
,IH1

0(Ω)

≤ sup
|�v|

IH1
0(Ω)

=1

{
1

c
|∇�pc||∇�v | + |div �pc|B |div�v |B + |K∗f |B |div�v |B

+ γ|Pdiv�pc| |Pdiv�v |
}
.

From (3.6) we deduce the existence of a constant K independent of c ≥ 1 such that

|�λc|IH1
0(Ω)

∗ ≤ K.(3.7)

Combining (3.6) and (3.7), we can assert the existence of (�p ∗, �λ∗) ∈ H0(div)×IH1
0(Ω)

∗

such that for a subsequence denoted by the same symbol

(�pc, �λc) ⇀ (�p ∗, �λ∗) weakly in H0(div) × IH1
0(Ω)

∗
.(3.8)

We recall the variational form of (3.2), i.e.,

1

c
(∇�pc,∇�v ) + (div �pc,div�v )B + (K∗f,div�v )B + γ(Pdiv�pc,Pdiv�v )

+ (�λc, �v ) = 0 for all �v ∈ IH1
0(Ω).

Passing to the limit c → ∞, using (3.6) and (3.8) we have

(div �p ∗,div�v )B+(K∗f,div�v )B + γ(Pdiv�p
∗,Pdiv�v )

+〈�λ∗, �v 〉IH1
0(Ω)

∗
,IH1

0(Ω) = 0 for all �v ∈ IH1
0(Ω).

(3.9)

Since IH1
0(Ω) is dense in H0(div) and �p ∗ ∈ H0(div), we have that (3.9) holds for all

�v ∈ H0(div). Consequently �λ∗ can be identified with an element in H0(div)∗, and
〈·, ·〉IH1

0(Ω)
∗
,IH1

0(Ω) in (3.9) can be replaced by 〈·, ·〉H0(div)∗,H0(div). We next verify that
�p ∗ is feasible. For this purpose note that

(�λc, �p− �pc) =
(
max(0, c(�pc − β�1)) + min(0, c(�pc + β�1), �p− �pc

)
≤ 0(3.10)

for all −β�1 ≤ �p ≤ β�1. From (3.1) we have

1

c
|∇�pc|2 + |div �pc + K∗f |2B + γ|Pdiv�pc|2 +

1

c
|�λc|2 ≤ |K∗f |2B .(3.11)

Consequently, 1
c |�λc|2 ≤ |K∗f |2B for all c > 0. Note that

1

c
|�λc|2IL2(Ω)

= c|max(0, �pc − β�1)|2
IL2(Ω)

+ c|min(0, �pc + β�1)|2
IL2(Ω)

and thus

|max(0, (�pc − β�1))|2
IL2(Ω)

c→∞→ 0,

|min(0, (�pc + β�1))|2
IL2(Ω)

c→∞→ 0.
(3.12)
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1320 M. HINTERMÜLLER AND K. KUNISCH

Recall that �pc ⇀ �p ∗ weakly in IL2(Ω). Weak lower semicontinuity of the convex
functional �p �→ |max(0, �p− β�1)|IL2(Ω) and (3.12) imply that∫

Ω

|max(0, �p ∗ − β�1)|2dx ≤ lim inf
c→∞

∫
Ω

|max(0, �pc − β�1)|2dx = 0.

Consequently, �p ∗ ≤ β�1, and analogously one verifies that −β�1 ≤ �p ∗. In particular,
�p ∗ is feasible, and from (3.10) we conclude that

〈�λc, �p
∗ − �pc〉H0(div)∗,H0(div) ≤ 0 for all c > 0.(3.13)

By optimality of �pc for (3.1) we have

lim sup
c→∞

(
1

2
|div �pc + K∗f |2B +

γ

2
|Pdiv�pc|2

)
≤ 1

2
|div �p + K∗f |2B +

γ

2
|Pdiv�p |2(3.14)

for all �p ∈ S2 = {�p ∈ (C1
0 (Ω))2 : −β�1 ≤ �p ≤ β�1}. Density of S2 in S1 = {�p ∈ H0(div) :

−β�1 ≤ �p ≤ β�1} in the norm of H0(div) implies that (3.14) holds for all �p ∈ S1 and
consequently

lim sup
c→∞

(
1

2
|div �pc + K∗f |2B +

γ

2
|Pdiv�pc|2

)
≤ 1

2
|div �p ∗ + K∗f |2B +

γ

2
|Pdiv�p

∗|2

≤ lim inf
c→∞

(
1

2
|div �pc + K∗f |2B +

γ

2
|Pdiv�pc|2

)
,

where for the last inequality weak lower semicontinuity of norms is used. The above
inequalities together with weak convergence of �pc to �p ∗ in H0(div) imply strong con-
vergence of �pc to �p ∗ in H0(div). Finally we aim at passing to the limit in (3.13). This

is impeded by the fact that we only established �λc ⇀ �λ∗ in IH1
0(Ω)

∗
. Note from (3.2)

that {− 1
c∆�pc +�λc}c≥1 is bounded in H0(div). Hence there exists �µ∗ ∈ H0(div)∗ such

that

−1

c
∆�pc + �λc ⇀ �µ∗ weakly in H0(div)∗,

and consequently also in IH1
0(Ω)

∗
. Moreover, { 1√

c
|∇�pc|}c≥1 is bounded and hence

−1

c
∆�pc ⇀ 0 weakly in IH1

0(Ω)
∗

as c → ∞. Since �λc ⇀ �λ∗ weakly in IH1
0(Ω)

∗
, it follows that

〈�λ∗ − �µ∗, �v 〉IH1
0(Ω)

∗
,IH1

0(Ω) = 0 for all �v ∈ IH1
0(Ω).

Since both �λ∗ and �µ∗ are elements of H0(div)∗ and since IH1
0(Ω) is dense in H0(div),

it follows that �λ∗ = �µ∗ in H0(div)∗. For �p ∈ S2 we have

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) = 〈µ∗, �p− �p ∗〉H0(div)∗,H0(div)

= lim
c→∞

〈
−1

c
∆�pc + �λc, �p− �pc

〉
H0(div)∗,H0(div)

= lim
c→∞

(
1

c
(∇�pc,∇(�p− �pc)) + (�λc, �p− �pc)

)

≤ lim
c→∞

(
1

c
(∇�pc,∇�p) + (�λc, �p− �pc)

)
≤ 0
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TOTAL BOUNDED VARIATION REGULARIZATION 1321

by (3.10) and (3.11). Since S2 is dense in S1, we find

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ S1.

The problem formulation (3.1) contains two limiting processes: the IH1
0(Ω) smooth-

ing, which will be used to guarantee superlinear convergence of semismooth Newton
methods applied to the first order optimality conditions (3.2) of (3.1) in function
spaces (see section 4), and a penalization of the constraints −β�1 ≤ �p ≤ β�1 resulting
in the max- and min-terms. There is no need to utilize the same parameter c for both
limiting processes. Rather, if 1

2c |∇�p|2 is replaced by 1
2c̄ |∇�p|2, then (�pc̄,c, �λc̄,c) con-

verges to (�p∗, �λ∗) weakly in H0(div)× IH1
0(Ω)

∗
, where (�pc̄,c, �λc̄,c) denotes the solution

of (3.2) with 1
c∆�pc replaced by 1

c̄∆�pc̄,c, as c → ∞ and c̄ → ∞.

4. Semismooth Newton methods. Here we shall describe two algorithms,
one for a discretized form of (2.2) and another one for (3.1). Both algorithms are
locally superlinearly convergent.

First we consider the unregularized problem (2.2). After discretization it is of the
form ⎧⎨

⎩ min
1

2
|A1p + f̃ |2 +

γ

2
|A2p|2

s.t. − β1 ≤ p ≤ β1,

(4.1)

where p ∈ R
m, for some m ∈ N with coordinates pi. Further, A1, A2 are m × m-

matrices, f̃ ∈ R
m, and 1 ∈ R

m denotes the vector with all entries equal to 1. We
assume that kerA1 ∩ kerA2 = 0. The optimality condition for (4.1) is given by

AT
1 A1p + γAT

2 A2p + AT
1 f̃ + λ = 0,

λ = max(0, λ + c(p− β1)) + min(0, λ + c(p + β1)),
(4.2)

where c > 0 is arbitrary and fixed. The primal-dual active set strategy, or equivalently
the semismooth Newton algorithm applied to (4.2), is specified next.

Algorithm A.

(1) Choose p0, λ0 ∈ R
m and set k = 0.

(2) Define

A+
k+1 = {i : (λk + c(pk − β1))i > 0},

A−
k+1 = {i : (λk + c(pk + β1))i < 0},

Ii
k+1 = {i : i /∈ A±

k+1}.

(3) Solve for pk+1, λk+1

AT
1 A1pk+1 + γAT

2 A2pk+1 + AT
1 f̃ + λk+1 = 0,

(λk+1)i = 0 for i ∈ Ik+1,

(pk+1)i = β for i ∈ A+
k+1, (pk+1)i = −β for i ∈ A−

k+1.

(4) Stop, or set k = k + 1 and go to (2).
This algorithm can be obtained by applying a formal Newton step to (4.2), choos-

ing as generalized derivative for the function s �→ max(0, s) the value 1 if s ≥ 0 and
0 if s < 0, and making an analogous choice for s �→ min(0, s).
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1322 M. HINTERMÜLLER AND K. KUNISCH

For the following result we suppose that, given p0, the first equation in (4.2) is
used to compute λ0. Then we have the following result.

Theorem 4.1. If |p0−p∗|Rm is sufficiently small, then the iterates {(pk, λk)}∞k=1

of Algorithm A converge superlinearly to the solution (p∗, λ∗) of (4.2).
The result can be verified by standard techniques from semismooth Newton meth-

ods; see, e.g., [17]. We do not enter into the details here but rather for Algorithm B
below, where they are more involved.

We turn to the algorithmic treatment of the infinite-dimensional problem (3.1),
for which we propose the following algorithm.

Algorithm B.

(1) Choose �p0 ∈ IH1
0(Ω) and set k = 0.

(2) Set, for i = 1, 2,

A+,i
k+1 = {x : (�p i

k − β�1)(x) > 0},
A−,i

k+1 = {x : (�p i
k + β�1)(x) < 0},

Ii
k+1 = Ω \ (A+,i

k+1 ∪ A−,i
k+1).

(3) Solve for �p ∈ IH1
0(Ω) and set �pk+1 = �p, where

1

c
(∇�p,∇�v ) + (div �p,div�v )B + (K∗f,div�v )B + γ(Pdiv�p,Pdiv�v )

+ (c(�p− β�1 )χA+
k+1

, �v ) + (c(�p + β�1 )χA−
k+1

, �v ) = 0
(4.3)

for all �v ∈ IH1
0(Ω).

(4) Set

�λi
k+1 =

⎧⎪⎪⎨
⎪⎪⎩

0 on Ii
k+1,

c(�p i
k+1 − β�1) on A+,i

k+1,

c(�p i
k+1 + β�1) on A−,i

k+1,

for i = 1, 2.
(5) Stop, or set k = k + 1 and go to (2).
In the above, χA+

k+1
stands for

χi
A+

k+1

=

{
1 if x ∈ A+,i

k+1,

0 if x /∈ A+,i
k+1,

and analogously for A−
k+1. The superscript i, i = 1, 2, refers to the respective com-

ponent. We note that (4.3) admits a solution �pk+1 ∈ IH1
0(Ω). Step (4) is included for

the sake of the analysis of the algorithm. Let C : IH1
0(Ω) → H−1(Ω) ×H−1(Ω) stand

for the operator

C = −1

c
∆ −∇B−1 div +γPdiv.

It is a homeomorphism for every c > 0 and allows us to express (3.2) as

C�p−∇B−1K∗f + cmax(0, �p− β�1) + cmin(0, �p + β�1) = 0,(4.4)
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TOTAL BOUNDED VARIATION REGULARIZATION 1323

where we drop the index in the notation for �pc. For ϕ ∈ L2(Ω) we define

Dmax(0, ϕ)(x) =

{
1 if ϕ(x) > 0,
0 if ϕ(x) ≤ 0,

(4.5)

and

Dmin(0, ϕ)(x) =

{
1 if ϕ(x) < 0,
0 if ϕ(x) ≥ 0.

(4.6)

These operators define semismooth derivatives; see, e.g., [22] for the finite-dimensional
case and [17, 24] for the infinite dimensions. Using (4.5), (4.6) as generalized deriva-
tives for the max and the min operations in (4.4), the semismooth Newton step can
be expressed as

C�pk+1 + c(�pk+1 − β�1)χA+
k+1

+ c(�pk+1 + β�1)χA−
k+1

−∇B−1K∗f = 0,(4.7)

and �λk+1 from step (4) of Algorithm B is given by

�λk+1 = c(�pk+1 − β�1)χA+
k+1

+ c(�pk+1 + β�1)χA−
k+1

.(4.8)

The iteration of Algorithm B can also be expressed with respect to the variable �λ
rather than �p. For this purpose we define

F (�λ)=�λ− cmax(0, C−1(∇f̂ − �λ) − β�1) − cmin(0, C−1(∇f̂ − �λ) + β�1),(4.9)

where we put f̂ = B−1K∗f . Setting �pk = C−1(∇f̂ − �λk), the semismooth Newton

step applied to F (�λ) = 0 at �λ = �λk results in

�λk+1 = c(C−1(∇f̂ − �λk+1) − β�1)χA+
k+1

+ c(C−1(∇f̂ − �λk+1) + β�1)χA−
k+1

,

which coincides with (4.8). Therefore the semismooth Newton iterations according to

Algorithm B and for F (�λ) = 0 coincide, provided that the initializations are related by

C�p0 −∇f̂ +�λ0 = 0. The mapping F is slantly differentiable; i.e., for every �λ ∈ IL2(Ω)

|F (�λ + �h) − F (�λ) −DF (�λ + �h)h|IL2(Ω) = O(|�h|IL2(Ω))(4.10)

for |�h|IL2(Ω) → 0 (see [17]). Here D denotes the derivative of F defined by means of

(4.5) and (4.6). For (4.10) to hold the smoothing property of C−1 in the sense of an
embedding from IL2(Ω) into ILp(Ω) for some p > 2 is essential. The following result
now follows from standard arguments.

Theorem 4.2. If |�λc−�λ0|IL2(Ω) is sufficiently small, then the iterates {(�pk, �λk)}∞k=1

of Algorithm B converge superlinearly in IH1
0(Ω) × IL2(Ω) to the solution (�pc, �λc) of

(3.1).

5. Discretization and numerical examples. We report now on numerical
results attained by Algorithms A and B. In the examples below we choose K = I
and α = 0 for image denoising. We also include results for image zooming; see, e.g.,
[20] for a general description. In this case, we use given data f which correspond
to a coarse (low-pixel–based) approximation of a given image. Then the aim is to

D
ow

nl
oa

de
d 

12
/2

9/
14

 to
 1

43
.5

0.
47

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1324 M. HINTERMÜLLER AND K. KUNISCH

reconstruct the original image at the original pixel-scale. As a consequence, K �= I
with ker(K) typically nontrivial, which requires us to choose α > 0.

In our tests, for the div-operator we use backward differences with quadratic ex-
trapolation on the left boundary for Algorithm B. For Algorithm A we use symmetric
differences with quadratic extrapolation on the boundary, where A1 denotes the dis-
cretized divergence operator. The discrete grad−div-operator is taken as AT

1 A1. For
Algorithm B we need the discrete Laplacian with homogeneous Dirichlet boundary
conditions. We use the standard five-point stencil for its discretization. The projec-
tion Pdiv�p is obtained by solving a Neumann problem as stated at the end of section 1.
Again we use the five-point stencil for discretizing the Laplace operator with symmet-
ric differences for the discretization of the Neumann boundary condition.

To investigate possible ill-conditioning due to the parameter c appearing in Al-
gorithm B we also tested a first order augmented Lagrangian variant of Algorithm B.
To specify the algorithm we define

L(�p,�λ) =
1

2c̄
|∇�p |2 +

1

2
|div �p + K∗f |2B + γ

2 |Pdiv�p |2 + φc(�p,�λ),

where φc is the generalized Moreau–Yosida regularization of the indicator function φ
of the set {�p ∈ IL2(Ω) : −β�1 ≤ �p ≤ β�1}. We have

φc(�p,�λ) = inf
�q∈IL2(Ω)

φ(�p− �q ) + (�λ, �q )IL2(Ω) +
c

2
|�q |2

IL2(Ω)

for c > 0 and �λ ∈ IL2(Ω). Some simple manipulations result in

φc(�p,�λ) =
1

2c

∣∣max
(
0, �λ + c(�p− β�1)

)∣∣2
IL2(Ω)

+
1

2c

∣∣min
(
0, �λ + c(�p + β�1)

)∣∣2
IL2(Ω)

− 1

2c

∣∣�λ∣∣2
IL2(Ω)

.

Augmented Lagrangian Method (ALM).

(1) Choose �λ0 ∈ IL2(Ω), c > 0, and n = 0.

(2) Given �λn ∈ IL2(Ω), determine

�pn = argmin{L(�p,�λn) : �p ∈ IL2(Ω)}.

(3) Update �λn by �λn+1 = φ′
c(�pn,

�λn).
(4) If convergence is not achieved, set n = n + 1 and go to step (2).
In step (3) we have

φ′
c(�p,

�λ) = max
(
0, �λ + c(�p− β�1)

)
+ min

(
0, �λ + c(�p + β�1)

)
.

Note that the auxiliary problems in step (2) of ALM coincide with (3.1) except for

the shift by �λn in the max/min operations. In our numerical tests below we typically
choose c̄ = c.

The algorithms in sections 3 and 4 are stated in terms of exact system solutions.
Our numerical implementation utilizes inexact Newton techniques to underscore the
feasibility of the proposed methods for large scale problems. In order to describe our
approach let rk denote the residual of the respective system, i.e., (4.2) for Algorithm A
and (4.3) for Algorithm B. We resolve the respective system with the preconditioned
conjugate gradient method (CG-method). The preconditioner involves the (vector)
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TOTAL BOUNDED VARIATION REGULARIZATION 1325

Fig. 1. Upper left: original image (128× 128 pixel). Upper right: noisy image with 10% noise.
Lower: noisy image with 50% noise.

Laplacian and, for Algorithm B, the terms involving the indicator functions of A±
k+1.

The stopping tolerance for the CG-method in iteration k + 1 is given by

tolk+1 = 0.1 min(r1.25
k , rk).

This choice is motivated by the locally superlinear convergence rate of our algorithms.
Example 1. The test images for our first image denoising example are displayed in

Figure 1. The upper left image is the original image, which is similar to the one in [8].
It has a dynamic range of [0, 255]. The other two images contain Gaussian white noise.
The upper right one has 10% noise, and the remaining image contains 50% noise; i.e.,
we add Gaussian noise with standard deviation of 25.5 and 127.5, respectively. In
the subsequent tables we denote by #as the total number of active set iterations, by
#cg the total number of CG-iterations, and by #alm the total number of iterations
updating �λn for ALM. We stopped each algorithm as soon as the discrete L2-norm
of the residual dropped below tol=

√
εM , with εM the machine precision, or when

the difference between two successive residuals was smaller than tol, i.e., no further
progress was observed.

Let us first report on the results obtained for denoising the image with 10% noise.
For all algorithms we choose c = 1E4. However, let us note that Algorithm A does not
require large c since c is not linked to a regularization term. Rather it is a parameter
associated with the reformulation of the complementarity system induced by the box
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1326 M. HINTERMÜLLER AND K. KUNISCH

Table 5.1

Results for 10% noise.

Algorithm #as #cg #alm

Algorithm A 16 64 -
Algorithm B 9 23 -

ALM 14 27 3

Fig. 2. Upper left: result of Algorithm A. Upper right: result of Algorithm B. Lower: result of
ALM.

constraints. Further, for all three algorithms we chose β = 0.2, γ = 0 for ALM and
Algorithm B, and γ = 1E-3 for Algorithm A. In general, for ALM and Algorithm
B, γ had no noticeable effect on the results attained. However, Algorithm A is more
sensitive to γ. This can be attributed to the fact that the system matrix in Algorithm
A is singular for γ = 0. In Table 5.1 we report on the iteration numbers for the
respective algorithms.

We note that Algorithm B requires the least number of AS-iterations. For ALM
we point out that we initialized it with �λ0 ≡ 0; then, typically, 8–10 AS-iterations
were required in the first ALM-iteration. The subsequent ALM-iterations needed 2–3
AS-iterations.

In Figure 2 we display the reconstructions. The upper left and right correspond
to Algorithms A and B. The lower image is the result obtained by Algorithm ALM.
The quality of the reconstructions is equally good for all algorithms.
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TOTAL BOUNDED VARIATION REGULARIZATION 1327

Fig. 3. Left: Lagrange multiplier of Algorithm B. Right: corresponding edge detector.

Table 5.2

Results for 50% noise.

Algorithm #as #cg #alm

Algorithm A 15 59 -
Algorithm B 7 18 -

ALM 13 33 3

In the introduction we mentioned that the Lagrange multiplier associated with
the box constraints serves as an edge detector. Figure 3 shows the �1-norm of the
multiplier attained by Algorithm B and a resulting edge detector. The edge detector
is obtained from a simple thresholding technique. In fact, as a threshold we took c
and computed the edge detector λe as

λe(xi) =

{
1 if |�λ∗(xi)|�1 ≥ c,
0 otherwise.

In the above, xi denotes the ith pixel of the image, and �λ∗ the multiplier upon
termination of B. For the multipliers resulting from Algorithms A and ALM a similar
observation holds true.

Now we turn to the results for the image containing 50% noise. The parameters
had the values c = 1E4, β = 0.9, and γ = 0 for ALM and Algorithm B, and c = 1E4,
β = 0.75, γ = 1E-3 for Algorithm A. Figure 4 shows the reconstructions obtained from
our algorithms. As in the previous test case, the quality of the results for Algorithms
B and ALM is comparable. Algorithm A appears to be slightly more sensitive to
noise. This behavior could not be ruled out by tuning the parameters c, γ, and β.
The iteration numbers are reported on in Table 5.2. As can be seen from these results,
the number of iterations of the respective algorithm is rather stable with respect to
the noise level.

In Figure 5 we display the �1-norm of the multiplier �λ∗ upon termination of Al-
gorithm B. The related edge detector, which is obtained in the same way as explained
previously, is given in the right image of Figure 5. We conclude that—without any
thresholding—the Lagrange multiplier may act as an edge detector.
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1328 M. HINTERMÜLLER AND K. KUNISCH

Fig. 4. Upper left: result of Algorithm A. Upper right: result of Algorithm B. Lower: result of
ALM.

Fig. 5. Left: Lagrange multiplier of Algorithm B. Right: corresponding edge detector.

Let us briefly comment on the difference of stability with respect to β of Algo-
rithms A and B compared to ALM. In general the choice of β influences the quality of
the reconstruction. A large value for β decreases the number of active pixels, i.e., pix-
els at which �p ∗ hits either the upper or the lower bound. As a consequence, details of
the image are missed in the reconstruction. The right image in Figure 6 corresponds
to the result attained by Algorithm B with β = 1.5 (compared to β = 1.25 in the
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TOTAL BOUNDED VARIATION REGULARIZATION 1329

Fig. 6. Reconstruction for β = 1.5. Left: ALM. Right: Algorithm B.

Table 5.3

Convergence behavior of the residual.

#as 4.67E6 1.5E-1 9.6E-4 6.2E-7 1.8E-8 9.15E-9

previous run). Due to the larger β-value, the quality of the reconstruction degrades
in the sense that details are missed, e.g., at the corners of the triangle. On the other
hand, the left image in Figure 6 shows the result for ALM with β = 1.5.

Obviously the reconstruction is superior to the one obtained from Algorithm B.
This reflects a general observation from our test runs, i.e., ALM is more stable with
respect to the choice of β. The behavior of Algorithm A with respect to changes in β
is comparable to that of Algorithm B.

Let us discuss the convergence behavior of our algorithms in terms of reductions
of the residuals. From the results reported in Tables 5.1 and 5.2 we find that our
algorithms require a rather small number of iterations which are even stable with
respect to different noise levels. In Table 5.3 we show the behavior of the residual
for Algorithm B for 50% noise, indicating a fast convergence. This fast convergence
is also true for the numerical resolution of the auxiliary problem of ALM. A similar
convergence behavior is obtained for Algorithm A. For smaller values of β the iter-
ates converge superlinearly. Small values of β, however, imply a deterioration of the
reconstruction. Here the ill-posedness in the problem becomes evident.

In [8] an inexact Newton method for solving a primal-dual formulation of the
Euler–Lagrange equations associated with a regularized TV-based image reconstruc-
tion problem is proposed. The test problem in [8] involves the same geometry as in
our test example. In Figure 7 (upper left plot) we show the noisy image containing
Gaussian white noise with variance σ2 ≈ 1200, which gives a signal-to-noise ratio of
approximately 1. This parallels the test setting in [8]. We also made an effort to
adjust the stopping rule of Algorithm B for the comparison with the algorithm in [8].
Algorithm B requires nine iterations for obtaining the denoised image in the upper
right plot of Figure 7. The algorithm in [8] with a line search and a continuation
strategy with respect to δ in the regularization of the TV-seminorm of the type (1.2)
is reported to need 12 iterations. The size of the systems which have to be solved per
iteration in both algorithms is comparable. The edged detector, based on the �1-norm
of �λ upon termination of Algorithm B, is given in the last subplot of Figure 7.
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1330 M. HINTERMÜLLER AND K. KUNISCH

Fig. 7. Upper left: noisy image (256 × 256 pixel). Upper right: result of Algorithm B. Lower:

�1-norm of �λ.

Example 2. Now we report on the behavior of Algorithm B for the benchmark
problem in Figure 8. The upper left plot shows the original image. The upper right
image contains 7.5% Gaussian white noise. The parameters had the values c = 1E4,
γ = 0, and β = 0.15. The algorithm stopped after nine AS-iterations (31 CG-
iterations total) with a residual of 6.2E-9. The corresponding reconstruction is given
in the lower left plot of Figure 8. The lower right plot displays the �1-norm of the
Lagrange multiplier associated with the box constraints. As in the previous examples,
it behaves like an edge detector.

Example 3. We conclude our numerical section with the results obtained by
Algorithm B for an image zooming/resizing problem. In this case, we have K �= I.
The data f correspond to a coarse version of the original image satisfying f2i−1,2j−1 =
f2i,2j−1 = f2i−1,2j = f2i,2j . For an arbitrary 256×256-pixel image u the application
v = Ku is related to a 128×128-pixel version ṽ of the image with ṽi,j = u2i−1,2j−1 and
v2i−1,2j−1 = v2i,2j−1 = v2i−1,2j = v2i,2j = ṽi,j . For more details on image zooming
involving more advance operators K, we refer to [20]. Our aim is to use Algorithm
B for reconstructing the fine image u from the given coarse image f . Since K has
a nontrivial kernel, we choose α = 1E-10. Further, we pick the parameter values
c = 1E5, β = 0.35, and γ = 0. In Figure 9 we display the original image in the upper
left plot. The result after 16 iterations of Algorithm B is shown in the upper right plot.
The lower left plot shows the 128×128-pixel version expanded by a factor of 2, and
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TOTAL BOUNDED VARIATION REGULARIZATION 1331

Fig. 8. Upper left: exact data (256 × 256 pixel). Upper right: noisy data. Lower left: recon-
struction obtained by Algorithm B. Lower right: �1-norm of the Lagrange multiplier.

the lower right plot provides the result obtained by a nearest neighbor interpolation.
Observe that the reconstructions differ quite noticeably along the boundaries of the
person’s left arm, for example.

6. Conclusions. The efficient numerical treatment of BV-regularization–based
image restoration poses many challenges in theory as well as in the design of algo-
rithms. In this paper we first establish the relationship between the primal problem
in the nonreflexive Banach space BV and its predual which is posed in the Hilbert
space H0(div). This analytical result appears to be of interest in its own right. We
then introduce and study two semismooth Newton methods for solving the Fenchel
predual problem of the underlying BV-regularized minimization problem. By predual-
ization we obtain a box constrained minimization problem which—from the numerical
optimization point of view—has the advantage that we can rely on sophisticated min-
imization algorithms. The convergence analysis of our semismooth Newton methods
in function spaces relies on a smoothing procedure. The regularizing effect of our
smoothing results in a two-norm property which is required for arguing locally su-
perlinear convergence of our semismooth Newton method in an L2-setting. Without
smoothing we obtain a locally superlinearly convergent method on the discrete level.

Acknowledgment. We would like to thank Prof. O. Scherzer, University of
Innsbruck, Austria, for making us aware of the taut string algorithm discussed in
Remark 1.
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1332 M. HINTERMÜLLER AND K. KUNISCH

Fig. 9. Upper left: exact data (256 × 256 pixel). Upper right: reconstruction obtained by
Algorithm B. Lower left: 128× 128-pixel image expanded by a factor of 2. Lower right: result using
a nearest neighbor interpolation technique.
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