Differentiability properties of the L!-tracking
functional and application to the Robin inverse
Problem *
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Abstract

We investigate an optimization problem (OP) in a non-standard form: The cost func-

tional F measures the L' distance between the solution u, of the direct Robin problem and
a function f € L'(M). After proving positivity, monotonicity and control properties of the
state w, with respect to ¢, we prove the existence of an optimal control v to the problem
(OP) and establish Newton differentiability of the functional F.
As application to this optimization problem the inverse problem of determining a Robin
parameter @;,, by measuring the data f on M is considered. In that case f is assumed to
be the trace on M of u,,, . In spite of the fact that we work with the L' — norm we prove
differentiability of the cost functional F by using complex analysis techniques. The proof is
strongly related to positivity and monotonicity of the derivative of the state with respect to
. An identifiability result is also proved for the set of admissible parameters ® .4 consisting
of positive functions in L.

Introduction

We consider a simply connected bounded Jordan domain €2 in R? with C*# boundary 99, 3 €]0, 1].
Let I'; and T'y two nonempty connected disjoint open subsets of 05, satisfying 9Q = I'; UTy and
let M be a nonempty connected open set of I'y such that 9M N oy, = 0.

|

Figure 1: The domain and its boundary.
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Let ¢, > 0, and K be a nonempty connected subset of 'y with 9K N o'y = (). We denote by
D the set:
D = {p € ®,y such that ¢ < ¢ and ¢ > cxc},

where ®,, is the set of admissible parameters:
(1) S0 = {pe L™¥(y), o 0and ¢ > 0 a. e. on ['y}.

Let ® € CY(T'y) with ® >0, ® # 0, and f € L'(M). We study the following optimization
problem:

mian [, |u, — fl,
(OP) { subject to ¢ € D,

where u,, is the solution of the following problem:

Au = 0 in €,
(RP) Gu = & on Ty,
g—z +ou = 0 on I
We define the functional F by:
F: &y € L>®(Ty) — R
o = F@) = [ - gl
M

We first prove positivity and monotonicity properties of the solution u, with respect to the
parameter . Such results were established in [6] by using the Hopf maximum principle in case
the admissible parameters is set given by:

A={peCTy), ¢> Oand p # 0},

If the parameters ¢ are only nonnegative in the L*> sense, as required by ®,4, then the Hopf
maximum principle is not applicable. The main idea in order to prove these two properties is to
return to the set A by density.

Existence of a global minimum v to the problem (OP), continuity property of the minimum
with respect to the data f and differentiability of the state u, with respect to ¢ are proved in
the second part of this work where the positivity and monotonicity properties of the state u,
with respect to p € ®,4 are used. Our next aim is to investigate differentiability properties of
the function F: For a given parameter ¢ € ®,4, the function u, — f can be positive in some
part of M and negative in another, resulting in a possible lack of differentiability of F. In that
case Newton differentiability of the functional F is proved and a generalized derivative G of F is
established in the third part.

In the last part of this work we study the particular case where the function f is the trace on M
of a solution u,,, of (RP):

f = U"Pinv|M7

which is the case for the following Robin inverse problem:

Given a prescribed flux ® and measurements f on M,
(IP) :
recover the function ¢;,, € ®.q such that u,, v = f.

We start this part by establishing an identifiability result allowing for discontinuous parameters .
This improves an earlier result form [5] where the parameters were required to be continuous. This
result implies that ¢;,, is the global minimum of F in ®,4. After proving positivity, monotonicity



and an a-priori bound of u;, the derivative of the state with respect to ¢, we establish by complex
analysis techniques that the set:

S, = {x € M such that u,(z) = f(x)},

is a finite for every ¢ € ®,4 with ¢ # @;n,. This property, which is strongly related to the fact
that the data f are the trace on I'; of the harmonic function u,,,, , is the main result in order to
prove the differentiability of the functional F.

Many authors were interested in the Robin inverse problem. Uniqueness, stability and identifica-
tion process in the case of a thin plate domains was studied in [10], [14]. In a 2D domain, local,
monotonic and logarithmic stability results for the Robin inverse problem were established in [5],
3], [9]. In [2], the stability of the Kohn-Vogelius method with respect to the H2 data perturba-
tions and the numerical implementation of this method were established. Another method based
on complex analysis and analytic functions theory was investigated in [6]. The robustness of this
method in the case of W™2, with n > 2, data perturbations was studied. In the context of the
present paper, we can allow for L' data perturbations.

The motivation for the L!-cost functional stems from the theory of robust statistics. In fact, in
the case of noisy data f with outliers, the choice of a quadratic cost functional will unnecessarily
exaggerate the error in the data in a neighborhood of the outlier and as a consequence have a
negative effect on the reconstruction of . Special attention was given to the construction of
functionals which reduce such effects, see e.g. [13], with a prominent example being L!-type cost
functionals. More recently these ideas were also introduced to area of image processing, [15].
The advantage of the robustness of such functionals against the influence of outliers must be
weighed against their lack of differentiability. In the context of L!-functionals one can rely on
optimization algorithms which are specifically designed for such functionals. Alternatively one
can employ Fenchel duality theory and characterize the (pre-) dual problem, which is a bilater-
ally constrained problems. This approach was successfully carried out in [12] for deconvolution
problems. The numerical treatment of bilaterally constrained problems in turn has received a
significant amount of attention in the past. - While the L!-cost is preferable over the L?-cost in
the case of aberrant data, the problem of determing ¢ remains to be illposed and for a numerical
realization regularization will be required. In view of an improved cost functional we expect it to
be less significant, however.

1 Positivity and monotonicity properties of u,

Let S = {p € L*(Ty) : ¢ # 0and ¢ > 0 a. e on I}, be endowed with the L? norm and
choose ¢ € S. We denote by L and A the linear and bilinear form defined on H'(Q) by:

L(v) :/ dv; A(u,v) :/VUVU+/ Yuv,
Fl Q FQ

We refer to [4] for the proof of the following lemmas:
Lemma 1 The mapping:

(2) n: § — H!

Y o Uy
is well defined and locally Lipschitzian.
Lemma 2 The mapping n is a decreasing function on S, i.e. 0 < ¢ < implies: 0 < uy < uy.
Lemma 3 For every ¢ € ®,q we have

inf u,(z) > 0.
€N



2 Existence of an optimal control to (OP) and differen-
tiability property of the mapping ¢ — u,.
We start by proving existence for (OP).

Theorem 1 The optimization problem (OP) has a global minimum ).

Proof:
Let 0 = in% F(¢) and ¢, € D a minimizing sequence: § = lim F(py,).
pe n—oo
We have 0 < ¢, < . Referring to [1], there exist ) € D and a subsequence of ¢, also denoted
by ¢, such that:
(3) ©n — ¥ in L™ weak *.

¢From Lemma 2, the function u,, = wu,, satisfies:

(4) Uy < u, < u. for every n € N,

/

where u, and u. denote the solutions of the Robin problem (RP) for ¢ = cxx and ¢ = ¢
respectively.
Using Robin boundary conditions and equation (4), there exist a constant 8 > 0 such that:

Ouy,
5 o < .
) 15 ey < 6
Let ¢, = % and w, = u, — ¢,. The function w,, satisfies the following problem:
Aw, = 0 in €
a(;”—” = ¢ on Iy,
" ou,,
aa% = an on FQ,
f aqWn = 0.
Owy,
JFrom (5), we have that { (;U } is bounded in L?*(092). Due to the shift theorem [8], the function
n

w, is bounded independently of n in W22(Q). Using again Lemma 2, the sequence {c,} is also
bounded independently of n. Consequently, there exist a constant v > 0 independent of n such
that:

||un||W%,2(Q) <.
Then, there exist a function u € H'(Q) and a subsequence of u, also denoted by u, such that:

u, — u weakly in H'(Q)
u, — u strongly in L?(092)

We shall prove now that u = wu,. For every v € H'(Q), we have

/cpnunv = / gpn(un—u)er/ DU,
I'o I T2

Due to the strong convergence of u, to u in L?(T'y), boundedness of ¢, in the L, and from (3)
we get:

lim PpllpV = Yuv.
2 2

4



In the other hand we have:

/Vuan—i—/ PpllpV = / do.
Q I'y N}

Consequently, the function u satisfies:

/VUVU + Yuv :/ Do,
Q I I

Consequently © = uy and § = lim F(p,) = F(¢) from the strong convergence in L?(99) of u,,

n—oo

to u. [ ]

The following result establishes stability of the solution 1 with respect to the data f.

Theorem 2 Let {f,} be a sequence of L'(M) converging strongly to f in L*(M) and set 1, € D
such that: |wy, — ful = miir)l |uy, — fn|. Then, there exist a subsequence of 1, also denoted
pe

M M
by ¥, and ¥ € D a global minimum of (OP) such that: 1, — 1 in L weak *.

Proof:

. From the boundedness of the sequence {1, }, there exist ) € D and a subsequence of {1, } also
denoted by {#,} such that:

(6) P, — 1 in L™ weak x .

By using the same technique as in the proof of Theorem 1, there exists a subsequence of u,, also
denoted by w,, such that:

Uy, — Uy weakly in H'(Q)
Uy, — Uy strongly in L*(99).

We have: / [y, — fn] < / \uy, — fn| for every ¢ € D, where f, — f strongly in L'(M) and
M M
Uy, — Uy strongly in L?(9€2). Consequently:

[w=s1< [ -1

and hence, 1 is a global minimum to the (OP). n

For ¢ € ®,4, denote by u; the linear mapping:

ul o L>®(Ty) — HY(Q)

©
where u,(h) is the solution to the following problem:
Au =0 in
(8) Bu =0 on T4y,
%Jrgou = —hu, on I.

Referring to [4] we have the following theorem:



Theorem 3 The linear mapping u; 1s continuous and for every ¢, v € P4, we have:

lwy = up — up(¥ — Pl _

11m
o = ¥l oo (ry)—0 o — Loy

We also have for every ¢ , i € ®uq satisfying || — ||y < Min {M c—*’}:

) o2

gy, — uglloweews, mr@) < Kol — @llpoory,

where K, is a constant independent of 1 and h. In particular, ¢ — u, is Frechet differentiable
at every ¢ in the interior of ®,4.

3 Newton differentiability of the functional F

We first recall the definition of Newton differentiability. Then we prove that F is Newton differ-
entiable and we calculate a generalized derivative G of F.

Definition 1 Let X and Z be two Banach spaces, and D an open subset of X.
A function F : D — Z is called Newton differentiable in the open subset U C D if there
exist a family of mappings G : U — L(X,Z) such that:

L F(@ 4 h) = F(a) = Gl + Wbl _
h—0 Il

0,

for everyx € U.

We note that the function G is not required to be unique. Moreover, if the function F' is Newton
differentiable, then Newton’s method for the resolution of the equation F(x) = 0 converges
super-linearly for appropriate choices of the initialization [11], [16].

Let us designate by G, the family of mapping:

G: Int(®%) — L(L>(Ty), L'(Ty)),
e — Gly),

where for h € L*(T'y):

u;(h)(x) if  wup(zr) > f(x),
Glp)(M)(x) = § —uy(h)(x) if wuy(x) < f(x),
0 if  wuy(r) = f(z).

Theorem 4 G is a generalized derivative of the map:

C: Int(®yy) C L*®(Ty) — LYT,)
2 — ‘u@ - fl

(9)

Proof:
Some ideas of this proof are inspired from [11], where Newton differentiability of the map:

max(0,.) L) — LP(Q)

u > mazx(0, u),



is studied. Let h € L*°(I'y) and denoted by:

Dgo,h = |ug0+h - f| - |U’<P - f| - G<90+ h>h

We have:
|tpn () = up(@) — ug, (R) ()] it [ug(2) = f(@)][upsn(z) = f(2)] >0,
‘D h(x)‘ _ |u90+h(x) - u¢(x)| ?f usO-i-h(x - f(I)v
7 g n() = up(z) — ugy,(h)(2)] if uy(x) = f(=),

() + up(2) = 2 f(2) = up (W)(@)] i [up(@) = f(@)][ugen(z) — f(2)] < 0.

Let us denote:
o1(h) = ugpyn — u, — u<1p+h(h)7
Ay = {& €Ty such that [up() — f(@)][ug 1 1(@) — f(@)] = 0 and up4n(x) £ f(2)},

and:

By = {z €Ty such that [uy(z) — f(2)][usn(z) — f(z)] < 0and uy(z) # f(2)},
and observe that 'y = A;, U B,g. The proof of theorem is now divided in two steps:
Stepl: On Aj, we have ||Dyp|lpia,) < 7+/mes(Ls) ||o1(h)|r2r,)-

. , : [o1(h)| £2(ry)
By Theorem 3 and the continuity of the trace mapping, we have lim —_ =
1Pl oo (ry) —0 HhHL“(H)

= ()7
and therefore

0 1D (a1 ar) _

Ihllzoe(ryy =0 || Bl Loo(ra)

Step 2: On B we first establish the following inequalities:
(11) ug(x) — f(2)] < |ug(h)(z) + o(h)(x)
(12) [Den(@)] < 3 |ug(h)(@) + o(h)(@) | + Jug . ,n(R)(2)],

o(h
for some o(h) € H'() satisfying lim lot)llezqws)
hllzoery)—o |||l oo ()
Let 2 € B) and consider two cases:
If uyqp(x) = f(x), then by Theorem 3 and continuity of the trace mapping, there exist o(h) €

H'(Q) with the desired asymptotic behavior such that

I

= 0.

Upn = uy + uy(h) + ofh).

We then have
[tpen(e) = [(@)] = [Don(a)] < ul®)@) + o()(a) |.

If [u,(z) — f(xﬂ [uwrh(a:) . f(x)] < 0, then

(@) = f(@)] [up@) = F@) + ubB)@) + o(h)(@)| < o,

and hence

Moreover in this case

Donl@)| = 2(upe) = (@) = ub (@) + wb(B)@) + o(h)(a)




and thus
Don@)| < 3 |ub(W)@) + o(b)(@) | + Juby y(B)@)]

establishing (11) and (12). For ¢ > 0, we denote by:
B = {x € BY such that [uw(x) - f(x)} [uwrh(:p) - f(x)] < 0and |u,(z) — f(z)] > 5}.
On Bj we have ¢ < |uy,(z) — f(z)| < }u;(h)(x) + o(h)(x) ’ and therefore

e mes(B7) < /mes(00) |7 [ubll ey ooy Il + 1008) lpaqey |-

It follows that, for every fixed ¢ > 0, we have:
(13) lim mes (Bj) = 0.

IRl Loo(ry) — 0

Let us define also the set C® by:
C° = {x € I'y such that 0 < |u,(z) — f(z)] < 8} C {x: uy(z) # f(q:)}

Note that C° C C% for 0 < ¢ < & and ﬂ C® = 0, and therefore

e>0

(14) lim mes(C°) = 0.

e — 0t

JFrom (12), we have:

1Dgnllzrs) < (3 [[ugh) + olh) || o) + g a(P)llz2s) o/ mes(B7),
and hence there exist a constant ¢; > 0 independent of h and ¢ such that:

[ D nllrse)

(15) < ¢y y/mes(By).

1] oo (rs)

Referring to (12) once again we find

1Dl < (3 1[ub(h) + o) [ aggpge) + lsb (W) lzaagran) /mes(B\BR)).

Since Bj\B;, C C., there exist a constant c; > 0 independent of h and e such that:

D 1RO =
(16) || <P,h||L (B\B7) < e /m€S(C€).

12/l oo (ra)
Let n > 0. By (14), (15) and (16), there exists € > 0 such that:

[1Dgnllp ) T
(17) W S C1 mes(Bi) + n.

We therefore have:
D D ~
Dy, nllr(ry) < [ Dy, nllzt(an) Lo /mes(B,i)Jrn
[l zoe(rs) [l poe ()

and from equations (10) and (13)

[ Dy ,nll L (o)
Ialreowy—o  [Alleos = 7
Since this inequality is satisfied for every n > 0, we have

Dy wllorayy 0
TR 9
Ihllzoe (mgy—0  ||P]| oo (ry)

as desired



4 Particular case: [ = u,, |, and application to the Robin
inverse problem

We study in this part the inverse problem (IP) of determining of the Robin parameter ¢;,, € D
by measuring the state u,, , on M. In this case the function f is assumed to be the trace on M
of a solution u,,,, of (RP):

(18) F = g m-

First, we establish an identifiability result in ®,4 improving the one established in [5]. Then we
prove positivity, monotonicity and a priori bound of the state derivative u;. By using complex
analysis techniques, we prove that the set S, is a finite whenever ¢ # ¢;,, which is the main idea
to prove the differentiability of the cost functional F.

4.1 Identifiability result in the set 4

Theorem 5 Let o, ¢ € Pyuq and assume that ugpny = ugn. Then @ = 2 a. e. onTs.

Proof: Let w = u, — uy. Then w satisfies the Cauchy problem:

Aw = 0 in Q,
9o — 0 on M,
w = 0 on M.

By using Holmgren’s uniqueness theorem we obtain w = 0 in (2, and therefore v, = u, on 2.
Using the Robin boundary condition we obtain (¢ — ) u, = 0 a. e. on I'y, and by Lemma 3
we have p = ¢ a. e. on I'. |

Theorem 6 The function @, is the unique global minimum of F. Moreover, if {f,} is a
sequence of perturbed data in L*(M) such that f, — f strongly in LY(M), and 1, € D such

that: / |wg, — fol =min [ |u, — fol, then:
M ¢€D Jm

Up — Qiny n L™ weak * .

Proof: ;From (18), i, is a global minimum for F satisfying: F(¢in,) = 0. Uniqueness of this
minimum is obtained by Theorem 5.
Let v € L*(M). According to Theorem 2 and uniqueness of the minimum ¢;,,,, the bounded real

sequence k, = 1, v has a unique accumulation point 6 = / Yinov then k, converge to § and
FQ FQ
consequently 1, — @in, in L™ weak . [

4.2 Positivity, monotonicity and a-priori bound of the state derivative

1
Uy

Theorem 7 For h € L>®(I's) the mapping ¢ +— u;(h) is locally Lipschitzian from ®.q equipped
with the L? norm to H'(Q).

Proof:



Let h € L>(Ty) and ¢, 1) € ®oq. The function Z = uy(h) — ul(h) satisfies:

1
®

/Q|VZ|2 + /F2<p|Z|2 = - /FQ(w — o)l (h)Z + /FQ(% —uy)h Z.

JFrom the coercivity of the bilinear form A(u,v) = / VuVov + / puv (see [4]) and the
Q Iy

continuity of the trace mapping, there exists two positive constants c, and 7 such that:

ol ZIiny < 1 = el lug(M sl ZlLswyy + T2 1Al oo llty — wollm @ | Z 1 o)
This implies
(19) coll Zlm) < &l = ollzwa lug ()@ + 721l mylluy — wlln @)

Where « denotes the norm of trace mapping from H'(f2) into L*(T'y). On the other hand we

e /Q|Vu%b(h)|2 +/ o |ug(h)|* = /FQ(SO — ) |uy(h)]? —/ uy huy (h),

FQ I12

and consequently

(e — ¥ = @llrawy) luy(Mllm@ < TllAlle @y luplm@-

Equation (19) gives:

1Z]| a1y <

Al ey |20 = oll2@ry) (luy — uplla@) + luplla @)
+ Nuy — vpllmi@) |

Co (cp — @?lY — ¢llrars))

for every ¢ € ®,4 satisfying || — ¢|[r2@r,) < %. By using Lemma 1, the map ¢ +— u}o(h) is

locally Lipschitzian. [ ]

Theorem 8 For ¢ € ®,4 and hy, hy € L>(I'y) with hy < hy, we have:

Proof:  Due to the linearity of h — wuj(h), it suffices to prove that uj(h) < 0 for every
h € L°(D,) with h > 0.

For every such h let us consider two cases:

First case: ¢ € CJ(I'y). Let h, be a sequence in CJ(T'y) satisfying:

(20) h,, — h strongly in L*(T'y), and h,, > 0.

For simplicity, we denote ul = u}a(hn). Using the Hopf maximum principle, we have two cases:

—

e ul is constant in OQ: Due to the Robin boundary conditions, the positivity of ¢, h, and

u,, this constant is necessarily positive.

e u! is not constant in Q: In this case, we can find z,, € 9Q such that:

10



1 1 Ouy,
M, = supu,(z) = u,(z,), and —"(x,) > 0.
€Q on
JFrom the positivity of u,, we obtain that z,, € I'y and M,, < 0. On the other hand, for every
p € &g and h € L°('y), we have:

|+ [ el = - / g uk(h).

By coercivity of the bilinear form A (see [4]) and continuity of the trace mapping from H!(Q)
into L?(T';), we obtain:
(21) Colluglmy < 7lRllrawy) lupll s

Then, the linear mapping h — u,(h) is continuous from L*(I'y) equipped with the L*(I'z) norm
into H'(Q) and hence uj,(h) < 0 by (20).
Second case: ¢ € $,4. Let h € L>*°(T'y) and ¢, be a sequence of Cg(FQ) satisfying:

(22) ¢on — @ strongly in L*(T;), and ¢, > 0.
;From the first case, we have u), (h) < 0 for every n € N, and consequently u,(h) < 0 by Theorem
7. |
Theorem 9 The following properties hold:

e Monotonicity: If ¢, 1 € ®uq satisfy ¢ < @, then uy(1) < ul(1).

e Positivity: u}(1)(z) <0 for every z € Q.

e A priori bound: Foreveryp € ®,q and h € L>(I'y), we have ‘u;(h)‘ < —HhHLoo(m)ui,(l).

Proof:
Monotonicity: For ¢, ¢ € ®,4 with ¢ < ¢, we can find two sequences ¢,, and v, € CJ(T'z)
such that:

¢on — @ strongly in L*(T), 1, — 1 strongly in L*(T'y) and 0 < ¥, < ¢,.

The function W,, = u!

L. (1) = uy, (1) is a solution to:

AW, =0 in €,
% =0 on 1—‘1,
% + oW, = (¥n — SOn)U%z,n + (UW — u%) on [I'.

;From the regularity of parameters ¢, and ,, the function W,, € C(Q) and by Lemma 2 and
Theorem 8 we obtain:

(23) (Yn — QOn)Uipn + (wy, — uyp,) > 0on s,

According to the Hopf maximum principle, we consider two cases:

e W, is constant in Q: From the Robin boundary conditions and equation (23), this constant
is necessarily positive.

e u! is not constant in Q: In this case, we can find y, € dQ such that:

11



my, = inf W,(x) = W,(y,), and 8VV"( ) < 0.
zeN 3n
Then, y, € I'; and
ow,,
on (yn) = _Son(yn)mn + (wn - @n)(yn)uqlpn(yn) + (uwn - uson)(yn) < 0.

;From (23) and the positivity of ¢,, we have: m,, > 0, and by continuity of the map: ¢ — ul(1)
from ®,, equipped with the L? norm to H*() (see theorem 8), we have u, > uy.

Positivity: Let ¢ € ®,5 and set v = ||¢|[zer,). From the monotonicity of the mapping
@+ uy(1), we have uj(1) < u}(1) and by Theorem 8, we have M = sup ui(l)(m) < 0.
zeQ

To prove M < 0, we use again the Hopf maximum principle and consider two cases:

e ul(1) is constant in Q: From the Robin boundary condition and the strict positivity of

u, (see Lemma 3), we have u}(1)(z) = M < 0.

e u}(1) not constant in : In this case, there exists y € I'y such that:

(24) ul(1)(y) = M and 8%7(11)@) > 0.

If M = 0, then by Robin’s boundary conditions, continuity of in a neighborhood of y and

dul (1)

(y) < 0. This is in contradiction with (24) and hence M < 0.
n

positivity of u, we have

A priori bound: Since — ||A||rer,) < h < ||h]|zeor,), Theorem 8, linearity of the map h +—

ul(h) and negativity of ul,(1), imply that |ul(h)| < —[hllLeyyus(1). ]

4.3 Differentiability of the function F

Referring to [4] we have the following lemma:

Lemma 4 The set S, = {x € M : u,(x) = f(x)} is a finite set for every ¢ € ®,q such that
¥ 3& Pinv-

Theorem 10 For ¢ € ®,5 we have

lim FW) = Flo) _ / ug (Y — p)sign(u, — f),
19 = @l — 0t 1V = Pllemy M
1/} S CI)GLd
where ul,(y — ) is the solution of (8) with h = v — @. Moreover, the function F is
differentiable in Int(P.q).
Proof:
Let us first fix a positive sense and denote by |b, ¢[ the arc M. For z €]b, ¢[ and s > 0 small
enough, we denote by s = = + s the unique point z; of |z, ¢[ such that |z — z4] = s. Moreover
ys = ¢ — s denote the unique point of |b, x[ such that |z — ys| = s.
By Lemma 4, there exist zg, 1, @2, ..., , € M such that S, = {x, z1,...., 7, }, and

g — b] < |z — b <|xg — 0] < ... < |xpoy — b < |2, — DI

12



We set
0 = inf{|x0 — b, |z, — ¢, inf |z; — xi+1|}.

0<i<n-—1

For £ €]0, ¢[ we denote

S = T — <i< —
(25) {b Ti_1 g, forl<i<mn+1and b ,

g =x; +¢ for0<i<nandc_ , = c

and further:

B the closed arc limited by bj and b7,

B; the closed arc limited by ¢;_; and b5, ; for 1 < i < n,

BE

n

41 the closed arc limited by ¢;, and ¢, |,

C; the closed arc limited by b5, and ¢ for 0 < i < n.

Figure 2: The arcs BZ and C:.

We hayve: »
(26) F@) — Fle) = > Bi + > _Cs
=0 1=0

where:
e N T A e ey T
Be cs
By the Theorem 3, we have:

e e = U0 = )+ o6 — ),
where:
% = @llpeoryy — 0 1Y = @llreor,)
¢ € (I)ad

This implies
Ci1 < [l = o) + ov = o).

13
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and by using Cauchy Schwartz inequality, we obtain:

lug (o = llezesy | oW = Dlliaer
+
1Y — @l Lo (ry) 1Y — @l Lo (ry)

1G5 ] < V2 ||t — @y

By (28), Theorem 3 and the continuity of the trace mapping from H*() into L*(M), there exist
a constant v > 0 depending only on ¢ such that:

(29) Z G| < v V2| — o[y
i=0
n+1
Let us study the second sum Z B;. From (8), the normal derivative of the harmonic function
i=0

ul (1) — ) belongs to L*(992) and hence uj(¢¥ — ¢) € W22(). Since  is a regular domain

in R?, the function u! (¢ — ) belongs to C(Q) by Sobolev’s embedding theorem. Let us denoted
! @ g y g

by M = sup }u;(l)(m)’ . We have u,(z) # f(x) for all € B; and therefore

r €N

wi = il Jug(o) - J@)] > 0.
inf m;
Denote by hy = O_Z#. To prove now that |B] — / sign{u, — f}u;(d} — )| < |o(¥ —
B:

©)|| L1 (ss) we consider two cases:

First case: u,(z) — f(z) > 0 forall x € B Let ¢ € ®44 be such that [|1) — ¢|[r~r,) €
J0, h§[. By Theorem 9 with h = ¢ — ¢, we obtain: u,(z) — f(z) + u,(¥ —¢)(z) > 0, and
consequently

&—L%w-w

= '/Bs}u¢—f+u;(¢ — @)+ o — )| = [up — f + uy(v — so)}‘-
Since)|a+ﬁ| —a) < |f] for all @ > 0 and 3 € R we have

Bﬁié@W—¢>s 6~ ).

lo
B

Second case: u,(r) — f(z) < 0 forall z e B;.
For every ¢ € ®qq such that [|¢) — ||y €]0, h§[we have: uy(z) — f(z) +ul (¥ —p)(z) < 0,
and thus

B+ [ v - o)

i

= /lgg}f_”w_u;(@b—@)_o(ﬁb—@)’—[f—u¢—u;(¢—gp)],

and
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By (26) and (29) we find

n+1
|f< E;/MW Pl - ¢)

This implies

SV%EW—¢MWg+APW—@N

swmw—n@W—wﬁ37wﬁw—ﬂmwg+ApW—wn

> [ signw, - el - o).

'ﬂw—fwwi/

M

We have

/ sign (u, — f) Ui;(w - 90)‘ < \/%(Hu;(w — S0)||L2(c§))- Denoting by 7; the norm

of the trace mapping from H'(Q) to L?*(M), there exist a constant n > 0 such that:

kwo—fwwiammmw—ﬁ@w) ] o /mesOD) o — 9l
F Oyt VB — )l

By (28) there exist h{ > 0 such that for every ¢ € ®,q satisfying 0 < ||¢p — ¢||ree(ry) < h we
have:

Jo(y) — 90)”1{1(9) < Ve

[V = @l —
Then, for 1) € ®,q such that || — @z, €10, inf{hj, hi}[, we find:

F@) —F(p) — [ry sign(ue — flul (@ — @)
| o) Sy siontne “ DW= o oz 4 ) ik s ez o 19 — @l

I = @ll oo (ry)
+ 11 /mes(M)],
and p -
lim ( () — (s@)) _ / ub(W — @)sign(u, — f).
W—SOHLOO(FQ) — 0 [ — SOHLOO(PQ) M
T;Z) € (I)ad
For ¢ € Int(®e4), and h € L=(T;), we have DFy(h) = [}, uy(h)sign(u, — f). The Cauchy

Schwartz inequality, continuity of the trace mappmg and Theorem 3, imply:

|DF,(h)| < miv/mes(M) Jubll i @), zooray) |7 Lo

Finally, F is differentiable in Int(®.q). n

Conclusion: Existence of an optimal control to the optimization problem (OP) and differen-
tiability properties of the functional F were established. In the case of no error on the data f
which is the case of the Robin inverse problem, the characterization of the set S, together with
the positivity, monotonicity and a priori bound of the state derivative uslo with respect to the
parameter ¢ allow to prove the differentiability of the functional F.

The functional F and its differential expression permit to define a Newton-type method in order
to solve numerically the Robin inverse problem. This will be the next step of our work.
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