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Abstract

In this paper, denoising of smooth (H 1
0 -regular) images is considered. The purpose of the paper is

basically twofold. First, to compare the denoising methods based on L1- and L2-fitting. Second, to
analyze and realize an active-set method for solving the non-smooth optimization problem arising
from the former approach. More precisely, we formulate the algorithm, proof its convergence, and give
an efficient numerical realization. Several numerical experiments are presented, where the convergence
of the proposed active-set algorithm is studied and the denoising properties of the methods based on

L1- and L2-fitting are compared. Also a heuristic method for determining the regularization parameter

is presented and tested.

AMS Subject Classifications: 68U10, 90C30.

Keywords: Denoising, fitting techniques, non-smooth fitting, active-set methods.

1. Introduction

The basic model in image denoising is that a noisy image, denoted by z; results
from a degradation of the form

z ¼ z� þ g; ð1Þ

where z� is the true image and g 2Nð0; rÞ represents normally distributed
random noise [3,8]. In accordance with (1), the usual approach to restore
z� from z is based on minimizing a regularizing term with noise constraints
[26]:

min
u

RðuÞ; ð2Þ

Z
X

z� udx ¼
Z

X
gdx ¼ 0;

Z
X
ju� zj2dx ¼ r2: ð3Þ

The formulation is based on assumption that the noise g is Gaussian (normally
distributed) with zero mean. The second constraint corresponds to the assumption
that standard deviation of the noise is r: In real applications, however, the
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standard deviation of noise is usually not known. In that case, the denoising
problem can be considered in the unconstrained form as

min
u

Z
X
ju� zj2dxþ bRðuÞ; ð4Þ

where b denotes a regularization parameter, the value of which actually corre-
sponds to the reciprocal of the Lagrange multiplier for the second constraint in (3)
[2]. In the case that r is not known, formulation (4) allows us to use different
techniques for determining the value of the regularization parameter. In this paper,
a heuristic method for this purpose is presented and tested.

The approach in (4) relies on strong (intrinsic) assumptions on the distribution of
g: there are no heavy tails and the distribution is symmetric. If either of these
assumptions fails, then the use of L2-fitting is not an optimal choice. On the other
hand, for the so-called robust formulation based on L1-fitting

R
X ju� zjdx; it has

been shown that the corresponding statistics can tolerate up to 50 percent false
observations and other inconsistencies [22]. Hence, this technique relaxes the
underlying requirements for the L2-case. Especially, the L1-formulation suits
significantly better for denoising data containing so-called outliers, i.e., obser-
vations containing large measurement errors [4]. For this purpose, the
L2-formulation needs some extra preprocessing stage utilizing robust procedures
to locate the outliers [25].

The discussion and a numerical comparison of the robustness between the discrete
l1 and l2 norms are given in [4], [24]. Moreover, in [11], the connection between
robust statistics and different fitting techniques was discussed. In [21], the
L1-fitting was applied for processing outliers. It was shown that if a small value of
the regularization parameter is chosen, then we are able to detect the outliers,
while the remaining data stay essentially untouched. On the other hand, if the aim
is to smooth outliers, then due to a larger value of the regularization parameter
the data will necessarily be smoothed also beyond the positions of the outliers.

In this paper, we consider image denoising problems with smooth regularization.
These formulations are intended for removing noise from smooth images, i.e.,
images not containing discontinuities (jumps, edges). For images containing sharp
edges, one needs to apply a nonsmooth regularization, e.g., BV seminorm [2], [26].
In [17], L1-fitting is combined with BV regularization.

The original image can, for instance, be obtained as a solution of some second
order PDE. Especially, preprocessing for the equation error identification method
as described in [6], [10] is one concrete application of the methodology developed
here. Further examples of data containing outliers is given by electroencephalo-
graphic (EEG) recordings of the electrical activity of the brain, which may contain
instrumental or biological artifacts (e.g., [20]). Another interesting example in-
volves slow-combustion (smouldering) fronts propagating in burning sheets of
paper [19]. The process can be modelled using the Kardar-Parisi-Zhang (KPZ)

equation @th ¼ cþ mDhþ k
2 ðrhÞ2 þ g; where h � hðx; tÞ is the height of the
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interface, c its zero-slope velocity, and g denotes the effective noise [9]. In order to
characterize the burning material using the model parameters c; m; and k; the
propagation of the emerging one-dimensional front was recorded with a CCD-
camera system. Outliers in the resulting image were caused by, e.g., ash particles
detached from the front.

The basic difficulty concerning the image denoising problem with L1-fitting is its
nondifferentiability in the classical sense. This means that common gradient-based
solution methods, such as the conjugate gradient method, can not be applied for
solving this problem. For this purpose, we analyze and realize an active-set
method. This work continues our investigations on active-set methods based on
the augmented Lagrangian regularization for nonsmooth optimization problems
that have previously been conducted in [7], [12], [14], [15].

The contents of the paper are as follows: In Sect. 2, we introduce the actual
optimization problems considered, the corresponding optimality conditions, and
the used notations. In Sect. 3, a precise description of the active-set algorithm for
solving the L1-problem is given and its convergence is studied. Finally, in Sect. 4,
numerical experiments with the proposed methods are presented. In the numerical
experiments, the convergence of the proposed active-set algorithm is studied and

the denoising properties of the methods based on L1- and L2-fitting are compared.
Also a heuristic method for determining the regularization parameter is presented
and tested. Finally, an example of denoising lens-paper burn data is shortly
considered.

2. Notations and Basic Formulations

2.1. Continuous Problems

We consider the image denoising problem with L1-fitting and smooth regulari-
zation

min
u2H1

0
ðXÞ

Z
X

b
2
jruj2 þ ju� zj

� �
dx ð5Þ

for the given function z 2 L1ðXÞ and domain X � Rd : In this paper, we only
consider d ¼ 2; although the proposed techniques are not restricted to this par-
ticular case. Problem (5) has a unique solution u� 2 H 1

0 ðXÞ for every b > 0: Note
that the cost functional in (5) is nondifferentiable in the classical sense. In order to
overcome this difficulty, we replace the original cost functional with its smoother
counterpart, the construction of which is based on the use of Lagrange smoothing
techniques for convex, nonsmooth optimization problems [1], [5].

We see that problem (5) is equivalent to

min
u2H 1

0
ðXÞ

max
k2C

Z
X

b
2
jruj2 þ kðu� zÞ

� �
dx ¼ min

u2H1
0
ðXÞ

max
k2C

lðu; kÞ; ð6Þ
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where l : H 1
0 ðXÞ � L2ðXÞ ! R is the Lagrange-functional and the set C is defined

as

C :¼ k 2 L2ðXÞ : jkðxÞj � 1 a.e. x 2 X
� �

:

The equivalence of the two formulations results from the following identity

max
k2C

Z
X

kðu� zÞdx ¼
Z

X
ju� zjdx:

Hence, k represents the Lagrange smoothing of the subdifferential signðu� zÞ [5].

The regularized optimality conditions for the solution u� of (6) read as

�bDu� þ k� ¼ 0; in X;
k�ðxÞ ¼ k�ðxÞþcðu��zÞðxÞ

maxf1;jk�ðxÞþcðu��zÞðxÞjg ; a.e. x 2 X; for each c > 0:

�
ð7Þ

The second condition realizing the regularized complementarity condition is
equivalent to the actual definition of the subdifferential

k�ðxÞ ¼ ðu
� � zÞðxÞ

jðu� � zÞðxÞj ; in I�ðxÞ ¼ x 2 Xjðu� � zÞðxÞ 6¼ 0f g;

jk�ðxÞj � 1; in J�ðxÞ ¼ x 2 Xjðu� � zÞðxÞ ¼ 0f g: ð8Þ

Here, we notice that the non-smooth components of the original cost functional
belong to the second subdomain J�ðxÞ of X:

The corresponding image denoising problem with quadratic L2-fitting reads as

min
u2H1

0
ðXÞ

Z
X

b
2
jruj2 þ ju� zj2

� �
dx ð9Þ

with the linear optimality condition

�bD~u� þ 2ð~u� � zÞ ¼ 0 ð10Þ

for the unique solution ~u�: By comparing (10) to (7) and (8), one notices that for
the L2-formulation the distance between ~u� and z plays an important role in the
optimality condition (10), whereas only the (regularized) sign-function for u� � z
appears in (7). This illustrates the relative insensitivity of the L1-formulation
towards false observations, compared to the L2-formulation.

2.2. Discretization

In what follows, we denote by Matn the general class of square matrices in Rn;n

and let Diagn be the subclass of Matn consisting of diagonal matrices. Moreover,
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we let N ¼ f1; 2; . . . ; ng denote the ordered set of indices. The usual Euclidean

inner product is denoted by h�; �i and the corresponding norm by k � k ¼
ffiffiffiffiffiffiffiffiffi
h�; �i

p
:

For a given vector v 2 Rn and matrix M 2Matn; we use the notation jvj1;M forPN
i¼1 jMvji:

In practise, with real digital images, it is reasonable to assume that we observe
the function z in some points (pixels), which define a rectangular domain

X ¼ ðx0; x1Þ � ðy0; y1Þ � R2: Hence, we assume further that the domain X is
divided into a rectangularly triangulated grid, where the nodal points coincide
with the original observation points. Let fuig denote the piecewise linear finite
element basis on this grid. Furthermore, let K 2Matn be the usual finite

element stiffness matrix Kij ¼
R

Xrui � rujdx and M 2 Diagn the diagonal,

so–called lumped counterpart of the normal mass matrix
R

X uiujdx; which

is obtained by using a trapezoidal numerical integration rule on the given
mesh.

The discrete counterpart of the continuous formulation is obtained by replacing u
with

Pn
i¼1 uiui and k with

Pn
i¼1 kiui: Therefore, from now on, we denote by

u 2 Rn and k 2 Rn the vectors for the unknown coefficients (coinciding with
the nodal values) of the above expansions and by z 2 Rn the nodal values of
function z:

By inserting the discretized functions into (5), the cost functional can be written in
the form

JðuÞ ¼ b
2

uT Kuþ ju� zj1;M : ð11Þ

Moreover, the discrete Lagrange-functional associated with (6) reads as

Lðu; kÞ ¼ b
2

uT Kuþ kT Mðu� zÞ: ð12Þ

The regularized optimality conditions for (12) are given by

bKu� þMk� ¼ 0;

k�i ¼
k�iþcðu��zÞi

maxf1;jk�iþcðu��zÞijg
; for all i 2 N and c > 0:

(
ð13Þ

As in the continuous case, the second condition in (13) is equivalent to

k�i ¼
ðu� � zÞi
jðu� � zÞij

; in I� ¼
n

i 2 N jðu� � zÞi 6¼ 0
o
;

jk�j j � 1; in J � ¼ j 2 N jðu� � zÞj ¼ 0
n o

: ð14Þ

Finally, we remind that the Lagrange multiplier k� is unique, because it can be
uniquely solved from the first equation in (13) with the unique u�:
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The discrete cost functional corresponding to the L2-formulation (9) is given as

�JðuÞ ¼ b
2

uT Kuþ ðu� zÞT Mðu� zÞ

with the optimality condition

bK~u� þ 2Mð~u� � zÞ ¼ 0:

For later use, we define

PSv ¼ vi; for i 2 S;
0; for i =2 S;

�

to be the projection onto the given index subset S � N : The corresponding
restriction, containing only the values on S is denoted by RS : In addition, we
denote for a vector v 2 Rn; matrix A 2Matn; and index subsets S � N and T � N ;
vS ¼ PSv; AS ¼ PSA; and AST ¼ PSAPT :

3. Numerical Realization: Algorithms and Convergence

Next, we propose and analyze an active-set method for minimizing the discretized,
nonsmooth cost functional (11). The method is based on an outer iteration, where
an active set representing the current knowledge of the nonsmooth components is
determined. Then, during an inner iteration, a constrained, reduced optimization
problem is solved with sufficient precision [7], [12], [14], [15].

Algorithm 1: Basic Active-Set Method

Step 0o Initialize ðu0; k0Þ 2 Rn � Rn: Choose c > 0 and set k ¼ 0:

Step 1o Determine

J ¼ Jk ¼ fj 2 N : jkk
j þ cðuk � zÞjj � 1g (active);

I ¼ Ik ¼ N n Jk (inactive): ð15Þ

If k > 1 and Jk ¼ Jk�1; then STOP; the solution is uk:

Step 2o Let ðukþ1; kkþ1Þ be the solution of

min
u

JIðuÞ ¼
b
2

uT Kuþ ju� zj1;MI
subj. to uj ¼ zj; for all j 2 Jk; ð16Þ

as described in Lemma 3.1.

Step 3o Set k ¼ k þ 1 and go to Step 1o:

Let us first consider the solvability of Step 2o: We recall that actually we have
JIðuÞ ¼ JðuÞ for all u satisfying the constraint PJ ðu� zÞ ¼ 0:
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Lemma 3.1: There exists a unique solution ð�u; �kÞ for problem (16), which satisfies
the optimality conditions

bK�uþM�k ¼ 0;
j�kij � 1 and �kið�u� zÞi ¼ jð�u� zÞij; for all i 2 I ;
�uj ¼ zj; for all j 2 J :

�
ð17Þ

Proof: Unique solvability of (16) is clear. The basic optimality condition for the
solution �u reads as

hbK�u; v� �ui þ jv� zj1;MI
� j�u� zj1;MI

� 0; for all PJ ðv� zÞ ¼ 0: ð18Þ

This can be expressed as an equality by introducing Lagrange multipliers for the
nonsmooth part of the cost functional and for the constraint. Because the two
index subsets I and J are disjoint, these multipliers together form one vector for
the whole Lagrangian variable k: Then, the corresponding Lagrangian for (16) is
of the form

LIðu; kÞ ¼
b
2

uT Kuþ kT MIðu� zÞ þ kT PJ ðu� zÞ; ð19Þ

where k on I coincides with the (regularized) subdifferential and on J with the
multiplier for the equality constraint. The saddle-point conditions for the solution
of (19) are given by

bK�uþMPI
�kþ PJ

~k ¼ 0;

j�kij � 1 and �kið�u� zÞi ¼ jð�u� zÞij; for all i 2 I ;

PJ ð�u� zÞ ¼ 0 on J :

8><
>: ð20Þ

By choosing �kj ¼ M�1j
~kj; for all j 2 J ; we have the optimality condition in the

required form. Finally, �k is unique, because it can be uniquely solved from

bK�uþM�k ¼ 0:

3.1. Convergence Analysis

Next, we prove the convergence of the basic algorithm using a technique similar
to the one in [7].

The first step towards a convergence analysis of any active-set method is to study
the behavior of the two index sets Jk and Ik of the algorithm [12], [14], [15]. For
this purpose, we introduce the following disjoint decomposition:

Jk ¼ fj 2 N : jkk
j þ cðuk � zÞjj � 1g ¼ Jk

1 [ Jk
2 ;

where

Jk
1 ¼ fj 2 Jk : jkkþ1

j j � 1g; Jk
2 ¼ fj 2 Jk : jkkþ1

j j > 1g:
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Similarly,

Ik ¼ fi 2 N : jkk
i þ cðuk � zÞij > 1g ¼ Ik

1 [ Ik
2 ;

where

Ik
1 ¼ fi 2 Ik : ðukþ1 � zÞi 6¼ 0g; Ik

2 ¼ fi 2 Ik : ðukþ1 � zÞi ¼ 0g:

It then follows directly from the definition of Step 1o that we have, for all c > 0;
the next sets as

Jkþ1 ¼ Jk
1 [ Ik

2 ; Ikþ1 ¼ Ik
1 [ Jk

2 : ð21Þ

From (21) and Lemma 3.1, one can immediately deduce the following proposi-
tion.

Proposition 3.1: Let ðukþ1; kkþ1Þ; for k � 1; be the solution obtained at step 2o of
Algorithm 1.

(i) If Jkþ1 ¼ Jk; then the pair ðukþ1; kkþ1Þ satisfies the optimality conditions (13),
(14). Especially, ukþ1 ¼ u�; i.e., the unique minimizer of (11).

(ii) uk
j ¼ zj for all j 2 Jk; i.e., PJ ðuk � zÞ ¼ 0 for J ¼ Jk:

For the convergence proof, we also need the following lemma.

Lemma 3.2: If ukþ1 6¼ uk; then Jðukþ1Þ < JðukÞ; for all k � 1:

Proof: For convenience, we use along this proof the notations J ¼ Jk and I ¼ Ik:
The optimality condition (18) in the proof of Lemma 3.1 and the fact that also
PJ ðuk � zÞ ¼ 0 give

hbKukþ1; uk � ukþ1i þ juk � zj1;MI
� jukþ1 � zj1;MI

� 0: ð22Þ

Moreover, since both uk and ukþ1 coincide with z on J ; we have

JðukÞ �Jðukþ1Þ ¼ b
2

uk;T Kuk þ juk � zj1;M �
b
2

ukþ1;T Kukþ1 � jukþ1 � zj1;M

¼ b
2

uk;T Kuk � b
2

ukþ1;T Kukþ1 � hbKukþ1; uk � ukþ1i
þ hbKukþ1; uk � ukþ1i þ juk � zj1;MI

� jukþ1 � zj1;MI

� d
2
kuk � ukþ1k2 > 0; if ukþ1 6¼ uk; ð23Þ

where d ¼ bmin rðKÞ > 0 for rðKÞ denoting the spectrum of the SPD matrix K:

h

Remark 3.1: The proof of Lemma 3.2 illustrates the effect of the ‘‘coercivity
parameter’’ b to the overall behavior of the basic Algorithm 1.
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Now, we are ready to state the actual convergence result.

Theorem 3.1: Algorithm 1 is convergent.

Proof: First of all, from Proposition 3.1, we know that if Jkþ1 ¼ Jk; for some

k � 1; then the pair ðukþ1; kkþ1Þ satisfies the optimality conditions (13), (14).

Especially, ukþ1 ¼ u�; i.e., the unique minimizer of (11).

Assume that Jkþ1 6¼ Jk: Then, we also have ukþ1 6¼ uk (due to (15) and the fact
that �u defines �k uniquely in Lemma 3.1.), and Lemma 3.2 shows that
Jðukþ1Þ < JðukÞ: Hence, JðuÞ is decreasing as long as Jkþ1 6¼ Jk: Because there
exists only a finite number of possible active index sets Jk, we must have Jkþ1 ¼ Jk

after a finite number of steps. (

3.2. Derivation of Implemented Algorithm

In the actual implementation, Step 2o of Algorithm 1 is replaced with an inner
iteration consisting of a Newton-like search direction followed by a line search.
We derive and describe these procedures next.

3.2.1. Description and Analysis of the Inner Iteration

The optimality condition (17) in Lemma 3.1 can be decomposed into block form
with respect to two index subsets I and J as follows:

b
KII KIJ

KJI KJJ

� �
uI

uJ

� �
þ MI 0

0 MJ

� �
kI

kJ

� �
¼ 0

0

� �
: ð24Þ

In the actual realization of Step 2o; we use the decomposition (24) to obtain a
Newton-like step for (17) taking into account the given constraint PJ ðu� zÞ ¼ 0
and the definition of the Lagrange multiplier k on I :

Algorithm 2: Inner Iteration

Step 2.1 Initialize ~u0 ¼ uk
i ; i 2 I ;

zj; j 2 J : For l ¼ 1; . . . ; Lmax, do

�

(i) Set ~uj ¼ zj for all j 2 J and ~kl
i ¼ ð~ul�1 � zÞi=jð~ul�1 � zÞij for all i 2 I such

that ~kl
i ¼ 0 for ~ul�1

i ¼ zi:

(ii) Solve
KII~uI ¼ �

1

b
MI

~kl
I þ KIJ ~uJ

� �
: ð25Þ

(iii) Define ~dl�1 ¼ ~u� ~ul�1 and determine ~ul ¼ ~ul�1 þ t~dl�1; where t is obtained
using a line search.

(iv) If stopping criterion for the inner iteration is satisfied, then STOP.
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Step 2.2 Take ukþ1 ¼ ~ul and kkþ1
I ¼ ~kl

I with the final l in Step 2.1.

Update kkþ1
j ¼ �bðKukþ1Þj=Mj for all j 2 J :

Remark 3.2:

(i) Due to the projection of uk in the initialization of Step 2.1, ~u0 may not

coincide with uk so that the pairs ðJð~u0Þ; @Jð~u0ÞÞ and ðJðukÞ; @JðukÞÞ are
not necessarily the same.

(ii) Because of the explicit update of kI in Step 2.1 ðiÞ and the line search in Step

2.1 ðiiiÞ; ~kl
I is not necessarily the sign of ð~ul � zÞI . This implies that the

behavior of the index subsets as stated in (21) may not be valid in the same

form anymore.

(iii) After Step 2.2 of Algorithm 2, the pair ðukþ1
J ; kkþ1

J Þ satisfies the linear part of
the optimality condition (17) in Lemma 3.1.

From Remark 3.2, we conclude that the proposed active-set method is semi-
implicit in the sense that the Lagrange-multiplier does not satisfy (17) on I unless
the inner iteration in Algorithm 2 is solved exactly. However, the given form of
Algorithm 2 can be justified as follows:

Theorem 3.2: If I 6¼ ;; then ~dl�1 in Algorithm 2 gives a descent direction for
JIð~ul�1Þ:

Proof: For simplicity, we write d ¼ ~dl�1 and u ¼ ~ul�1; for l � 1: Assume first
that the reduced optimization problem (16) is smooth, i.e., ðu� zÞi 6¼ 0 for all
i 2 I : Then, the gradient g ¼ rJIðuÞ is well-defined and single-valued. Let RI g
denote the restriction of the gradient on I : Then a direct calculation shows that d
satisfies

bRI KRI d ¼ �RI g: ð26Þ

Due to Step 2.1 ðiiiÞ RJ d ¼ 0; so that

rJIðuÞ½ 	T d ¼ � 1

b
ðRI gÞT ½RI KRI 	�1RI g < 0; ð27Þ

because RI KRI is positive definite and I 6¼ ;: Thus, d gives a descent direction for
JIðuÞ ¼ JIð~ul�1Þ:

Assume next that there exists at least one index i 2 I for which ðu� zÞi ¼ 0; so that
problem (16) becomes non-smooth. Let us, instead of choosing ki ¼ 0 for ui ¼ zi at
Step 2.1 ðiÞ; choose an arbitrary subgradient n 2 @JIðuÞ such that jkij � 1 for
ui ¼ zi: Then, exactly as above, a direct calculation shows that d satisfies

bRI KRI d ¼ �RIn:

Moreover, due to the same arguments as above, we have

nT d ¼ � 1

b
ðRInÞT ½RI KRI 	�1RIn < 0:
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Since this holds for any subgradient n 2 @JIðuÞ; d gives a descent direction for
JIðuÞ ¼ JIð~ul�1Þ [18]. u

Remark 3.3: Notice that the proof of Theorem 3.2 shows that during the inner
iterations a descent direction is always obtained assuming that system (25) is
solved exactly. Hence, the reduced optimization problem in Step 2o of the basic
Algorithm 1 can be solved exactly with a proper line search so that then (21) and
Theorem 3.1 are valid. In particular, in this case uk already coincides with z on J :
In practise, the linear system (25) is solved iteratively using the method described
in Sect. 3.2.2.

Next, we describe the line search. For this purpose, we use a combination of
quadratic interpolation and the Armijo rule [1]:

Algorithm 3: Line Search

ðiÞ Fix scalars s > 0; c 2 ð0; 1Þ; and r 2 ð0; 12Þ: Choose a minimal step length t

and a termination criterion e > 0: Let u be the current solution, g 2 @JðuÞ
the corresponding subgradient (defined here by bKuþMk for
ki ¼ signððu� zÞiÞ), and d the given search direction.

ðiiÞ If dT g > 0; then stop; d is not a descent direction. If dT g > �e; then skip the
line search and return the step length and next solution as ðt; vÞ ¼ ð0; uÞ:

ðiiiÞ Take t ¼ 1 and v ¼ uþ d: If v satisfies the Wolfe condition

JðuÞ �JðvÞ � �rtsgT d; ð28Þ
then return the step length and next solution ðt; vÞ:

ðivÞ Search t using quadratic interpolation withJðuÞ; dT g andJðvÞ: If ðt; uþ tdÞ
satisfy the Wolfe condition, return them.

ðvÞ Armijo rule: Search t ¼ cmk s, wheremk is the first nonnegative integer forwhich
theWolfe condition is satisfied. If t � t; then return ðt; uþ tdÞ; else return ð0; uÞ:

Finally, we have chosen the following initialization and stopping criterion for the
inner iteration:

Initialization: Choose u0 ¼ z and solve k0 from the optimality system
bKu0 þMk0 ¼ 0:

Termination of inner iteration: If the line search returns t ¼ 0 or l ¼ Lmax or the
relative cost function error is ‘‘small enough’’, i.e.,

rJ ¼
Jð~ulÞ �Jð~ul�1Þ
maxfe;Jð~ul�1Þg � e: ð29Þ

3.2.2. Solution of Linear System (25)

A crucial step in the active-set algorithm is the solution of the reduced linear
system in Step 2.1 ðiiÞ of Algorithm 2:
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ðKuÞi ¼ fi for i 2 I ; uj ¼ zj for j 2 J ; ð30Þ

which must be solved once for every inner iteration. The solution of the linear
system (30) in the present case is especially difficult, because the geometry arising
from the index subset I is arbitrary, i.e., it has no regularity. Fortunately, in [16],
we developed and thoroughly tested an efficient multigrid method suitable for
such nonregular (stochastic) geometries. Being a multilevel method with restric-
tion and prolongation operators our current implementation is suitable for mesh
sizes of the form h ¼ 2� �m; for 1 � �m � 10; in 2D.

Hence, we solve the reduced linear system (30) iteratively by using a multigrid
preconditioned conjugate gradient (CG) method with the termination criterion

max
1�i�N

jðf � KuÞij � e: ð31Þ

Due to the inexact solving of the linear system we further modify the update
formula of ki in Algorithm 2. Namely, we replace the sign-function with the
piecewise linear approximation

ki ¼
ðu� zÞi

maxfe; jðu� zÞijg
; for all i 2 I : ð32Þ

Finally, we note that in Algorithm 3, (31), and (32), we use the same
parameter e:

4. Numerical Experiments

In this section, we present the results of numerical experiments that were com-
puted using the proposed algorithms. The general purposes of the experiments
were to study the convergence of the algorithm with the proposed choice of free
parameters, compare the restoration properties between L1- and L2-formulations,
and propose and test a heuristic method for determining the regularization
parameter b in (11).

All experiments were performed on an HP9000/J280 workstation (180 MHz
PA8000 CPU) and the algorithms were implemented with Fortran-77. The finite
element mesh sizes were taken as h ¼ 2� �m for an integer �m: The number of dis-
cretization points for the test problems is given by n ¼ n2

1 for n1 ¼ h�1 � 1: This
means that the total number of unknowns in our experiments vary from 3 969 for
�m ¼ 6 to 1 046 529 for �m ¼ 10:

In the presented experiments, the following choices were made for the free param-
eters: c ¼ 10; Lmax ¼ 6; t ¼ 10�4; and s ¼ 1:0; c ¼ 0:5; and r ¼ 0:25: Naturally,
some trial and error tests were carried out for obtaining these values, especially for
Lmax and c:The active-set algorithm seemed tobequite insensitivewith respect to the
value of c around the chosen value.Moreover, the values of t; s; andr are supposed
to be near to the usual ones suggested on other occasions (cf. [1]).
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4.1. Implemented Algorithms

First, we recall a compact presentation of the actual active-set algorithm as de-
rived in Sect. 3.2.

Algorithm 4: Implemented Active-Set Method

Step 0o: Choose c > 0 and e > 0; initialize u0 ¼ z and k0 according to
bKu0 þMk0 ¼ 0: Set k ¼ 0:

Step 1o: Determine the active set J ¼ Jk ¼ fj 2 N : jkk
j þ cðuk � zÞjj � 1g and

set I ¼ Ik ¼ N n Jk:

Step 2o: Project uk ¼ z on J and initialize ~u0 ¼ uk: For l ¼ 1; . . . ; Lmax; do

ðiÞ Set ~kl ¼ ð~ul�1 � zÞ=maxfe; ~ul�1 � zg on I :

ðiiÞ Set ~uJ ¼ zJ and solve ~uI from KII ~uI ¼ � 1
b MI

~kl
I þ KIJ ~uJ

	 

using the meth-

odology described in Sect. 3.2.2.

ðiiiÞ Define ~dl�1 ¼ ~u� ~ul�1 and update ~ul ¼ ~ul�1 þ t~dl�1; where t is determined
using Algorithm 3.

ðivÞ If the termination of inner iteration -conditions as described in Sect. 3.2.1. are
valid, then terminate Step 2o:

Step 3o:

ðiÞ If Step 2o was terminated with l ¼ 1 and t ¼ 0; i.e. no decrease of the cost
functional during the inner iteration was obtained, then stop the algorithm.
The solution is uk:

ðiiÞ Otherwise, take ukþ1 ¼ ~ul; kkþ1
I ¼ ~kl

I with the final l in Step 2o; and update
kkþ1

j ¼ �bðKukþ1Þj=Mj for all j 2 J : Set k ¼ k þ 1 and go to Step 1o:

Notice that the stopping criterion above for the outer iteration yields Jkþ1 ¼ Jk

similarly to Algorithm 1.

As a reference method for solving the discrete nonsmooth optimization problem
(11), we use the Uzawa method which is also based on the regularized optimality
conditions in (13).

Algorithm 5: Uzawa Method

Step 0o: Initialize k ¼ 0; ðu0; k0Þ ¼ ðz; 0Þ; and choose a ‘‘small enough’’ c > 0:

Step 1o: Solve ukþ1 from

bKukþ1 ¼ �Mkk:

Step 2o: If jukþ1 � ukj1 � e; then STOP; the solution is ukþ1:

Step 3o: Update
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kkþ1
i ¼ kkþ1

i þ cðukþ1 � zÞi
maxf1; jkkþ1

i þ cðukþ1 � zÞijg
; for all i 2 N ;

set k ¼ k þ 1; and go to Step 1o:

In Step 1o; we apply a FFT-based solver for inverting the discrete Laplacian.

4.2. Analytic Example

We use the following basic example for testing the algorithms and their resto-
ration properties.

Example 4.1: Let X ¼ ð0; 1Þ2 be the unit square in R2: Take the true image to be
the pointwise values on the given mesh of z� ¼ z1z2 for

z1ðx; yÞ ¼ sinð2pxÞ sinð2pyÞ

and

z2ðx; yÞ ¼
sinðpyÞ; for x � 1

2,

sinðpyÞ þ ðx� 1
2Þ; for 1

2 < x � 1 .

�

Notice that z� 2 H1ðXÞ (cf. [23]).

The noisy image z is generated from z� by adding two types of noise: outliers and
normally distributed (white) noise. Let O � N be a subset of the whole index set N
that will contain the indices for outliers. We define the locations of outliers using
the following procedure:

(1) Choose the desired percentage pl of linewise outliers. Set to O L-shaped and
W-shaped sets of indices (that can overlap each other) in random locations
such that cardðOÞ ’ pl

100 N (up to the nearest integer), where cardð�Þ denotes
the cardinality (number of points) of an index subset.

(2) Choose the desired amount ns of ball-shaped (domainwise) outliers for
which each one occupies approximately 0.5 percent of cardðNÞ (up to the
nearest integer). Add ns index subsets defining a ball with centre at random
location into O such that these balls do not overlap with the previous
linewise outliers.

(3) Choose the desired percentage pp of pointwise outliers. Add
pp

100 N number of

indices (up to the nearest integer) at random locations into O such that they
do not overlap with the previous outliers.

The resulting pattern of outliers is illustrated in Fig. 1 (right). Here, all random
locations are generated using the NAG-routine G05DYF. Altogether, if we
choose pl ¼ ns ¼ pp ¼ 1; then we have about 2.5 percent of all pixels in the image
occupied by the ourliers.
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Finally, the noisy image z is formed from z� by taking

zi ¼ z�i þ OiUi þ ð1� OiÞNi;

whereU denotes the pseudo-random uniform distribution over the interval ½�2; 2	
(NAG-routine G05DAF) and N the pseudo-random normal distribution with
mean 0 and standard deviation r (NAG-routine G05DDF). The obtained noisy
image z is illustrated in Fig. 1 (left).

4.3. Numerical Results

4.3.1. Convergence Studies

In Tables 1–2, we compare the convergence of the Uzawa method and the active-
set method (ASM). In the tables, ‘‘Its.’’ denotes the total number of Uzawa
iterations and ‘‘CPU’’ contains the elapsed CPU time. Moreover, ‘‘AS-Its.’’ in-
cludes the number of active-set (outer) iterations, ‘‘Inner-Its.’’ the total number of
inner iterations according to Algorithm 2, ‘‘PCG-Its.’’ tells the total number
of preconditioned CG-iterations, and ‘‘Fun.Evals.’’ contains the total number of
function evaluations in the line search Algorithm 3. CPU times in Tables 1–2 are
further illustrated in Fig. 3.

In these experiments, we have chosen r ¼ 0:1 and e ¼ 10�7:Notice that due to the
fixed termination criterion, the accuracy of the final cost functional Jðu�Þ is
decreasing along the mesh size (as suggested by the number of iterations taken by
the algorithms).

We draw the following conclusions from Tables 1–2:

(i) ASM was always convergent with the proposed choices of free parameters.
This was also true for the examples in Sect. 4.3.2.

Fig. 1. Noise pattern with pl ¼ ns ¼ pp ¼ 1 and r ¼ 0:1 : noisy image z for �m ¼ 6 (left), locations of
outliers for �m ¼ 7 (right)

Denoising of Smooth Images Using L1-Fitting 367



(ii) ASM was always significantly faster than Uzawa, although with a proper
choice of c; which depends on both the size and structure (here form of
noise) of the problem, the run time of Uzawa could be substantially de-
creased. For Uzawa, the larger b is the larger c can be used, so that the
improvement of coercivity of the original optimization problem can decrease
the run time of suitably designed Uzawa method. For ASM, there seems to
be no direct connection between the coercivity of the problem and the
efficiency of the algorithm (cf. Table 2) and Fig. 3 shows a linear growth in
CPU time with respect to the number of unknowns.

(iii) Concerning the convergence of the active-set method we can comment that
without the projection uk ¼ z on J in the initialization of the inner iterations

Table 2. Uzawa (c optimal, i.e., largest possible yielding fastest convergence; sought by hand) and
ASM for pl ¼ ns ¼ pp ¼ 1

�m=b 6=10�4 7=5�10�4 8=10�3 9=5�10�3 10=10�2

UZAWA Jðu�Þ 2:53�10�2 8:86�10�2 10:64�10�2 13:80�10�2
c 3�10�3 2�10�2 4�10�2 2�10�1
Its. 7 219 10 799 15 436 7 303
CPU 26.8 157.7 962.7 2 463.9

ASM Jðu�Þ 2:53�10�2 8:86�10�2 10:64�10�2 13:80�10�2 16:99�10�2
AS-Its. 10 42 18 9 9
Inner-Its. 48 165 59 31 34
PCG-Its. 361 1 424 625 342 396
Fun.Evals. 372 1 367 353 88 80

CPU 0.6 25.2 58.1 146.3 684.2

Table 1. Uzawa (c ¼ 0:01) and ASM for b ¼ 5�10�3; and pl ¼ ns ¼ pp ¼ 1

�m 6 7 8 9 10

UZAWA Jðu�Þ 12:65�10�2 13:56�10�2 13:73�10�2 13:80�10�2
Its. 27 689 36 402 31 025 21 261
CPU 103.9 536.3 2 036.4 7 158.5

ASM Jðu�Þ 12:65�10�2 13:56�10�2 13:73�10�2 13:80�10�2 13:82�10�2
AS-Its. 23 18 13 9 7
Inner-Its. 84 56 37 31 30
PCG-Its. 734 555 386 342 351
Fun.Evals. 558 311 141 88 73

CPU 1.9 9.1 34.7 144.5 599.2

Fig. 2. Noisy image z for �m ¼ 7; pl ¼ ns ¼ pp ¼ 1; and r ¼ 0:1 (left) and its reconstruction u� with

b ¼ 3�10�3 (right)
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in Algorithm 2, it may happen that the search direction ~dl�1 is NOT descent,
i.e., dT g > 0:

4.3.2. Restoration Studies

Here, we study the denoising and the resulting restoration properties of the
proposed formulations. The error between the true image z� and its reconstruc-
tion u is measured by using the following quantities:

mean square deviation: emðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðu� z�Þ2i

q
;

absolute maximum: eaðuÞ ¼ maxi2N jðu� z�Þij;

combination: emaðuÞ ¼ emðuÞ � eaðuÞ:

Usually, the reconstruction capability is tested using only emðuÞ: However, e.g., in
medical diagnostics, the actual image values may be as important as the average
behaviour. The proposed measures reflect also the characteristic features of the
L2- and L1-formulations: Roughly speaking, the L2-formulation yields locally
smoothed averaging of the noisy image while the L1-formulation yields locally
smoothed median values. Therefore, the L2-formulation should favor emðuÞ as an
error indicator, while for the L1-formulation, eaðuÞ should be a more suitable
measure. By the product of these two, we form a simplest possible compound
measure for the overall quality of the recovered image.

Hence, Table 3 contains the reconstruction errors for the following cases:

(1) eaðuL2Þ; a ¼ m=a=ma; contains the error measures for the L2-formulation.

(2) eaðu�Þ; a ¼ m=a=ma; corresponds to the L1-formulation with the whole active-
set algorithm for the stopping criterion e ¼ 10�7 (cf. Tables 1–2).

(3) eaðu2Þ; a ¼ m=a=ma; gives the errors after only TWO iterations of the active-
set algorithm.

Fig. 3. CPU times for the Uzawa method in Table 2 and ASM in Tables 1 and 2
for �m 2 f6; 7; 8; 9g
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To study the full denoising potential of different approaches, the reconstruction
errors, given in Table 3, have been computed with the corresponding ‘‘optimal’’
value ba of the regularization parameter b; i.e., with the value that yields the
minimum error eaðuÞ (ba is sought iteratively by hand). The linear L2-problem (10)
is solved using a FFT-based solver. An example of the original and reconstructed
images is given in Fig. 2.

Let us draw the following conclusions concerning the restoration properties of
different algorithms and formulations according to Tables 3 and 4:

Full versus partial ASM: By means of emðuÞ; only two iterations of ASM gives
usually smaller error than the more accurate solving of the optimization problem.
However, by means of eaðuÞ and emaðuÞ; the full algorithm is better and hence
more robust, especially with larger images ( �m ¼ 8 or 9) with and without outliers.
The reason for the success of two iterations with emðuÞ is due to the characteristic
behaviour of the ASM algorithm: Namely, the active set J1 for the second iter-
ation tends to be smaller than the true set J� which contains the components of
the solution being in contact with the noisy observation z: Therefore, in average
we can obtain smaller reconstruction error with the incomplete ASM, although
the full algorithm is more accurate pointwise.

L1- versus L2-formulation:With only Gaussian noise, the L2-formulation is slightly
better than the L1-formulation for all measured error quantities. On the contrary,

Table 3. Obtained errors for ba; a ¼ m=a=ma; with pl ¼ ns ¼ pp ¼ 0 and r ¼ 0:1 (Gaussian noise)

on the left column; pl ¼ ns ¼ pp ¼ 1 and r ¼ 0:1 (Gaussian noise with 
2.5% pointwise, linewise,

and subdomain-wise outliers) on the right column

�m 6 7 8 9

Noise Gaussian Inc. outl. Gaussian Inc. outl. Gaussian Inc. outl. Gaussian Inc. outl.

emðu2LÞ 2:6�10�2 4:3�10�2 1:8�10�2 2:8�10�2 1:1�10�2 1:7�10�2 6:7�10�3 1:0�10�2
eaðu2LÞ 8:8�10�1 2:3�10�1 7:1�10�2 2:1�10�1 4:3�10�2 1:0�10�1 2:7�10�2 6:0�10�2

emaðu2
LÞ 2:3�10�3 1:2�10�2 1:3�10�3 9:2�10�3 4:6�10�4 2:5�10�3 1:9�10�4 8:9�10�4

emðu�Þ 2:9�10�2 2:9�10�2 2:0�10�2 2:0�10�2 1:3�10�2 1:3�10�2 8:1�10�3 7:9�10�3
eaðu�Þ 1:1�10�1 9:5�10�2 7:0�10�2 1:0�10�1 4:5�10�2 5:0�10�2 3:0�10�2 3:3�10�2
emaðu�Þ 3:2�10�3 2:8�10�3 1:4�10�3 2:1�10�3 5:7�10�4 6:6�10�4 2:4�10�4 2:6�10�4
emðu2Þ 2:8�10�2 2:9�10�2 2:0�10�2 2:0�10�2 1:2�10�2 1:3�10�2 8:2�10�3 7:9�10�3
eaðu2Þ 1:1�10�1 9:7�10�2 7:0�10�2 1:0�10�1 6:5�10�2 5:8�10�2 4:5�10�2 5:4�10�2
emaðu2Þ 3:0�10�3 2:9�10�3 1:4�10�3 2:0�10�3 7:9�10�4 8:3�10�4 4:5�10�4 4:3�10�4

Table 4. Comparison of obtained regularization parameters bm and b� for pl ¼ ns ¼ pp ¼ 0 and
r ¼0:1 (rows G); pl ¼ ns ¼ pp ¼ 1 and r ¼ 0:1 (rows O)

6 7 8 9

Case �m bm b� bm b� bm b� bm b�

uL2 9 � 10�4 8 � 10�4 5 � 10�4 7 � 10�4 3 � 10�4 5 � 10�4 2 � 10�4 3 � 10�4
G u� 4 � 10�3 2 � 10�4 2 � 10�3 4 � 10�3 2 � 10�3 2 � 10�3 9 � 10�4 1 � 10�3

u2 5 � 10�3 2 � 10�4 3 � 10�3 3 � 10�3 2 � 10�3 3 � 10�3 9 � 10�4 1 � 10�3

uL2 2 � 10�3 1 � 10�3 9 � 10�4 1 � 10�3 6 � 10�4 9 � 10�4 3 � 10�4 5 � 10�4
O u� 4 � 10�3 2 � 10�4 3 � 10�3 3 � 10�3 2 � 10�3 2 � 10�3 9 � 10�4 1 � 10�3

u2 4 � 10�3 2 � 10�4 3 � 10�3 5 � 10�3 2 � 10�3 2 � 10�3 9 � 10�4 9 � 10�4
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with outliers the L1-formulation yields better reconstruction for all measures,
especially by means of eaðuÞ and emaðuÞ (see Fig. 4). Hence, in general, recon-
struction using the L1-formulation is more robust than with the L2-formulation
(cf. intrinsic assumptions on noise distribution and their consequences in Sect. 1).
For both formulations, the optimal regularization parameter ba seems to be quite
insensitive to the existence of outliers. This suggests that the optimal value of b is
determined by the amount of Gaussian noise contained in the image. Finally, let
us remark that an ‘‘optimal’’ ratio baðu�Þ=baðuL2Þ; a ¼ m=a=ma; seems to be four
rather than two, which is the value that could be expected by a comparison of the
optimality conditions (7) and (10) for the two formulations.

Size of problem: The larger problem we have the better reconstruction we obtain
in all cases (cf. Fig. 4). The smaller (i.e., the sparser) the problem is, the more
superior is the L1-formulation for the data containing outliers. We note also that
when the size of the problem increases, the difference between errors emaðuL2Þ and
emaðu�Þ gets smaller. This observation is in agreement with the breakdown point
properties of statistical estimates corresponding to L2- and L1-norms [25].

Behavior of error measures: According to numerical tests, in almost all cases all
the error measures eaðuÞ; a ¼ m=a=ma; are strictly convex with respect to b: We
found one case for ðbaðu2Þ; eaðu2ÞÞ ( �m ¼ 9 in Table 3 for pl ¼ ns ¼ pp ¼ 1 and
r ¼ 0:1), where this was not the case. This illustrates one side effect of inexact
solving of the optimization problem when computing u2:

4.3.3. Choice of the Regularization Parameter

Next, we propose a heuristic method for choosing the regularization parameter b
in a ‘‘nearly optimal’’ way with respect to the reconstruction error. Since a
comparison of different error measures was done in the previous section, we
concentrate here on one error measure, emðuÞ; only. We remind that in true
applications, one has usually no a priori knowledge of the amount and shape of
the error distribution contained in the given image z: Therefore, we can only try to

Fig. 4. Errors for the L2-formulation (uL2 , left) and L1-formulation (u�, right) in Table 3 for pl ¼ ns ¼
pp ¼ 1 and r ¼ 0:1
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determine b using computable quantities not depending on the noise statistics or
the true image. The present technique yields a slight improvement to the one
presented in [13], in the sense that through (35) the best value of b is more
distinguishable.

From the given formulations, we see that the cost functional to be minimized
consists of two parts

JðuÞ ¼ rbðuÞ þ f ðuÞ; ð33Þ

where rbðuÞ represents the regularization
R

X
b
2jruj2dx and f ðuÞ the fitting with

respect to the given data z; i.e., f ðuÞ ¼
R

X ju� zjdx in the L1-case or

f ðuÞ ¼
R

X ju� zj2dx in the L2-case. The choice of the regularization parameter b
determines the balance between the two terms in (33).

We use the notation b� for the regularization parameter which will be obtained
using the proposed heuristic method, to distinguish it from the hand-tuned
‘‘optimal’’ one bm of the previous section. Our suggestion for choosing b� is based
on the concept of sensitivity of rbðuÞ with respect to the regularization parameter.
Assume that we have solved the optimization problem with some reasonable
amount of regularization parameters

0 < b0 < b1 < . . . < bnb�1 < bnb
ð34Þ

with corresponding solutions u0; u1; . . . ; unb�1; unb for ui ¼ u�i or ui ¼ u2
i or

ui ¼ uL2;i (we use the notations introduced in the previous section). We propose
to choose for the regularization parameter the value b�; which maximizes the
(forward difference-like) quantity

@rbi

@b
¼

rbiþ1ðuiþ1Þ � rbi
ðuiÞ

biþ1 � bi
: ð35Þ

To illustrate our suggestion, we give plots of the reconstruction error emðuÞ
(bottom) and

@rbi
@b (top) for four test cases in Figs. 5–6. The computational test

values of the regularization parameter b were chosen as

b0 ¼ 10�4 < 2 � 10�4 < . . . < 9 � 10�4 < 10�3 < 2 � 10�3 < . . .

< 9 � 10�3 < 10�2 ¼ bnb
;

so that we have nb ¼ 18: We point out that in the figures, a logarithmic scale is
used for the x-axis. In these figures, both the pointwise minimum of emðuÞ and the

pointwise maximum of
@rbi
@b are marked. In Figs. 5–6, the results are given for uL2

and u�; respectively. In the plots on the left, we have pl ¼ ns ¼ pp ¼ 0 and on the
right, pl ¼ ns ¼ pp ¼ 1: Moreover, we have chosen r ¼ 0:1; so that the examples
correspond to the results presented in Table 3. From the figures, we see that the b�

maximizing
@rbi
@b gives a good approximation of bm minimizing emðuÞ:

The heuristic is tested more thoroughly in Table 4. As can be seen, we obtain
values of b� that are very close to the ‘‘optimal’’ choices bm: Only for �m ¼ 6;
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the heuristic does not seem to work in the L1-case. From Fig. 7, we see that
@rbi
@b oscillates for u� and �m ¼ 6 when b < 10�3: Near the best value of b;
however, the plot behaves nicely and the maximum gives a good approxima-
tion of bm. This suggests that the search region for b needs to be chosen
appropriately. To conclude, the difference between the ‘‘optimal’’ bm and the
value b� obtained using the heuristic method was generally between 0–3 units
on the given grid of b values. A very good agreement was obtained with u� for
�m � 7:

To shortly summarize our findings, the proposed heuristic yields a localization of
the effective values of the regularization parameter, without a priori knowledge
about structure or amount of noise. It is effective for various error distributions
and different formulations. For accuracy reasons, however, the technique needs
good a priori knowledge of the search interval and a fine enough grid of b values
to be used.

4.4. Real Example: Denoising Lens-paper Burn Data

Let us shortly consider a real example of denoising lens-paper burn data [19].
Example involves slow-combustion (smouldering) front propagating in a sheet of

Fig. 5. Error plots for uL2 and �m ¼ 7

Fig. 6. Error plots for u� and �m ¼ 7
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paper as described more thoroughly in Sect. 1. In these experiments, the propa-
gation of the emerging one-dimensional front was recorded with a CCD-camera
system. In Fig. 8 (top), front profiles of a lens-paper burn are shown. Each
horizontal curve represents a one-dimensional front at time t: We considered the
data as a two-dimensional image. Outliers in the resulting image were caused by,
e.g., ash particles detached from the front.

In Fig. 8 (bottom), front profiles are shown after denoising (filtering) the data
(top) using ASM. Here, b ¼ 0:01 was chosen by hand. Formulation (5) is ideal for

Fig. 7. Error plots for u� and �m ¼ 6

Fig. 8. Front profiles of a lens-paper burn before (hðx; tÞ) and after (hfilteredðx; tÞ) filtering the data [19]
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this type of problems. ASM removed the outliers while the data stayed almost
untouched elsewhere.
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University of Jyväskylä
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