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Abstract

This contribution combines a shape optimization approach to free boundary value proble
Bernoulli type with an embedding domain technique. A theoretical framework is developed
allows to prove continuous dependence of the primal and dual variables in the resulting sadd
problems with respect to the domain. This ensures the existence of a solution of a related
optimization problem in a sufficiently large class of admissible domains.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

We are concerned with the problem of finding in a given class of domains an op
memberω∗ which minimizes the distance of the flux of the system stateu to a desired
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constant flux in its natural norm such thatu is the solution of a Dirichlet problem onω∗.
Shape optimization of this type arises, for example, in an optimal control approa
free-boundary value problems of Bernoulli type which serve as mathematical mode
problems in ideal fluid dynamics, optimal insulation and electrochemistry [1,4].

This problem was recently considered by the authors in [6]. Representing the dua
of the flux by theH 1-norm of the solution of an auxiliary transmission problem existe
of a solution to the shape optimization problem above was established. By the use
transmission problem the delicate investigation of the continuous dependence of the
flux on the boundary of the domain could be avoided. The state equation was nume
solved by an embedding domain technique based on boundary Lagrange multiplier

Roughly speaking the idea of embedding domain techniques is to extend the stat
tion to a larger domain with a simple geometry. The original Dirichlet boundary condi
thus become conditions on internal curves which are imposed by Lagrange multiplier
advantage of such an approach is that due to the simple geometry of the larger dom
extended state equation can be solved more efficiently on a fixed structured grid. Th
siderably accelerates global optimization methods which typically need a large num
evaluations of the cost functional. Moreover, the extension can be arranged in such
that the Lagrange multiplier concentrated on a boundary component where homog
boundary conditions are prescribed coincides with the normal flux of the original sta

It is the purpose of this note to demonstrate that the fictitious domain approac
serve as a framework for analyzing shape optimization problems. In particular it pro
a tool for describing continuous dependence of the states and the Lagrange multiplie
respect to varying domains. This implies existence of a solution to the shape optimi
problem. We recall that the Lagrange multipliers are sensitivity measures of the cos
respect to the control variableω. To our knowledge this result and this approach are n
In [6] we use the embedding domain technique as a computational tool only. The
features of our analysis are the following: at first we construct aC1-diffeomorphism of a
uniform tubular neighborhood of the boundary of any feasible domain onto a rectan
strip. Here we use theC2-regularity for the boundaries. Next we build a family of uniform
bounded extension operators which extend periodic functions defined on the bo
of a feasible domain into a tubular neighborhood. These tools will allow us to com
functions which are defined on different domains. Applying our results to the Bern
problem this assumption is acceptable since it is known that aC1 free boundary for the
Bernoulli problem in 2 dimensions is in fact analytic; see the discussion in [5]. A nume
realization of our approach is discussed in [6].

The outline of the paper is as follows. In Section 2 we describe the shape optimi
problem and the class of feasible domains. The fictitious domain formulation and
basic facts about periodic Sobolev spaces are recalled in Section 3. The continuous
dence of the solution as well as the Lagrange multipliers is discussed in Section
verification of some technical results is deferred to Appendix A.

2. Formulation of the problem

In this note we consider the following shape optimization problem:
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min
ω∈O

1

2

∣∣∣∣∂u(ω)∂ν
−L

∣∣∣∣2
H−1/2(Γf )

(1)

subject to�u = 0 in ω,

u = 0 onΓf ,

u = c onΓ0. (2)

Aboveω ⊂ R2 is a doubly connected domain with boundary∂ω = Γf ∪Γ0, whereΓ0 is the
fixed, given component of the boundary andΓf the free component. The fixed bounda
componentΓ0 may be empty. Furthermore,ν indicates the outward normal unit vector toω,
O describes the set of admissible domains andL andc are appropriately chosen constan
see below. This optimization problem is motivated by the Bernoulli free-boundary
problem. A survey of this problem can be found in [5]. IfΓf is exterior toΓ0 theexterior
Bernoulli problem is defined as

Find (ω∗, u) ∈ O × H 1(ω∗)
such that�u = 0 inω∗,

u = 0 onΓf ,

u = 1 onΓ0,

∂u

∂ν
= L onΓf . (3)

It is known that (3) has a solution(ω∗, u) if L < 0 andΓ0 is Lipschitz continuous [3]
In the interior Bernoulli problemΓf is interior toΓ0, u = 0 on Γ0, u = 1 on Γf and
L > 0. Substitutingu − 1 for u we may without loss of generality assumeu = 0 onΓf .
A solution to the shape optimization problem (1) with vanishing cost leads to a solut
the Bernoulli problem and conversely.

The description of the admissible topologies is a consequence of the fact that we
results in [7] on 2π -periodic functions. In particular we restrict ourselves to 2d-doma
We assume that the free boundary component is contained in a setS of parametrized curve
γ : [0,2π] → R2. We shall denote byΓγ the curve represented byγ and byωγ the domain
bounded byΓ0 andΓf = Γγ . From now on we shall writeΓγ instead ofΓf . Hence,ω ∈ O
if and only ifω = ωγ for someγ ∈ S. LetCk

2π be the space of restrictions to[0,2π] of the
subspace of 2π -periodic functions inCk(R,R2), k ∈ N. We assumeγ ∈ S if and only if γ
satisfies

(S1) γ ∈ C2
2π .

(S2) There exist positive constantsα, γ1, γ2 such that∣∣γ̇ (t)∣∣� α for all t ∈ [0,2π],
|γ̇ |∞ � γ1, |γ̈ |∞ � γ2.

(S3) γ represents a positively oriented closed curve.
(S4) ω̄γ ⊂ Ω = (−1,1)2.
(S5) There exists a positive constantd such that

dist(Γ0,Γγ ) � d, dist(Γγ , ∂Ω)� d.
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(S6) There is a constanth > 0 which does not depend onγ such that for everyt ∈
[0,2π] there are two open discsBi andBo of radiush which satisfyBi ⊂ ωγ ,
Bo ⊂ Ω \ ω̄γ andγ (t) ∈ B̄i ∩ B̄o.

In (S2) above| · |∞ denotes the supremum norm. As a consequence of(S2) we note that
every parametrization inS is regular, i.e., the tangent vector is defined everywhere.
sumptions(S1) and(S3) ensure that every element ofS represents a closed curve wi
a fixed orientation. Let us briefly discuss(S6): chooseγ ∈ S, t ∈ [0,2π] and letxi be
the center of the ballBi in (S6). Thenγ (t) − xi = −hν(t) follows from the observa
tion γ (t) ∈ argmin{|γ (τ) − xi |2: τ ∈ [0,2π]}. This entailsγ (t) − ηhν(t) ∈ ωγ and by a
similar reasoningγ (t) + ηhν(t) ∈ Ω \ ω̄γ for η ∈ (0,1), whereν(t) denotes the exterio
normal unit vector toΓγ atγ (t). Hence assumption(S6) implies the existence of a tubula
neighborhoodD̃γ of Γγ such that

D̃γ = {
x ∈ Ω : dist(x,Γγ ) < h

}= D̃+
γ ∪ D̃−

γ ,

D̃±
γ = {

γ (t) ± hην(t), η ∈ [0,1), t ∈ [0,2π]},
D̃+

γ ⊂ Ω \ωγ , D̃−
γ ⊂ ω̄γ . (4)

Note that the widthh of the tube may be chosen independently ofγ ∈ S. As a consequenc
{Γγ : γ ∈ S} is a family of simple closed curves. We remark that in view of the regula
results in [2] the familyS contains the free boundary for the exterior problem if the fi
domain is star shaped.

Existence of a solution to (1) usually is derived from some continuity of the c
functional. This requires that a statement like “u(ωγ ) converges tou(ωγ̄ ) as γ → γ̄ ”
makes sense. Since the domain of definition ofu(ωγ ) depends onγ this amounts to com
paring elements of different function spaces. We circumvent the ensuing difficulties
fictitious domain framework which provides a natural concept for such a convergenc
observe that for the verification of Theorem 2 below onlyH 1-regularity of the state is re
quired. Therefore, the results of this paper can be readily extended to a general un
elliptic second order operator withL∞ coefficients and an inhomogeneous forcing term
H−1(Ω). In this case the normal derivative in the cost functional should be replac
the conormal derivative. This generalization is useful in situations where the conti
dependence of the flux on the domain cannot be argued from the regularity of the st

3. Reformulation of the problem

3.1. Fictitious domain formulation

It is well known that for anyω ∈ O the state constraint defined by (2) has a uni
solution which is at the same time the unique minimizer of

min
v∈K

1

2
|∇v|2ω,

K = {
v ∈ H 1(ω): v|Γ0 = c, v|Γγ = 0

}
.
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min
v̂∈K̂

1

2
|∇v̂|2Ω,

K̂ = {
v̂ ∈ H 1

0 (Ω): v̂|Γ0 = c, v̂|Γγ = 0
}
. (5)

We endow the spaceH 1
0 (Ω) with the norm

|v̂|H1(Ω) = (∇v̂,∇v̂)
1/2
Ω , v̂ ∈ H 1

0 (Ω).

Clearly, (5) has a unique solution̂u ∈ K̂ which is characterized by

(∇û,∇v̂)Ω = 0 for all v̂ ∈ {v̂ ∈ H 1
0 (Ω): v̂|Γ0 = 0, v̂|Γγ = 0

}
. (6)

Since the constrained variational problem (6) is defined in the fixed domainΩ the original
boundary conditions have to be interpreted in the sense of internal traces. It is easy
thatu = û|ω solves (2). LetH−1/2(Γ0) andH−1/2(Γγ ) be spaces of Lagrange multiplier
Then the necessary optimality conditions for (5) are given by

Find (û, λγ , λ0) ∈ H 1
0 (Ω)×H−1/2(Γγ )×H−1/2(Γ0) such that

(∇û,∇v̂)Ω − 〈λ0, τ0v̂〉Γ0 − 〈λγ , τγ v̂〉Γγ = 0, v̂ ∈ H 1
0 (Ω)

〈µ0, τ0û〉Γ0 + 〈µγ , τγ û〉Γγ = 〈µ0, g〉Γ0,

(µγ ,µ0) ∈ H−1/2(Γγ ) ×H−1/2(Γ0), (7)

where〈· , ·〉Γγ and〈· , ·〉Γ0 denote the duality pairings betweenH−1/2(Γγ ) andH 1/2(Γγ ),
respectively,H−1/2(Γ0) andH 1/2(Γ0) andg = c onΓ0. In addition,τ0v̂ = v̂|Γ0 andτγ v̂ =
v̂|Γγ are the traces of̂v on Γ0 andΓγ , respectively. System (7) has a unique solut
(û, λγ , λ0). It is readily seen thatu = û|ω solves (2) and̂u|Bγ = 0, whereBγ denotes
the connected component ofΩ \ ω̄ adjacent toΓγ . As a consequenceλγ coincides with
∂u/∂ν in H−1/2(Γγ ); see, e.g., [9]. Hence, the shape optimization problem (1) ma
equivalently formulated as

min
ω∈O

1

2
|λγ −L|2

H−1/2(Γγ )
, (8)

whereλγ is the second component of the solution of (7).
We now discuss the equivalence between the parametrization of the free bound

means ofγ ∈ S and 2π -periodic functions on[0,2π].

3.2. Periodic Sobolev spaces

Let L2
2π denote the closure of the space of continuous 2π -periodic functions with re-

spect to the norm inL2(0,2π). Following [7, Chapter 8] we define the periodic Sobo
space

H
1/2 = {

φ ∈ L2
2π : |φ|0,1/2 < ∞}

,
2π
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where the norm| · |0,1/2 is given in terms of the Fourier coefficientsam of φ with respect
to {eimt }m∈Z by

|φ|0,1/2 =
( ∞∑

m=−∞
(1+m2)1/2|am|2

)1/2

. (9)

It is shown in [7] that for continuously differentiable 2π -periodic functionsφ this norm is
equivalent to

|φ|1/2,2π =
(

|φ|2
L2

2π
+

2π∫
0

2π∫
0

|φ(t) − φ(s)|2
| sin((t − s)/2)|2 dt ds

)1/2

. (10)

Furthermore, if the curveΓ is parametrized by someγ ∈ S one can define the space

H
1/2
p (Γ ) = {

ϕ ∈ L2(Γ ): ϕ ◦ γ ∈ H
1/2
2π

}
which is endowed with the norm|ϕ|1/2,p = |ϕ ◦ γ |1/2,2π . In addition there is also th
standard Sobolev spaceH 1/2(Γ ) the norm of which can be intrinsically expressed as

|ϕ|1/2 =
(

|ϕ|2
L2(Γ )

+
∫
Γ

∫
Γ

|ϕ(x)− ϕ(y)|2
|x − y|2 dΓx dΓy

)1/2

. (11)

This is equivalent to

|ϕ|1/2,γ =
( 2π∫

0

|ϕ ◦ γ |2|γ̇ |dt +
2π∫
0

2π∫
0

|ϕ ◦ γ (t) − ϕ ◦ γ (s)|2
|γ (t) − γ (s)|2

∣∣γ̇ (t)∣∣∣∣γ̇ (s)∣∣dt ds)1/2

,

(12)

where the notation| · |1/2,γ refers to the particular parametrization ofΓ used to represen
the norm.

Next we turn to the relation among the spacesH
1/2
2π , H 1/2

p (Γ ) andH 1/2(Γ ).

Lemma 1. Let Γγ be a plane curve parametrized by someγ ∈ S. Then the space

H 1/2(Γγ ) andH 1/2
p (Γγ ) coincide as sets and are topologically equivalent. Moreover,

equivalence is uniform with respect toγ ∈ S.

The proof of this lemma is given in Appendix A. As a consequence the ide
iγ :H 1/2(Γγ ) → H

1/2
p (Γγ ) is an isomorphism. The operatorJγ :H 1/2

p (Γγ ) → H
1/2
2π given

byJγ (ϕ) = ϕ ◦ γ is an isometry. In fact, by the definition of the spaceH
1/2
p (Γγ ) it is clear

that Jγ is an embedding ofH 1/2
p (Γγ ) into H

1/2
2π . Since for anyχ ∈ H

1/2
2π the function

ϕ = χ ◦ γ−1 is an element ofH 1/2
p (Γγ ) we find thatJγ is surjective. Hence the spac

H
1/2
2π , H 1/2

p (Γγ ) andH 1/2(Γγ ) are homeomorphic.
Recall thatτγ :H 1(Ω) → H 1/2(Γγ ) denotes the trace operator ontoΓγ and define

Tγ :H 1(Ω) → H
1/2
2π by

Tγ := Jγ ◦ iγ ◦ τγ ,
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i.e.,Tγ maps traces onΓγ to periodic functions on[0,2π]. ThenTγ ∈ L(H 1(Ω),H
1/2
2π )

and in view of the preceding discussion surjectivity ofTγ follows from the surjectivity
of τγ . Below we utilize the notation〈· , ·〉2π , 〈· , ·〉p and 〈· , ·〉Γγ to indicate the duality

pairings inH 1/2
2π , H 1/2

p (Γγ ) andH 1/2(Γγ ), respectively. Forλγ ∈ H−1/2(Γγ ) andϕ ∈
H 1/2(Γγ ) we obtain

〈λγ ,ϕ〉Γγ = 〈
i−∗
γ λγ , iγ ϕ

〉
p

= 〈
J −∗
γ i−∗

γ λγ ,Jγ iγ ϕ
〉
2π

= 〈λ̃γ ,Jγ iγ ϕ〉2π = 〈λ̃γ , ϕ ◦ γ 〉2π ,

where we have set

λ̃γ := J −∗
γ i−∗

γ λγ .

In particular this implies

〈λγ , τγ v̂〉Γγ = 〈λ̃γ ,Jγ iγ τγ v̂〉2π = 〈λ̃γ ,Tγ v̂〉2π

for all v̂ ∈ H 1(Ω). The norms ofλγ andλ̃γ are equivalent uniformly with respect toγ ∈ S.
Moreover, a functional induced by a constantL transforms according to

〈L,ϕ〉Γγ = L

2π∫
0

∣∣γ̇ (t)∣∣ϕ ◦ γ dt = 〈
L|γ̇ |, ϕ ◦ γ 〉2π .

This discussion shows that the optimization problem (7), (8) may be replaced by

min
γ∈Sρ

J (γ ) := 1

2

∣∣λ̃γ −L|γ̇ |∣∣2
H

−1/2
2π

, (13)

where(û, λ̃γ , λ0) ∈ H 1
0 (Ω)×H

−1/2
2π ×H−1/2(Γ0) satisfies

(∇û,∇v̂)Ω − 〈λ0, τ0v̂〉Γ0 − 〈λ̃γ ,Tγ v̂〉2π = 0, v̂ ∈ H 1
0 (Ω)

〈µ0, τ0û〉Γ0 + 〈µ̃,Tγ v̂〉2π = 〈µ0, g〉Γ0, (µ̃,µ0) ∈ H
−1/2
2π ×H−1/2(Γ0), (14)

andSρ ⊂ S will be specified later. The periodic Sobolev spaces were introduced to be
to analyze the dependence onγ ∈ S of the boundary terms in (7) which represent the f
boundaryΓγ . Boundary terms defined onΓ0 can be discussed using the standard spac

4. Continuous dependence

The main contribution of the paper is the following theorem on continuous depen
of the solution of (14) onγ ∈ S which implies existence of a solution to the shape o
mization problem (13).

Theorem 2. Assumeγn → γ in C1([0,2π],R2), γn, γ ∈ S and let (ûn, λ̃n, λ0n) ∈
H 1

0 (Ω) × H
−1/2
2π × H−1/2(Γ0) be the solution of(14) corresponding toγn. Then

limn→∞ ûn = û strongly inH 1(Ω), limn→∞ λ̃n = λ̃ weakly inH−1/2, limn→∞ λ0n = λ0
0 2π
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strongly inH−1/2(Γ0) and(û, λ̃, λ0) is the unique solution of(14)corresponding toγ . In
addition, ifγn → γ in C2([0,2π],R2), then(λ̃n) converges tõλ strongly inH−1/2

2π .

Corollary 3. The functionalJ defined in(13)attains its minimum in compact subsets ofS.

To provide an example we mention that it can be shown thatSρ = {γ ∈ S: |γ̈ (t) −
γ̈ (s)| � ρ|t − s|, t, s ∈ [0,2π]} is compact inC2([0,2π],R2) for everyρ > 0.

The proof of Theorem 2 is decomposed into several steps. At first we establish a u
bound for the operatorsTγ .

Lemma 4. The family of trace operators{Tγ : γ ∈ S} is uniformly bounded with respect

γ in L(H 1
0 (Ω),H

1/2
2π ).

Proof. In order to obtain a uniform bound on{Tγ } we analyze the proof of the trac
theorem [7, Theorem 8.15] with a slight modification to take into account thatΓγ is in
the interior ofΩ . The basic step in this proof is to establish a diffeomorphism betw
Q = (0,2π)× (−1,1) and the cut tubular neighborhoodDγ which isD̃γ , defined in (4),
cut att = 0,

Dγ = {
γ (t) + hην(t), η ∈ (−1,1), t ∈ (0,2π)

}
. (15)

Define the mapSγ :Q → Dγ by

Sγ (t, η)= γ (t) + hην(t), (t, η) ∈ Q. (16)

For anyx ∈ D̃γ let p(x) denote the orthogonal projection ofx ontoΓγ , i.e.,p(x) mini-
mizes

d(t) = ∣∣x − γ (t)
∣∣2

overt ∈ [0,2π]. The estimate

d̈(t) = 2|γ̇ |2 − 2
(
x − γ (t), γ̈ (t)

)
� 2

(
α2 − ∣∣x − γ (t)

∣∣∣∣γ̈ (t)∣∣)� 2(α2 − hγ2)

shows thaẗd(t) > α2 holds in{t ∈ (0,2π): |x − γ (t)| < h} for h sufficiently small (h may
be chosen independently ofx) which implies the uniqueness of the projectionp(x). There-
fore, there is a uniquet∗ ∈ [0,2π) such that

x − γ (t∗) = 5ν(t∗)

with

5 =
{−|x − γ (t∗)| x ∈ ωγ ∩ Dγ ,

|x − γ (t∗)| x ∈ (Ω \ ωγ )∩ Dγ .

This shows that anyx ∈ Dγ may be represented as

x = γ (t) + hην(t)

with (t, η) ∈ Q uniquely defined. HenceSγ is bijective. Since

detDSγ (t, η) = −h

√
γ̇ 2 + γ̇ 2 + h2η(ν̇1ν2 − ν1ν̇2),
1 2
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one concludes that detDSγ (t, η) �= 0 on Q for h sufficiently small. ThusSγ defines a
C1-diffeomorphism ofQ ontoDγ .

Chooseu ∈ C1(D̃γ ) such thatu vanishes on{γ (t) ± hν(t): t ∈ (0,2π)}. Arguing as in
[7, p. 121] one obtains

|Tγ u|H1/2,2π = ∣∣(u ◦ Sγ )(· ,0)
∣∣
H1/2,2π

� 1√
2π

|u ◦ Sγ |H1(Q) � C|u|H1(Dγ )
, (17)

where the constantC depends on a bound for| detDSγ |−1
L∞(Q) which is uniform inγ ∈ S

(see (22)). Finally, the above estimate (17) can be extended to arbitraryu ∈ C1(Ω̄). Indeed,
choose a functionf ∈ C1(R,R+) satisfying

f (0) = 1, f � 0 on[0,∞), f = 0 on(−∞,−1] ∪ [1,∞)

and define

gγ (y) =
{
f (π2S

−1
γ (y)) y ∈ Dγ ,

0 else,

whereπ2 is the canonical projection ofR2 onto the second coordinate. By continuitygγ
can be extended uniquely to an element ofC1(Ω̄) denoted by the same symbol. Note th
gγ depends onγ becauseDγ andSγ do. By constructionugγ ∈ C1(Ω̄) satisfies

ugγ = 0 in Ω̄ \ Dγ , ugγ = u onΓγ .

Applying (17) tougγ one obtains

|Tγ u|H1/2,2π = ∣∣Tγ (ugγ )∣∣H1/2,2π
� C|ugγ |H1(Dγ )

� C̃
(|f |∞ + |f ′|∞

)|u|H1(Dγ )
� C̃

(
1 + |f ′|∞

)|u|H1(Ω).

This completes the proof of the lemma.✷
Next we show a basic extension result which is of interest for itself.

Lemma 5. There exists a continuous linear extension operatorEγ :H 1/2
2π → H 1

0 (Ω) such

thatTγ Eγ ϕ = ϕ holds for allϕ ∈ H
1/2
2π and|Eγ | is uniformly bounded forγ ∈ S.

Proof. By Lemma 10 and the discussion preceding it there is an extension op
E :H 1/2

2π → H 1(Q), Q = (0,2π) × (−1,1), satisfying(Eϕ)(· ,0) = ϕ, (Eϕ)(· ,±1) = 0
and (Eϕ)(0, ·) = (Eϕ)(2π, ·); see also Remark 11. Recall the cut tubular neighborh
Dγ of Γγ defined in (15) and the diffeomorphismSγ :Q → Dγ introduced in (16). Le
H 1
p(Q) = {v ∈ H 1(Q): v(0, ·) = v(2π, ·)}, defineDγ :H 1

p(Q) → H 1(Dγ ) by

Dγ u := u ◦ S−1
γ ,

and set

Eγ ϕ := D̃γ Eϕ,

wherẽ indicates the extension by zero from̄Dγ to Ω . Because of
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i-
Tγ Eγ ϕ = Jγ ◦ iγ ◦ τγ D̃γ Eϕ = ˜(Dγ Eϕ) ◦ γ = (Eϕ)
(
S−1
γ (γ )

)= (Eϕ)(· ,0)= ϕ,

Eγ satisfies the desired extension property. The uniform boundedness ofEγ will follow
from a uniform bound forDγ . Consider

|∇xyDγ u|2
L2(Dγ )

=
∫
Dγ

∣∣(∇tηu ◦ S−1
γ

)T
(DSγ )

−1 ◦ S−1
γ

∣∣2dx dy
=
∫
Q

∣∣(∇tηu)
T (DSγ )

−1
∣∣2∣∣det(DSγ )

∣∣dt dη
�
∫
Q

|∇tηu|2∣∣(DSγ )
−1
∣∣2
F

∣∣det(DSγ )
∣∣dt dη,

where| · |F denotes the Frobenius norm. In view of

∣∣(DSγ )
−1
∣∣2
F

∣∣det(DSγ )
∣∣= 1

| det(DSγ )|
∣∣∣∣( hν2 −hν1

−γ̇2 − hην̇2 γ̇1 + hην̇1

)∣∣∣∣2
F

= 1

| det(DSγ )|
(
h2 + |γ̇ + hην̇|2)

and ∣∣det(DSγ )
∣∣= h

∣∣−|γ̇ | + hη(ν̇1ν2 − ν1ν̇2)
∣∣

� h
(|γ̇ | − h|ν̇|)� h

(
α − h|ν̇|)� α

2
h (18)

which by (S2) holds forh sufficiently small independently ofγ ∈ S. Using a uniform
bound for|γ̇ | and|ν̇| one obtains

|∇xyDγ u|L2(Dγ )
� c|∇tηu|L2(Q),

where the constantc is independent ofγ ∈ S. Since|Dγ u|L2(Dγ )
can be estimated sim

larly, the desired uniform bound forDγ follows. ✷
Remark 6. The construction of the extension operatorEγ shows that suppEγ ϕ ⊂ D̄γ .

Lemmas 4 and 5 entail uniform a priori bounds on the solution of (14).

Proposition 7. The set of solutions{(ûγ , λ̃γ , λ0γ ): γ ∈ S} of (14) is bounded inH 1
0 (Ω)×

H
−1/2
2π × H−1/2(Γ0).

Proof. Let v̂∗ ∈ H 1
0 (Ω) be such that̂v∗ = c onΓ0 andv̂∗ = 0 onΓγ for everyγ ∈ S. Such

a function can be constructed independently ofγ ∈ S by (S5). Then from (5) we derive
the bound

|ûγ |H1(Ω) � |v̂∗|H1(Ω)
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d (14)

n

d by

y

for all γ ∈ S. Chooseϕ ∈ H 1/2(Γ0), extendϕ to v̂ ∈ H 1(Ω) such that suppϕ ⊂ {x ∈ Ω :
dist(x,Γ0) < d/2} and insert̂v in the first equation of (14). This results in

〈λ0γ , ϕ〉Γ0 = 〈λ0γ , τ0v̂〉Γ0 = (∇ûγ ,∇v̂)Ω � |ûγ |H1(Ω)|v̂|H1(Ω)

� k|ûγ |H1(Ω)|ϕ|1/2,Γ0

which implies that

|λ0γ |H−1/2(Γ0)
� k|ûγ |H1(Ω) � k|v̂∗|H1(Ω),

wherek denotes a suitable embedding constant. In view of Lemma 5, Remark 6 an
one obtains forϕ ∈ H

1/2
2π ,∣∣〈λ̃γ , ϕ〉2π

∣∣= ∣∣〈λ̃γ ,Tγ Eγ ϕ〉2π
∣∣= ∣∣(∇ûγ ,∇Eγ ϕ)Ω

∣∣� |Eγ ||ûγ |H1(Ω)|ϕ|1/2,2π
which implies the desired a priori bound forλ̃γ using the bounds for̂uγ andEγ . ✷

The proof of the next two results is deferred to Appendix A.

Lemma 8. Let γn → γ in C([0,2π],R2), γn, γ ∈ S and let (ûn) be any sequence i
H 1

0 (Ω) satisfyingτ0ûn = g and τγnûn = 0. If ûn converges weakly tôu in H 1
0 (Ω) then

τ0û = g andτγ û = 0.

Lemma 9. Letγn → γ in C1([0,2π],R2), γn, γ ∈ S. ThenTγn converges strongly toTγ .

Now we are ready to enter the proof of Theorem 2.

Proof of Theorem 2. By Lemma 7 one can extract a subsequence (again denote
((ûn, λ̃n, λ0n))) converging weakly to(û, λ̃, λ0) ∈ H 1

0 (Ω)×H
−1/2
2π ×H−1/2(Γ0). In view

of Lemma 8 the second equation in (14) is satisfied. For fixedv̂ ∈ H 1
0 (Ω) one obtains using

the first equation in (14),

lim
n→∞〈λ̃n,Tγn v̂〉2π = lim

n→∞
(
(∇ûn,∇v̂)Ω − 〈λ0n, τ0v̂〉Γ0

)
= (∇û,∇v̂)Ω − 〈λ0, τ0v̂〉Γ0. (19)

Because of

〈λ̃n,Tγn v̂〉2π = 〈λ̃n,Tγn v̂ − Tγ v̂〉2π + 〈λ̃n,Tγ v̂〉2π ,

Lemma 9 entails

lim
n→∞〈λ̃n,Tγn v̂〉2π = 〈λ̃,Tγ v̂〉2π ,

which combined with (19) shows that(û, λ̃, λ0) satisfies also the first equation in (14). B
uniqueness of the solution the original sequence converges weakly to(û, λ̃, λ0). In view
of (14) we have

(∇ûn,∇v̂)Ω − 〈λ0n, τ0v̂〉Γ0 − 〈λ̃n,Tγn v̂〉2π = 0,

(∇û,∇v̂)Ω − 〈λ0, τ0v̂〉Γ0 − 〈λ̃,Tγ v̂〉2π = 0. (20)
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14)

ies

a

Insertingv̂ = ûn in the former and̂v = û in the latter and using the second equation in (
yields

|∇ûn|2Ω = 〈λ0n, g〉Γ0, |∇û|2Ω = 〈λ0, g〉Γ0,

which entails limn→∞ |ûn|H1(Ω) = |û|H1(Ω). Together with weak convergence this impl
strong convergence of̂un to û.

For anyϕ ∈ H 1/2(Γ0) let v̂ ∈ H 1
0 (Ω) be such thatτ0v̂ = ϕ andv̂ vanishes outside of

sufficiently small neighborhood ofΓ0. Insertv̂ in (20) to obtain∣∣〈λ0n − λ0, ϕ〉Γ0

∣∣= ∣∣(∇(ûn − û),∇v̂
)
Ω

∣∣
� |ûn − û|H1(Ω)|v̂|H1(Ω) � k|ûn − û|H1(Ω)|ϕ|1/2,Γ0

which implies convergence ofλ0n to λ0 in H−1/2(Γ0).
In order to obtain strong convergence ofλ̃n to λ̃ in H

−1/2
2π we assumeγn → γ in

C2([0,2π],R2). Observe that for everyϕ ∈ H
1/2
2π the extensionsEγnϕ, respectively,Eγ ϕ

vanish in a neighborhood ofΓ0. Therefore, using (20) we obtain forϕ ∈ H
1/2
2π ,

〈λ̃n − λ̃, ϕ〉2π = 〈λ̃n,TγnEγnϕ〉2π − 〈λ̃,Tγ Eγ ϕ〉2π

= (∇ûn,∇Eγnϕ)Ω − (∇û,∇Eγ ϕ)Ω
= (∇(ûn − û),∇Eγnϕ

)
Ω

+ (∇û,∇(Eγn − Eγ )ϕ
)
Ω
.

Below we shall denote byC a generic positive constant which does not depend onγ andγn.
Lemma 5 entails the estimate∣∣(∇(ûn − û),∇Eγnϕ

)
Ω

∣∣� C|ûn − û|H1(Ω)|ϕ|1/2,2π. (21)

By Remark 6 we obtain(∇û,∇(Eγn − Eγ )ϕ
)
Ω

=
∫

Dγn

∇ûT ∇Eγnϕ dx dy −
∫
Dγ

∇ûT ∇Eγ ϕ dx dy

=
∫

Sγn (Q)

∇ûT ∇((Eϕ) ◦ S−1
γn

)
dx dy −

∫
Sγ (Q)

∇ûT ∇((Eϕ) ◦ S−1
γ

)
dx dy,

whereSγ :Q → Dγ is the diffeomorphism defined in (16) andE :H 1/2
2π → H 1(Q) is the

extension operator introduced in Lemma 5. A short calculation shows∫
Sγ (Q)

∇ûT ∇((Eϕ) ◦ S−1
γ

)
dx dy

=
∫

Sγ (Q)

∇ûT (DSγ )
−T ◦ S−1

γ (∇Eϕ) ◦ S−1
γ dx dy

=
∫

∇ûT ◦ Sγ (DSγ )
−T (∇Eϕ)| detDSγ |dt dη
Q
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and analogously forγ replaced byγn. This results in(∇û,∇(Eγn − Eγ )ϕ
)
Ω

=
∫
Q

∇ûT ◦ Sγn(DSγn )
−T (∇Eϕ)| detDSγn |dt dη

−
∫
Q

∇ûT ◦ Sγ (DSγ )
−T (∇Eϕ)| detDSγ |dt dη

=
∫
Q

∇ûT ◦ Sγn(DSγn )
−T (∇Eϕ)

(| detDSγn | − | detDSγ |)dt dη
+
∫
Q

∇ûT ◦ Sγn(DSγn )
−T (DSγ −DSγn)(DSγ )

−1(∇Eϕ)| detDSγ |dt dη

+
∫
Q

(∇ûT ◦ Sγn − ∇ûT ◦ Sγ )(DSγ )
−T (∇Eϕ)| detDSγ |dt dη

≡ I1n + I2n + I3n.

Using(S2) and Lemma 5 one obtains the estimate

|I1n| � | detDSγn − detDSγ |L∞(Q)

∣∣|DS−T
γn

|F
∣∣
L∞(Q)

∫
Q

|∇ûT ◦ Sγn ||∇Eϕ|dt dη

� C| detDSγn − detDSγ |L∞(Q)|∇ûT ◦ Sγn |L2(Q)|ϕ|1/2,2π.
Above we used the fact that

∣∣|DS−T
γn

|F
∣∣
L∞(Q)

can be bounded independently ofn which is
shown in the proof of Lemma 5. By (18) one finds(∫

Q

|∇ûT ◦ Sγn |2dt dη
)1/2

� 1

| detDSγn |L∞(Q)

|û|H1(Ω) � C|û|H1(Ω), (22)

which implies

|I1n| � C| detDSγn − detDSγ |L∞(Q)|ϕ|1/2,2π. (23)

A similar argument leads to

|I2n| � C
∣∣|DSγn −DSγ |F

∣∣
L∞(Q)

|ϕ|1/2,2π. (24)

In order to estimateI3n choose an arbitraryε > 0 and ŵ ∈ C∞
0 (Ω) such that|û −

ŵ|H1(Ω) < ε. By an easy argument one derives

|∇ûT ◦ Sγn − ∇ûT ◦ Sγ |L2(Q) � C
(
ε + |∇ŵT ◦ Sγn − ∇ŵT ◦ Sγ |L2(Q)

)
which in turn results in

|I3n| � C
(
ε + |∇ŵT ◦ Sγn − ∇ŵT ◦ Sγ |L2(Q)

)|ϕ|1/2,2π. (25)
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e

r.

-

Combining the estimates (23)–(25) one eventually obtains∣∣(∇û,∇(Eγn − Eγ )ϕ
)
Ω

∣∣� (
c(γn, γ )+Cε

)|ϕ|1/2,2π, (26)

wherec(γn, γ ) vanishes asγn → γ in C2([0,2π],R2). Sinceε was chosen arbitrarily th
claim follows from the estimates (21) and (26).✷
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Appendix A

Proof of Lemma 1. We prove a slightly stronger result. LetC1,1
2π be the space of restric

tions to[0,2π] of the subspace of 2π -periodic functions inC1,1(R,R2) and define

Ŝ = {
γ ∈ C

1,1
2π : |γ̇ |∞ � γ1,

∣∣γ̇ (t)∣∣� α,∣∣γ̇ (t)− γ̇ (s)
∣∣� γ2|t − s| for all t, s ∈ [0,2π],

γ satisfies(S3)–(S6)
}
,

whereα, γ1 andγ2 are given by(S2). Note thatŜ is compact inC1
2π andS ⊂ Ŝ .

Chooseγ ∈ Ŝ. By definitionϕ ∈ L2(Γ ) is an element ofH 1/2
p (Γ ) if and only if

|ϕ|21/2,p = |ϕ ◦ γ |21/2,2π = |ϕ ◦ γ |2
L2

2π
+

2π∫
0

2π∫
0

|ϕ ◦ γ (t) − ϕ ◦ γ (s)|2
| sin((t − s)/2)|2 dt ds < ∞.

Using the parametrizationγ ∈ Ŝ we haveϕ ∈ H 1/2(Γ ) if and only if

|ϕ|21/2,γ =
2π∫
0

|ϕ ◦ γ |2|γ̇ |dt

+
2π∫
0

2π∫
0

|ϕ ◦ γ (t)− ϕ ◦ γ (s)|2
|γ (t)− γ (s)|2

∣∣γ̇ (t)∣∣∣∣γ̇ (s)∣∣dt ds < ∞.

Hence the equivalence follows from the assumptions onŜ which imply the estimate

m� |γ (t)− γ (s)|
| sin((t − s)/2)| �M, 0 � t, s � 2π,

or equivalently

m� |γ (τ + s)− γ (s)|
| sin(τ/2)| �M, 0 � |τ |, s � 2π, (A.1)

for positive constantsm,M which are independent ofγ ∈ Ŝ.
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ish the

t

e

me

e.
The proof of (A.1) utilizes the elementary inequality

2

π
� sinx

min(x,π − x)
< 1, 0< x < π. (A.2)

The estimate from above in (A.1) is an easy consequence of (A.2). Next we establ
estimate from below in (A.1). There is 0< δ < π which does not depend onγ ∈ Ŝ such
that for everys ∈ I = [0,2π] at least one of the inequalities∣∣γ̇1(ξ)

∣∣� α

4
,

∣∣γ̇2(ξ)
∣∣� α

4
holds for allξ ∈ (s − δ, s + δ) ∩ I . This is a consequence of|γ̇ (s)| � α for all s ∈ [0,2π]
and the uniform equicontinuity oḟγ . Next we partition the intervalI into

I1 =
{
s ∈ I :

∣∣γ̇1(ξ)
∣∣� α

4
for ξ ∈ (s − δ, s + δ)∩ I

}
,

I2 = I \ I1.

We distinguish three cases: assume at first 0< |τ | < δ and chooses ∈ I1. The argumen
for s ∈ I2 is analogous. Using (A.2) and the properties ofŜ one obtains

|γ (τ + s)− γ (s)|
| sin(τ/2)| >

2

|τ |
∣∣γ (τ + s) − γ (s)

∣∣� 2

|τ |
∣∣γ1(τ + s)− γ1(s)

∣∣
=
∣∣∣∣∣2τ

τ+s∫
s

∣∣γ̇1(t)
∣∣dt∣∣∣∣∣� α

2
.

By a limiting argument this inequality also holds forτ = 0. The same inequality can b
established if 2π − δ < |τ | � 2π using the periodicity ofγ . If δ � |τ | � 2π − δ the desired
estimate follows from

κ �
∣∣γ (τ + s)− γ (s)

∣∣� 2γ0 (A.3)

for (|τ |, s) ∈ [δ,2π − δ] × I , whereγ0 andκ are independent ofγ ∈ Ŝ . We only prove
the lower bound in (A.3). Assume on the contrary that there are sequences(γn) ⊂ Ŝ,
(|τn|, sn) ∈ [δ,2π − δ] × I such that∣∣γn(τn + sn)− γn(sn)

∣∣< 1

n
, n ∈ N.

By compactness of̂S and [δ,2π − δ] × I one can, without loss of generality, assu
limn→∞ γn = γ in C1

2π , limn→∞ τn = τ and limn→∞ sn = s with γ ∈ Ŝ , (|τ |, s) ∈ [δ,2π−
δ] × I . In view of∣∣γ (τ + s)− γ (s)

∣∣� ∣∣γ (τ + s)− γ (τn + sn)
∣∣+ ∣∣γ (τn + sn)− γn(τn + sn)

∣∣
+ ∣∣γn(τn + sn)− γn(sn)

∣∣+ ∣∣γn(sn)− γ (sn)
∣∣

+ ∣∣γ (sn) − γ (s)
∣∣ −→
n→∞ 0,

we arrive atγ (τ +s) = γ (s) which contradicts the fact thatγ defines a simple closed curv
The equivalence of the norms| · |1/2,p and| · |1/2 is now an easy consequence of (A.1).✷
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Proof of Lemma 8. The first statement is a consequence of the fact thatτ0 ∈ L(H 1
0 (Ω),

H 1/2(Γ0)). For the proof of the second statement one defines

ũn =
{
ûn in ωn ∪ ω̄0,

0 in Ω \ (ω̄n ∪ ω̄0),
ũ =

{
û in ω ∪ ω̄0,

0 in Ω \ (ω̄ ∪ ω̄0),

whereωn := ωγn , ω := ωγ . In the exterior Bernoulli problemω0 is the inner connecte
component surrounded byΓ0, in the interior Bernoulli problemω0 is the domain bounde
byΓ0 and∂Ω . Sinceũn ∈ H 1

0 (Ω) for everyn and the sequence(ũn) is bounded inH 1
0 (Ω)

one can extract a subsequence(ũnk ) which converges weakly inH 1
0 (Ω), hence strongly

in L2(Ω) to some functioñv ∈ H 1
0 (Ω). Next we shall show that̃v = 0 in Ω \ (ω̄ ∪ ω̄0).

Indeed, choosex ∈ Ω \ (ω̄∪ ω̄0) and letN(x) ⊂ Ω \ (ω̄∪ ω̄0) be an arbitrary neighborhoo
of x. Then uniform convergence ofγn to γ impliesN(x) ⊂ Ω \ (ω̄n ∪ ω̄0) for n sufficiently
large which in turn entails̃unk = 0 inN(x) for k sufficiently large. Hencẽv = 0 inΩ \(ω̄∪
ω̄0). By a similar reasoning one arguesṽ = û onω ∪ ω̄0. As a consequence we conclu
ṽ = ũ in Ω which by uniqueness of the limit implies limn→∞ ũn = ũ weakly inH 1

0 (Ω).
Now the statement follows fromτγ û = τγ ũ = 0. ✷
Proof of Lemma 9. Because of Lemma 4 we may restrict ourselves tov ∈ C∞(Ω̄) and
estimate

|Tγnv − Tγ v|21/2,2π =
2π∫
0

(
v
(
γ (t)

)− v
(
γn(t)

))2
dt

+
2π∫
0

2π∫
0

(v(γ (t)) − v(γn(t)) − (v(γ (τ )) − v(γn(τ ))))
2

(sin((t − τ )/2))2
dτ dt

≡ I1n + I2n.

By Lebesgue’s dominated convergence theorem one obtains limn→∞ I1n = 0. Define for
(t, τ ) ∈ [0,2π] × [0,2π] the sequence of functions

hn(t, τ ) := v
(
γ (t)

)− v
(
γn(t)

)− (
v
(
γ (τ)

)− v
(
γn(τ )

))
and observe that for alln ∈ N,

hn(t, t) = hn(0,2π) = hn(2π,0)= 0, hn ∈ C1([0,2π]), hn|C1 � c̃,

is satisfied for somẽc > 0. Furthermore, let

ϕn(t, τ ) = hn(t, τ )

sin((t − τ )/2)
,

where(t, τ ) ∈ U = [0,2π]2 \ ({t = τ : τ ∈ [0,2π]} ∪ {(0,2π)} ∪ {(2π,0)}). Note that
limn→∞ ϕn(t, τ ) = 0 holds for every(t, τ ) ∈ U . Next we derive an integrable bound forϕ2

n.
For this purpose we introduce for some sufficiently smallδ > 0,

Vδ = ({
(t, τ ) ∈ [0,2π]2: |t − τ | < δ

} ∪B
(
(0,2π), δ

)∪B
(
(2π,0), δ

))∩U.
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ds

com-

of the
dic

ion
Thenϕn is bounded onU \Vδ uniformly with respect ton. For(t, τ ) ∈ Vδ with |t − τ | < δ

the mean value theorem implies∣∣hn(t, τ )∣∣= ∣∣hn(t, τ )− hn(t, t)
∣∣� |hn|C1|τ − t|

and consequently∣∣ϕn(t, τ )∣∣� |hn|C1

∣∣∣∣ τ − t

sin((t − τ )/2)

∣∣∣∣� 2c̃
1

1− δ2/24
.

It remains to estimateϕn in (B((0,2π), δ) ∪ B((2π,0), δ)) ∩ U . By symmetry it suffices
to provide a bound inB((2π,0), δ) ∩ U . An argument similar to the preceding one lea
to ∣∣hn(t, τ )∣∣= ∣∣hn(t, τ )− hn(2π,0)

∣∣� |hn|C1

(
(t − 2π)2 + τ2)1/2

for all (t, τ ) ∈ B((2π,0), δ)∩ U which in turn entails the bound

∣∣ϕn(t, τ )∣∣� |hn|C1
((t − 2π)2 + τ2)1/2

| sin((t − τ )/2)|
� c̃

((t − 2π)2 + τ2)1/2

2π − t + τ

2π − t + τ

sin((2π − t + τ )/2)

� c̃
2π − t + τ

sin((2π − t + τ )/2)
� 2c̃

1 − δ2/6
.

Since

I2n =
2π∫
0

t∫
0

ϕ2
n(t, τ ) dt dτ

we obtain limn→∞ I2n = 0 applying the dominated convergence theorem again. This
pletes the proof of the lemma.✷

For the sake of completeness we indicate in the following lemma the construction
periodic extension operatorE referred to in Lemma 5. We utilize the space of 2-perio
functionsH 1/2

2 which is defined asH 1/2
2π with [0,2π] replaced by[−1,1]. EndowingH 1/2

2
with the equivalent norm

|ϕ|1/2,2 =
(
π

1∫
−1

ϕ2(x) dx + π2

1∫
−1

1∫
−1

|ϕ(t)− ϕ(s)|2
| sin(π/2)(t − s)|2 dt ds

)1/2

,

the spacesH 1/2
2 andH 1/2

2π are isometric.

Lemma 10. LetR = (−1,1)2, I = (−1,1) . Then there exists a continuous linear extens
operatorE fromH

1/2 into H 1(R) such thatEu(· ,0) = u.
2
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Proof. Chooseu in C∞(I) ∩ H
1/2
2 and setu = 0 on R \ (−4,4). The proof is a mod

ification of Lemma 6.9.1 in [8] to account for the periodicity ofu. For all (x, y) ∈ R+,
R+ = {(x, y) ∈ R: y > 0} define

(Eu)(x, y)= 1

y

∫
|x−ξ |<y

ϕ0

(
x − ξ

y

)
u(ξ) dξ,

whereϕ0 ∈ C∞
0 (R) is a mollifying function satisfyingϕ0 � 0 onR,

∫
R
ϕ0(x) dx = 1 and

suppϕ0 = [−1,1]. Then by [8, Theorem 2.5.3] we inferEu ∈ C∞(R+) and

lim
y→0

∣∣Eu(· , y)− u
∣∣
L2(I )

= 0.

In view of

(Eu)(1, y) =
1∫

−1

ϕ0(z)u(1 − yz) dz =
1∫

−1

ϕ0(z)u(−1− yz) dz= (Eu)(−1, y),

(Eu)(· , y) is 2-periodic for all 0< y � 1. Next we estimate|Eu|L2(R+). Using Hölder’s
inequality and Fubini’s theorem one finds

|Eu|2
L2(R+) =

1∫
0

1∫
−1

∣∣∣∣∣
1∫

−1

ϕ0(z)u(x − yz) dz

∣∣∣∣∣
2

dx dy

�
1∫

0

1∫
−1

1∫
−1

ϕ0(z)u
2(x − yz) dz dx dy

=
1∫

0

1∫
−1

ϕ0(z)

1∫
−1

u2(x − yz) dx dzdy

=
1∫

0

1∫
−1

ϕ0(z)

1−yz∫
−1−yz

u2(ξ) dξ dzdy

�
1∫

0

1∫
−1

ϕ0(z)

2∫
−2

u2(ξ) dξ dzdy = 2|u|2
L2(I )

.

In the last step we used the periodicity ofu. Next we turn to the estimate of|∂xEu|2
L2(R+).

Because ofϕ0(−1) = ϕ0(1) = 0 we get

∂xEu(x, y)= 1

y2

x+y∫
ϕ′

0

(
x − ξ

y

)
u(ξ) dξ, (x, y) ∈ R+.
x−y
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This relation is also valid if one replacesu by ψ = 1 on (−2,2). ThenEψ = 1 onR+,
hence∂xEψ = 0 onR+ which implies

1

y2

x+y∫
x−y

ϕ′
0

(
x − ξ

y

)
dξ = 1

y

1∫
−1

ϕ′
0(z) dz = 0

onR+. As a consequence we obtain

∂xEu(x, y)= 1

y2

x+y∫
x−y

ϕ′
0

(
x − ξ

y

)
u(ξ) dξ − u(x)

y

1∫
−1

ϕ′
0(z) dz

=
1∫

−1

ϕ′
0(z)

u(x − yz)− u(x)

y
dz

and hence

|∂xEu|2
L2(R+) =

1∫
0

1∫
−1

∣∣∣∣∣
1∫

−1

ϕ′
0(z)

u(x − yz)− u(x)

y
dz

∣∣∣∣∣
2

dx dy

�
1∫

0

1∫
−1

1∫
−1

(ϕ′
0)

2(z) dz

1∫
−1

|u(x − yz)− u(x)|2
y2

dzdx dy

� c1

1∫
0

1∫
−1

∫
|ξ−x|<y

|u(ξ)− u(x)|2
y3 dξ dx dy.

The domain of integration in the last integral is given by

D = {
(x, y, ξ): |x|< 1, 0< y < 1, |ξ − x| < y

}
.

For fixedx ∈ I consider the sectionDx = {(y, ξ): (x, y, ξ) ∈ D}, hence

D =
⋃

|x|<1

Dx.

Observe thatDx can be written as

Dx = {
(y, ξ): x < ξ < x + 1, 0< ξ − x < y < 1

}
∪ {(y, ξ): x − 1< ξ < x, 0< x − ξ < y < 1

}
.

Therefore Fubini’s theorem yields
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|∂xEu|2
L2(R+) � c1

1∫
−1

x∫
x−1

|u(ξ)− u(x)|2
| sin(π/2)(ξ − x)|2

[∣∣∣∣sin
π

2
(ξ − x)

∣∣∣∣2
1∫

x−ξ

y−3dy

]
dξ dx

+ c1

1∫
−1

x+1∫
x

|u(ξ)− u(x)|2
| sin(π/2)(ξ − x)|2

[∣∣∣∣sin
π

2
(ξ − x)

∣∣∣∣2
1∫

ξ−x

y−3dy

]
dξ dx.

Note that∣∣∣∣sin
π

2
(ξ − x)

∣∣∣∣2
1∫

|x−ξ |
y−3dy � 1

π
,

which implies

|∂xEu|2
L2(R+) � c1

π

1∫
−1

[ x∫
x−1

|u(ξ)− u(x)|2
| sin(π/2)(ξ − x)|2 dξ +

x+1∫
x

|u(ξ)− u(x)|2
| sin(π/2)(ξ − x)|2 dξ

]
dx

� c1

π

1∫
−1

2∫
−2

|u(ξ)− u(x)|2
| sin(π/2)(ξ − x)|2 dξ dx

= c1

π

1∫
−1

[ 1∫
−1

+
−1∫

−2

+
2∫

1

]
|u(ξ)− u(x)|2

| sin(π/2)(ξ − x)|2 dξ dx.

By the periodicity ofu we have, for example,

−1∫
−2

|u(ξ) − u(x)|2
| sin(π/2)(ξ + 2− x)|2 dξ =

−1∫
−2

|u(ξ + 2)− u(x)|2
| sin(π/2)(ξ + 2− x)|2 dξ

=
1∫

0

|u(ξ)− u(x)|2
| sin(π/2)(ξ − x)|2 dξ

which leads to the estimate

|∂xEu|2
L2(R+) � 2c1

π3 |u|2
H

1/2
2

.

Analogously a similar estimate can be derived for|∂yEu|2
L2(R+). A density argument com

pletes the proof thatE extends continuously intoR+. Finally we defineEu by reflexion on
y = 0. ✷
Remark 11. Multiplying Eϕ by a functionχ ∈ C∞(R) such thatχ(· ,0) = 1, χ � 0 and
χ(· ,±1)= 0 one obtains an extension ofϕ which vanishes fory = ±1.
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