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Abstract

This contribution combines a shape optimization approach to free boundary value problems of
Bernoulli type with an embedding domain technique. A theoretical framework is developed which
allows to prove continuous dependence of the primal and dual variables in the resulting saddle point
problems with respect to the domain. This ensures the existence of a solution of a related shape
optimization problem in a sufficiently large class of admissible domains.
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1. Introduction

We are concerned with the problem of finding in a given class of domains an optimal
membero* which minimizes the distance of the flux of the system state a desired
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constant flux in its natural norm such thats the solution of a Dirichlet problem an*.
Shape optimization of this type arises, for example, in an optimal control approach to
free-boundary value problems of Bernoulli type which serve as mathematical models for
problems in ideal fluid dynamics, optimal insulation and electrochemistry [1,4].

This problem was recently considered by the authors in [6]. Representing the dual norm
of the flux by theH *-norm of the solution of an auxiliary transmission problem existence
of a solution to the shape optimization problem above was established. By the use of the
transmission problem the delicate investigation of the continuous dependence of the normal
flux on the boundary of the domain could be avoided. The state equation was numerically
solved by an embedding domain technique based on boundary Lagrange multipliers.

Roughly speaking the idea of embedding domain techniques is to extend the state equa-
tion to a larger domain with a simple geometry. The original Dirichlet boundary conditions
thus become conditions on internal curves which are imposed by Lagrange multipliers. The
advantage of such an approach is that due to the simple geometry of the larger domain the
extended state equation can be solved more efficiently on a fixed structured grid. This con-
siderably accelerates global optimization methods which typically need a large number of
evaluations of the cost functional. Moreover, the extension can be arranged in such a way
that the Lagrange multiplier concentrated on a boundary component where homogeneous
boundary conditions are prescribed coincides with the normal flux of the original state.

It is the purpose of this note to demonstrate that the fictitious domain approach can
serve as a framework for analyzing shape optimization problems. In particular it provides
a tool for describing continuous dependence of the states and the Lagrange multipliers with
respect to varying domains. This implies existence of a solution to the shape optimization
problem. We recall that the Lagrange multipliers are sensitivity measures of the cost with
respect to the control variabte To our knowledge this result and this approach are new.

In [6] we use the embedding domain technique as a computational tool only. The basic
features of our analysis are the following: at first we constructaliffeomorphism of a
uniform tubular neighborhood of the boundary of any feasible domain onto a rectangular
strip. Here we use th@2-regularity for the boundaries. Next we build a family of uniformly
bounded extension operators which extend periodic functions defined on the boundary
of a feasible domain into a tubular neighborhood. These tools will allow us to compare
functions which are defined on different domains. Applying our results to the Bernoulli
problem this assumption is acceptable since it is known th@t &ree boundary for the
Bernoulli problem in 2 dimensions is in fact analytic; see the discussion in [5]. A numerical
realization of our approach is discussed in [6].

The outline of the paper is as follows. In Section 2 we describe the shape optimization
problem and the class of feasible domains. The fictitious domain formulation and some
basic facts about periodic Sobolev spaces are recalled in Section 3. The continuous depen-
dence of the solution as well as the Lagrange multipliers is discussed in Section 4. The
verification of some technical results is deferred to Appendix A.

2. Formulation of the problem

In this note we consider the following shape optimization problem:
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1] u(w) 2
min — —
we® 2 av H—l/Z(Ff)

subjecttoAu =0 inw,

1)

u=0 only,
u=c onIyp. (2

Abovew C R?is a doubly connected domain with boundagy= I'rUTy, wherelpis the
fixed, given component of the boundary afg the free component. The fixed boundary
componenfp may be empty. Furthermorejndicates the outward normal unit vectordp

O describes the set of admissible domains Arahdc are appropriately chosen constants;
see below. This optimization problem is motivated by the Bernoulli free-boundary value
problem. A survey of this problem can be found in [5]/1f is exterior tolp the exterior
Bernoulli problem is defined as

Find (w*, u) € O x HY(w*)
suchthatAu =0 in o™,
u=0 only,

u=1 onrlyp,
du
= L onry. (3)
It is known that (3) has a solutiofw™, u) if L < 0 and Iy is Lipschitz continuous [3].
In the interior Bernoulli problemI"; is interior to Ip, u =0 onlp, u =1 on Iy and
L > 0. Substituting: — 1 for u we may without loss of generality assume=0 on I'y.
A solution to the shape optimization problem (1) with vanishing cost leads to a solution of
the Bernoulli problem and conversely.

The description of the admissible topologies is a consequence of the fact that we utilize
results in [7] on Z -periodic functions. In particular we restrict ourselves to 2d-domains.
We assume that the free boundary componentis contained iba$parametrized curves
y: [0, 27] — R2. We shall denote by, the curve represented pyand byw, the domain
bounded by'p andl"y = I',,. From now on we shall writé), instead ofl"y. Hencew € O
if and only if o = @, for somey € S. Let Clﬁn be the space of restrictions[i@, 2] of the
subspace of 2-periodic functions irC¥(R, R?), k € N. We assume € S if and only if y
satisfies

(S1) yeCs .

(§2) There exist positive constants y1, y2 such that
ly(®)| >« forallzel0, 2],
[V]oo < ¥1, [V ]oo < 2.

(83) y represents a positively oriented closed curve.
(S4 @, C 2=(-11>2
(85) There exists a positive constahsuch that

dist(Io, ) >d,  dist(I, 92) > d.
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(S6) There is a constarit > 0 which does not depend gn such that for every e
[0, 2] there are two open disd8; and B, of radiush which satisfyB; C w,,
B, C 2\ @, andy(t) € B; N B,.

In (§2) above| - | denotes the supremum norm. As a consequen¢82)fwe note that
every parametrization i¥ is regular, i.e., the tangent vector is defined everywhere. As-
sumptions(S1) and(S3) ensure that every element Sfrepresents a closed curve with

a fixed orientation. Let us briefly discug§6): choosey € S, t € [0, 2] and letx; be

the center of the balB; in (56). Theny () — x; = —hv(¢) follows from the observa-
tion y (1) € argmir{|y (t) — x;|% © € [0, 27]}. This entailsy (1) — nhv(t) € wy, and by a
similar reasoning/ () + nhv(t) € £2 \ @, for n € (0, 1), wherev(r) denotes the exterior
normal unit vector td", aty (t). Hence assumptio@6) implies the existence of a tubular
neighborhood, of I', such that

Dy ={x e :dist(x,I)) <h} = D; UD;,
D = |y £hpv(). n€l0.1), 1 €0, 271},
Df c2\w,. D, Cay. (4)

Note that the widttk of the tube may be chosen independently af S. As a consequence
{I): y €S} is afamily of simple closed curves. We remark that in view of the regularity
results in [2] the familyS contains the free boundary for the exterior problem if the fixed
domain is star shaped.

Existence of a solution to (1) usually is derived from some continuity of the cost-
functional. This requires that a statement like(c,) converges tat(w;) asy — y”
makes sense. Since the domain of definition @5, ) depends ory this amounts to com-
paring elements of different function spaces. We circumvent the ensuing difficulties by a
fictitious domain framework which provides a natural concept for such a convergence. We
observe that for the verification of Theorem 2 below ofly-regularity of the state is re-
quired. Therefore, the results of this paper can be readily extended to a general uniformly
elliptic second order operator with*™ coefficients and an inhomogeneous forcing term in
H~1(£2). In this case the normal derivative in the cost functional should be replaced by
the conormal derivative. This generalization is useful in situations where the continuous
dependence of the flux on the domain cannot be argued from the regularity of the state.

3. Reformulation of the problem

3.1. Fictitious domain formulation

It is well known that for anyw € O the state constraint defined by (2) has a unique
solution which is at the same time the unique minimizer of

min1|V 12
SV,
vek 2 @

K ={ve Hw): v, =c, v|r, =0}
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Let us replace this constrained optimization problem by the following equivalent problem:
min }|Vﬁ|§2,
ek 2
K = {0 € H}(2): Dl =c, |, =0}. (5)
We endow the spacH(s2) with the norm
1Bl iy = (VO, Vg2, e HHS).
Clearly, (5) has a unique solutigne K which is characterized by
(Vii, Vd)o =0 foralld e {d e HJ(2): |, =0, 0|5, =0}. (6)

Since the constrained variational problem (6) is defined in the fixed dafhdive original
boundary conditions have to be interpreted in the sense of internal traces. It is easy to see
thatu = iil,, solves (2). Letd ~¥/?(Ip) and H~Y/?(I,) be spaces of Lagrange multipliers.
Then the necessary optimality conditions for (5) are given by

Find (@, A, o) € HE(2) x H~Y2(I,) x H~Y2(Ip) such that
(Vii, Vo) — (o, 100) rp — (Ay, Ty D), =0, © € Hy($2)
(o, Tolt) ry + (y, Tyil) r, = (110, &) Ip>
(1y. o) € HY2(I) x H™Y2(Iy), (7)

where(-, ), and(-, )5, denote the duality pairings betwe&rr/2(r")) and HY/%(I,),
respectivelyH ~Y/2(I'p) and HY/2(I) andg = ¢ on I'p. In addition,rod = 9|, andz, b =

|, are the traces of on Iy and I, respectively. System (7) has a unigue solution
(@, hy, 20). It is readily seen that = i|, solves (2) andi|p, = 0, whereB, denotes

the connected component of \ @ adjacent tol},. As a consequence, coincides with
du/dv in H*l/z(l"),); see, e.g., [9]. Hence, the shape optimization problem (1) may be
equivalently formulated as

1 5
(g;l(g Ep\']/ - LlH’l/z(Fy)’ (8)

wherex, is the second component of the solution of (7).
We now discuss the equivalence between the parametrization of the free boundary by
means ofy € S and 2r-periodic functions o0, 2r].

3.2. Periodic Sobolev spaces

Let L%ﬂ denote the closure of the space of continuotsp2riodic functions with re-
spect to the norm irL?(0, 2rr). Following [7, Chapter 8] we define the periodic Sobolev
space

1/2
Hy?={¢ € L3, |plo12 <o),
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where the norm - o,1/2 is given in terms of the Fourier coefficients of ¢ with respect
to {¢"™} ez bY

00 1/2
I¢I0,1/2=< > (1+m2)1/2|am|2> : 9

m=—00

Itis shown in [7] that for continuously differentiabler2periodic functionsp this norm is
equivalent to

1/2
lp(1) — ¢ (s)[2
|¢|1/22n—(|¢|L2 +//|Sm((t_s)/2)|2dtds> . (10)

Furthermore, if the curvé” is parametrized by somee S one can define the space
1/2 1/2
HyY*(r)={p e LAI): 9oy € Hy!?)

which is endowed with the norry|1/2,, = |¢ o y|1/2,27. In addition there is also the
standard Sobolev spaég'/2(I") the norm of which can be intrinsically expressed as

1/2
2 lo(x) —o(»)I?
|§0|l/2= (|¢|L2(F)+/ Wd]"xd[‘y . (11)
r r
This is equivalent to
7 T 0oy ()12 v
. poy(t) —poyl(s . .
l1j2y = /|¢oy|2|y|dt+/ v )|y ()| drds)
l J o SPIORIOT: P®ll7 |

(12)

where the notatiofi- |1/ ,, refers to the particular parametrization/Gfused to represent
the norm.
Next we turn to the relation among the spaﬂ%z, 1/2(1“) andHY2(I).

Lemma 1. Let I}, be a plane curve parametrized by somes S. Then the spaces

Hl/Z(F ) and Hl/z(Fy) coincide as sets and are topologically equivalent. Moreover, the
equivalence is uniform with respectjoc S.

The proof of this lemma is given in Appendix A. As a consequence the identity
, HY(I)) — H, 12 (I'y) is an isomorphism. The operatgy, : Hl/z(Fy) — H. 1/2 given
by Jy (@) = ¢ oy isan isometry. In fact, by the definition of the spa‘ﬁé/z(l“ ) |t is clear
that 7, is an embedding oHl/Z(F ) into Hl/ Since for anyy € H2/ the function
¢ = x oy lis an element oHl/Z(F ) we find that7, is surjective. Hence the spaces
Hl/2 1/2(1“ ) andHY?(I",) are homeomorphic.
Recall thatr, : H($2) — HY?(I')) denotes the trace operator onfp and define
7, HY(2) > Hy/* by

Ty =Jy0iyo1y,
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i.e., 7, maps traces o}, to periodic functions ofi0, 27]. Then7, € LHY2), Hzlf)

and in view of the preceding discussion surjectivity®f follows from the surjectivity

of 7,,. Below we utilize the notation-, )2, (-,-), and{(-,-)r, to indicate the duality

pairings in Hzlf, H;/Z(Fy) and HY/2(I,), respectively. Fon, € H~Y2(I)) andg €

HY2(I,) we obtain
(@), =i, Ay iy ), = (T, 1, 0y Ty iy @)y,
= <)~¥y, jyiy(/)>2ﬂ = ()N\Va poy)om,
where we have set
Ay =T, iy
In particular this implies
Ay, 1y 001, = (Ay, Tyiy Ty D)2n = (Ay, Ty D)2n

forall o € H1(£2). The norms oh, andiy are equivalent uniformly with respecttoe S.
Moreover, a functional induced by a consténtransforms according to

2
(L.o)r, =L/|7>(t)|<poJ/dt=(L|7?|,¢07/)2,,.
0

This discussion shows that the optimization problem (7), (8) may be replaced by
min J(7) = 2|7y — LIZI[% (13)
yESp V)= 2 Y 14 H2_7-[/ ’

where(i, %, , ko) € HE(2) x Hy'? x H=Y2(Ip) satisfies

(Vit, Vi) — (b0, T0d) 1y — (hy, T D)2r =0, D € Hy($2)
~ U ~ -1/2 _
(10, 7o) 1y + (L, Ty D)2 = (10, &Vryr (L o) € Hp'2 x H-Y2(I),  (14)
andS, C S will be specified later. The periodic Sobolev spaces were introduced to be able

to analyze the dependence pre S of the boundary terms in (7) which represent the free
boundaryr’, . Boundary terms defined afy can be discussed using the standard spaces.

4. Continuous dependence

The main contribution of the paper is the following theorem on continuous dependence
of the solution of (14) ory € S which implies existence of a solution to the shape opti-
mization problem (13).

Theorem 2. Assumey, — y in C1([0,27],R?), y,,y € S and let (ii,, An, o) €

Hy(2) x Hz_ﬂl/2 x H~Y2(Iy) be the solution of(14) corresponding toy,. Then

M,y 00 fi = i Strongly in HE(82), lim .00 &, = & weakly in Hy_ 72, im0 kon = Ao
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strongly inH ~Y2(I5) and (i1, A, A0) is the unique solution qfl4) corresponding tg/. In
addition, ify, — y in C2([0, 271, R?), then(%,) converges ta. strongly inHz’nl/z.

Corollary 3. The functional/ defined in(13) attains its minimum in compact subsetsSof

To provide an example we mention that it can be shown fat {y € St |y () —
()| < plt — s, 1,5 € [0, 27]} is compact inC2([0, 2], R?) for everyp > 0.

The proof of Theorem 2 is decomposed into several steps. At first we establish a uniform
bound for the operators, .

Lemma 4. The family of trace operators,: y € S} is uniformly bounded with respect to

. 1/2
y in LOHX(R), Hy!?).

Proof. In order to obtain a uniform bound o7, } we analyze the proof of the trace
theorem [7, Theorem 8.15] with a slight modification to take into accountfihéas in

the interior of 2. The basic step in this proof is to establish a diffeomorphism between
0 = (0, 27) x (—1,1) and the cut tubular neighborhoa, which is by, defined in (4),
cutatr =0,

Dy, ={y@®) +hnv(1), ne(=1,1), 1 € (0, 2n)}. (15)
Define the mag$, : Q — D, by
Sy, m=y@®) +hnp@), (n)eQ. (16)

For anyx € by let p(x) denote the orthogonal projection efonto I, i.e., p(x) mini-
mizes

A =[x —y®[
overt € [0, 27 ]. The estimate
dty =277 =2(x =y (0,7 ®) = 2(¢® = |x =y O|[F (®)]) > 2(&* — hy2)

shows thati(r) > «? holds in{z € (0, 2): |x — y(¢)| < h} for h sufficiently small & may
be chosen independently of which implies the uniqueness of the projectjpfx). There-
fore, there is a unique € [0, 2) such that

x —y () =Lv(t")
with

| =lx=yE] xew,ND,y,
T x =y @) xe(R2\wy)ND,.

This shows that any € D, may be represented as
x =y () +hnv(t)
with (¢, n) € Q uniquely defined. Hencg, is bijective. Since

detDS, (t, 1) = —hy/ p2 + yZ + h?n(b1vz — v12),
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one concludes that d&xs, (¢, n) # 0 on Q for i sufficiently small. ThusS, defines a
C1-diffeomorphism ofQ onto D, .

Choose: € Cl(by) such that: vanishes ordy (¢) + hv(¢): t € (0, 27)}. Arguing as in
[7, p. 121] one obtains

1
| Tyl 0 = |0 Sy (-, 0)|H1/2‘2” < ﬁw o Sylui) < Clulyrp,) (17)
where the constar@ depends on a bound fpdetDS, |Z§C(Q) which is uniform iny € S

(see (22)). Finally, the above estimate (17) can be extended to arbiteafi? (£2). Indeed,
choose a functiorf € C1(R, R") satisfying

fO) =1, f =0 on]0,o00), f=0 on(—oo,—1]U[1, c0)
and define

_ | @281 yeb,,
sy = {0 ! else, ’

wherer; is the canonical projection d@&? onto the second coordinate. By continugty
can be extended uniquely to an elemen€dfs2) denoted by the same symbol. Note that
gy depends oy becauseD, ands, do. By constructiong, € C1(£2) satisfies

ug, =0 in.(_Z\Dy, ugy=u onrly.
Applying (17) toug,, one obtains

[Tyl by = ‘Ty(ugy)‘Hl/z’zﬂ S Clugylpip,)
S C(Ifloo + 11 o)l grp,y < C(L41f oo) ] 1)
This completes the proof of the lemmar

Next we show a basic extension result which is of interest for itself.

Lemma 5. There exists a continuous linear extension operét,oerljf2 — Hol(.Q) such

that 7, £, ¢ = ¢ holds for allg € Hzlf and|&, | is uniformly bounded foy € S.

Proof. By Lemma 10 and the discussion preceding it there is an extension operator

£:Hy? - HY(Q), 0 = (0,27) x (—1, 1), satisfying(£p)(-,0) = ¢, (E¢)(-,+1) =0

and (£¢)(0, -) = (Ep) (27, -); see also Remark 11. Recall the cut tubular neighborhood
D, of I, defined in (15) and the diffeomorphissy : 0 — D, introduced in (16). Let
HX(Q)={ve HY(Q): v(0,") =v(2r, )}, defineD, : HY(Q) — H(D,) by

Dyu:=uoS,"
and set
&y =D,E0,

where™ indicates the extension by zero fraby, to 2. Because of
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TE&@=JTy0iyo Tyﬁf\a” = (5;/\50) oy = (590)(5;1(7/)) =(p)(-,0) =0,

&, satisfies the desired extension property. The uniform boundednegswill follow
from a uniform bound foD,,. Consider

2 —-\T -1 _¢—-1)2
|ny£Dyu|L2(Dy)=/|(thuoSV ) (DS,) " o8, | dxdy

Dy

:/|(vmu)T(DsV)—1|2|dei(Dsy)|drdn
0

g/|v,nu|2|(DSy)—1|2F|det(DSy)\dtdn,
0

where| - | denotes the Frobenius norm. In view of

B 1 hv —hvy |2

D 112 1det D = R 1.)

‘( S)/) ‘F‘ el( SV)| |de1(DSy)|‘<_y2_h7]U2 Vl+hnvl F
_ 1 2 - -2
_7|de1(DSy)|(h + |y + hno|?)

and
|det(DS,)| = h|—1y| + hn(i1vz — v1do)|
>h(|y|—h|b|)>h(a—h|b|)>%h (18)

which by (§2) holds for 4 sufficiently small independently of € S. Using a uniform
bound for|y| and|v| one obtains

InyJDyM|L2(Dy) < C|th14|L2(Q),

where the constantis independent of € S. Since|Dyu|.2(p,, can be estimated simi-
larly, the desired uniform bound fap, follows. O

Remark 6. The construction of the extension operafprshows that supf, ¢ C D, .
Lemmas 4 and 5 entail uniform a priori bounds on the solution of (14).

Proposition 7. The set of solutionf(ii,,, X,,, Aoy): y € S} of (14)is bounded inHol(.(Z) X
Hy Y2 x H=Y2(Ip).

Proof. Letd* € H&(.Q) be such thai* = c on I'y and9* = 0 on I, for everyy € S. Such
a function can be constructed independentlyaf S by (S5). Then from (5) we derive
the bound

lity | g1y < 10" g1
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forall y € S. Choosep € HY2(Iy), extendy to o € H1(£2) such that supp C {x € £2:
dist(x, I'p) < d/2} and insert in the first equation of (14). This results in

(Aoy. @)y = (Aoy, T00) rp = (Vity,, VD)o < mylHl(Q)mlHl(Q)

< k|ﬁy|Hl(g)|(ﬂ|1/2,1‘o

which implies that

Aoy | 1121y < Klity | g1y <KIO* g1y
wherek denotes a suitable embedding constant. In view of Lemma 5, Remark 6 and (14)
one obtains fop e Hzlf,
|y @)ox | = Ay, Ty Ey@)2n | = |(Vity, VE, @) 2| <1E Iy 1oy l@l1/2.27

which implies the desired a priori bound fboy using the bounds fat, and&,. O
The proof of the next two results is deferred to Appendix A.

Lemma 8. Let y, — y in C([0,27],R?), y,,y € S and let (ii,) be any sequence in
H(R2) satisfyingroi, = g and 1y, i, = 0. If i, converges weakly td in H}(£2) then
tou =g andr, i =0.

Lemma. Lety, — y in CX([0, 271, R?), y,.,y € S. ThenT,, converges strongly t@,, .
Now we are ready to enter the proof of Theorem 2.

Proof of Theorem 2. By Lemma 7 one can extract a subsequence (again denoted by

((fin, An, 2on))) cONverging weakly tai, i, Ao) € H}(£2) x Hz_ﬂl/2 x H™Y2(Ip). In view

of Lemma 8 the second equation in (14) is satisfied. For ft”)xediol(Q) one obtains using
the first equation in (14),

im (A, 7, 0)27 = lim ((Viin, V)@ — (Aon. 100) 1)
n—o0 n—oo
Because of
<5¥na 7y,,ﬁ)27r = ()N\na ‘Ty,,ﬁ - Tyﬁ>27r + <5¥n’ TylA))Zn,
Lemma 9 entails
lim <5Ln: Tynﬁ)Zn = (5\: Tyﬁ>2n»
n—o0
which combined with (19) shows thét, i, 1o) satisfies also the first equation in (14). By

uniqueness of the solution the original sequence converges wealdly Xpig). In view
of (14) we have

(Viin, V)2 — (Aon, T00) 1y — (Ans Ty 02w =0,
(Vit, Vi) — (ho, Tod) 1y — (A, Ty D)2z =0. (20)
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Insertingv = u,, in the former and = # in the latter and using the second equation in (14)
yields
\Vinls = (ons )15, |VillG = (o, &)1
which entails lim— oo liin| 1) = lit| y1(s2)- TOgether with weak convergence this implies
strong convergence @f, to .
For anyp € HY2(Ip) let € H}(52) be such thatgd = ¢ andd vanishes outside of a
sufficiently small neighborhood dfy. Insertd in (20) to obtain
|(hon = 20, @) 1| = |(V(ltn — i), VD)
<y — il gioy 101 gi(gy < Klitn — il g1g)lely2,m
which implies convergence ab, to Ao in H~Y2(Iy).
In order to obtain strong convergence &f to 4 in Hz;l/z we assumey, — y in

C?([0, 271, R?). Observe that for every € Hzlf the extensions,, ¢, respectivelys, ¢

vanish in a neighborhood dfy. Therefore, using (20) we obtain fere Hzlf,

(An = A, )2 = (hn, Ty, E @) 27 — (s T Ey @) 2n
= (Viip, ng,,ﬁ”)!) —(Vi, ng(p).Q
= (V(ip — 1), VEy,@) o + (ViI, V(Ey, — E)9) -

Below we shall denote b¢ a generic positive constant which does not depengdandy,, .
Lemma 5 entails the estimate

‘(V(ﬁn — i), ng,,‘ﬂ)g‘ < Cliy — ﬁ|H1(Q)|(p|1/2,27[~ (21)
By Remark 6 we obtain

(Vii,V(E, —E)¢), = / VﬁTVEVn(pdxdy—/VﬁTVEV(pdxdy
D}/n DV
= / Vi V((Ep)o S, ) dxdy — / Vi V((Ep)o S, 1) dxdy,
SVH(Q) SV(Q)

whereS, : Q — D, is the diffeomorphism defined in (16) asd Hzlf — H(Q) is the

extension operator introduced in Lemma 5. A short calculation shows
Vi V((Ep)o S, 1) dxdy
5,(Q)
- / vi' (DS,)™ " 05, (VEP) 0 S, dxdy
5,(Q)
= / Vil 08, (DS,) T (VEp)|detDS, | dtdy
Q
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and analogously fop replaced byy,. This results in
(Vit, V(E, —E)9) o

= / Vil o8, (DS,,) T (VEp)|detDS,, |dt dn
0
- / Vil 0 8,(DS,)" T (VEp)|detDS, | dtdy

0

= / Vil 08, (DSy,) T (VEp)(IdetDS,, | — |detDS, |)drdn
0
+

/vaT 0 8,,(DS,,)"T(DS, — DS,,)(DS)) " H(VEp)|detDS, | dt dn
0
+ /(WT 0S8y, — Vil 08,)(DS,) T (VEp)|detDS, |dtdn

0
= I, + oy + I3y.

Using (§2) and Lemma 5 one obtains the estimate

|I,| < |detDs,, —detDSV|Loo(Q)‘|DS;nT|F‘Lw(Q)/|VﬁToSanIV&p|dtdn

< C|detDS,, —detDS, |1()| Vi o Sy, 112(0)l¢]1/2.27-

Above we used the fact thﬁtDS Te|, Lo (@) Can be bounded independentlyofvhich is
shown in the proof of Lemma 5. By (18) one finds

12

R 1 R R

(/lVMTOSVHIZdtdn) <—| detDs. |1 (Q)|M|H1(Q)<C|M|H1(.Q), (22)
Yl

which implies

|, < C|detDS,, —detDS, |1=(g)l¢l1/2.2x- (23)
A similar argument leads to

[I24] < C[IDSy, = DSyl r| oo g 011/2.27- (24)

In order to estimatelz, choose an arbitrarg > 0 andw € C3°(£2) such that|i —
|1y < €. By an easy argument one derives

IVi" oSy, — Vi’ 08, |120) < Cle+ VD' 08, — Vi 08,112.0))
which in turn results in

[z < C(e+ VDT 08y, = VI 0 Sy1120)) 917227 (25)
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Combining the estimates (23)—(25) one eventually obtains
|(Vi, V(Ey, — E)0) | < (c(vn. ¥) + Cé)lpl1/2.27, (26)

wherec(y,, y) vanishes ag, — y in C3([0, 2], R?). Sinces was chosen arbitrarily the
claim follows from the estimates (21) and (26)2
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Appendix A

Proof of Lemma 1. We prove a slightly stronger result. Lé‘é;} be the space of restric-
tions to[0, 2] of the subspace of2-periodic functions inCT1(R, R?) and define

A

S=lyecyt Wlw<n 70|z
[y (@) — 7 ()| < yolt —s| forall ¢, s € [0, 2],
y satisfiesS3)—~(S6)},

wherew, y1 andy, are given by(S2). Note thatS is compact irC%n ands c 8.
Choosey € S. By definitiong € L2(I") is an element oH;/Z(F) if and only if
21 21w

2
2 2 2 lpoy(®) —poy(s)]
I‘p|l/2,p:|‘P°V|1/2,2n=|<ﬂ°V|L% —i—/
00

|sin((r — 5)/2)|?

dtds < oo.

Using the parametrizatiop € S we havey € HY/2(I") if and only if
2

|¢|§/2,V=/|(P°V|2|)'/Idt
0
27r271| ® ()|2
goy()—¢poy(s ) )
+// |y ]|y ()| dt ds < oo.
ly (1) =y ()12
00 4 Y

Hence the equivalence follows from the assumptiongtwhich imply the estimate
m ly (@) —y(s)l
S sin((t —5)/2)]
or equivalently

< ly(t +5)—y(s)l
| sin(z/2)]

M, 0<t,s<2n,

<M7 0<|T|7s<2n7 (Al)

for positive constants:, M which are independent ¢f S.
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The proof of (A.1) utilizes the elementary inequality

5 .
—<_S$<l, O<x<m. (A.2)
T min(x, T —x)
The estimate from above in (A.1) is an easy consequence of (A.2). Next we establish the
estimate from below in (A.1). There is©3§ < 7 which does not depend ane S such

that for everys € I = [0, 2] at least one of the inequalities
n®|=%, @)=
Y1 = 4 Y2 = 4

holds for allé € (s — 8, s + &) N 1. This is a consequence pf(s)| > « for all s € [0, 27 ]
and the uniform equicontinuity gf. Next we partition the interval into

I]_:{SGI: |;‘/1(§)|>%for$e(s—8,s+5)ﬂl},
L=1I\I.

We distinguish three cases: assume at first|@| < § and choose € /1. The argument
for s € Iz is analogous. Using (A.2) and the propertiessadne obtains

ly(+s) =y

2 2
Frar m|y<r +5)—y)| = m|n(r +5) = y1(9)]|

2

2 (.
= /|V1(t)|dt
T

N

T+s
o
2 .

By a limiting argument this inequality also holds fer= 0. The same inequality can be
established if 2 — § < |t| < 27 using the periodicity of . If § < |7| < 27 — § the desired
estimate follows from

k< |yt +s5)—y)| <2p0 (A.3)

for (|z|,s) € [8, 27 — 8] x I, whereyg andk are independent of € S. We only prove
the lower bound in (A.3). Assume on the contrary that there are sequépges S,
(|Tnl, sn) €8, 2 — 8] x I such that

1
|yn(fn +Sn)_yn(5n)| <;a neN.

By compactness of and [, 27 — 8] x I one can, without loss pf generality, assume
iMooy =vin C%n, M, =1 andlim,— s, =swithy € S, (|t],s) € [8, 27 —
8] x I. In view of
Y@+ —v©®|<|y@+9) —y@+s)|+ |y @ +s0) — va(ta +50)|
+ |Vn(7:n +sn) — Vn(sn)| + |Vn(sn) - V(sn)|
+ |y (sn) —v()] — 0,
n—oo

we arrive aty (t +s) = y (s) which contradicts the fact thatdefines a simple closed curve.
The equivalence of the norms|1/2 , and| - |1/2 is now an easy consequence of (A.1)J
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Proof of Lemma 8. The first statement is a consequence of the factzr@atcﬁ(Hol(Q),
HY2(I)). For the proof of the second statement one defines
i _{12,, in w, U o, ~_{12 inwU o,

"T10  in2\ (@, Uddp), 10 in2\ (@Uap),
wherew, := w,,, ® := w,. In the exterior Bernoulli problemy is the inner connected
component surrounded by, in the interior Bernoulli problemy is the domain bounded
by I'ho andd 2. Sinceii,, € Hol(Q) for everyn and the sequend@,,) is bounded irH(}(.Q)
one can extract a subsequeriég,) which converges weakly irH&(.Q), hence strongly
in L2(£2) to some functiory € Hol(Q). Next we shall show that =0 in 2 \ (& U @p).
Indeed, choose € 2\ (®@Uwp) and letN (x) C 2\ (U ag) be an arbitrary neighborhood
of x. Then uniform convergence gf to y impliesN (x) C 2\ (v, Udp) for n sufficiently
large which in turn entail8,, = 0 in N (x) for k sufficiently large. Hencé =0in 2\ (o U
@p). By a similar reasoning one argugs= ii on w U @gp. As a consequence we conclude
v =1u in 2 which by uniqueness of the limit implies lim i, = & weakly in Hol(Q).
Now the statement follows from,ii =7, =0. O

Proof of Lemma 9. Because of Lemma 4 we may restrict ourselves toC*(£2) and
estimate

2

T30 — Ty 012 0.0 = /(v(y(r)) —v(ya())? dt
0

2 21 2
+// W @) v @) = @) = v @M
00

SN —1)/2))2 :

= 11, + Ipy.

By Lebesgue’s dominated convergence theorem one obtaips. linty, = 0. Define for
(t,7) €[0, 2] x [0, 2] the sequence of functions

h(t,T) :=v(y (@) — v(va () — (v(¥ (D) — v(ya (D))
and observe that for all € N,

hu(t,1) = h(0,27) = hy (2,00 =0, h, € C([0,27]), haler <E.
is satisfied for somé > 0. Furthermore, let

(t.7) = ha(t, 7)
o D = Sine—1)/2)

where(t,7) e U = [0,2712\ ({t = : © € [0, 271} U {(0, 27)} U {(27, 0)}). Note that
lim,— oo ¢n (¢, T) = 0 holds for everyz, t) € U. Next we derive an integrable bound fpf[
For this purpose we introduce for some sulfficiently smiall O,

Vs = ({(t, 7) € [0, 271% [t —1| < 5} U B((O, 271),5) U B((Zn, O),(S)) NnU.
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Theng, is bounded o/ \ Vs uniformly with respect ta:. For (s, ) € Vs with |t — | < §
the mean value theorem implies
|hn (2, T) ]| = |ha (1, T) = hu (1, 0)| < |hn] 2]t — 1]
and consequently

T—t ‘ <2z 1
sin((r —0)/2)| S “1-s2/24

|§0n(ta T)| < haler

It remains to estimate, in (B((0, 2x), §) U B((2r, 0), 8)) N U. By symmetry it suffices
to provide a bound irB((2r, 0), §) N U. An argument similar to the preceding one leads
to

a1, 0| = [ (2, 7) = b 2, 0)| < [l en (2 — 27)% 4 72) 2

forall (z, ) € B((2r, 0), §) N U which in turn entails the bound

((t — 27)? + 12)Y/2
[sin((t — 7)/2)|
((t — 2m)2 4+ t2)V/2 21 —t+71
2r —t+t sin((2r —t+1)/2)
2r —t+1 __x
sin((2r —t+1)/2) ~ 1—62/6

|§0n(ta T)| < |haler

N
[}

/A
N

Since

21t
Izn://go,f(t,t)dtdt
00

we obtain lim,_, o I2, = 0 applying the dominated convergence theorem again. This com-
pletes the proof of the lemma.O

For the sake of completeness we indicate in the following lemma the construction of the
periodic extension operatér referred to in Lemma 5. We utilize the space of 2-periodic
functionstl/2 which is defined aﬂzlf with [0, 2] replaced by—1, 1]. EndowingHg,L/2

with the equivalent norm

i P T o) — o) v
_ 2 2 o) —@(§
|<P|1/2,2—<71/(p X)dx +m // lsm(n/z)(t_s)'zdtds) ,
S1h

-1

the spaceﬂzl/ 2 andelji2 are isometric.

Lemmal0.LetR = (-1, 1)2, I = (-1, 1) . Then there exists a continuous linear extension
operatoré from Hzl/2 into H1(R) such that€u(-,0) = u.
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Proof. Chooseu in C*®(I) N Hl/2 and setu =0 onR \ (—4,4). The proof is a mod-
ification of Lemma 6.9.1 in [8] to account for the periodicity of For all (x, y) € RT,
RT ={(x,y) € R: y > 0} define

1 _
(Ew)(x.y)= = / wo(x E)u(s)ds,
y y

lx—&l<y

wheregg € C3°(R) is a mollifying function satisfyingso > 0 onRR, fR po(x)dx =1 and
suppypo = [—1, 1]. Then by [8, Theorem 2.5.3] we inféu € C*°(R™) and

yliLn0|€u(- ,y) — ”|L2(1) =0.
In view of
1 1
(Eu)(1, y)=/wo(z)u(l—yz)dz=/¢o(z)u(—l—yz)dz=(é’u)(—l, »)s
1 1

(Eu)(-, y) is 2-periodic for all O< y < 1. Next we estimat¢€u| 2 g+,. Using Holder's
inequality and Fubini’s theorem one finds

1

/(po(z)u(x —yz)dz
-1

1

/ 9o(2)u?(x — yz)dzdxdy

2
dxdy

o\n—\ O\H O\H o\n—\

2
|5M|L2(R+)

N

I
i

@o(z)/uz(x —yz)dxdzdy

1-yz
00(2) / W2(€) dE dzdy
—1-yz

90(2) f u?(§) dg dzdy = 2|ul?, ).

"—‘\u—\ "—‘\u—\ 'L\H L\H "—‘\u—-

VAN
o\n—\

In the last step we used the periodicityiofNext we turn to the estimate of, Eu|?
Because ofp(—1) = ¢o(1) = 0 we get

L2(R+)"

x+y

1
axgu(an)Zy_ / ¢O<xyé>u(é)dé (xsy)€R+'

x=y
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This relation is also valid if one replacasby ¥ =1 on(-2,2). Thenfy¥ =1 onR™,
henced, £y = 0 on R* which implies

1x+y § 11
x—
= |« dé=—/¢&ﬁk=o
y2/°<y> ylo
x—y _

on R™. As a consequence we obtain

x+ 1
1 —
8x5u(x,y)=—2/<p6(x ‘5),4(5)[15_@ 9o(2) dz
) y v )

1
,, ulx —yz) —u(x
_ / oo LY Zu)
y
-1
and hence

2
/%(z)—”(x - yzy) —4) ol dxdy

111 1 ) 2
<///(<ﬂ6)2(z)dz/|u(x_yzz_u(x)| dzdx dy
0-1-1 -1 Y

1 1 2
<C1// / Mdsdxdy.
0 -1

y

The domain of integration in the last integral is given by
D={(xy,6: IxI<1 0<y<1 [§—x| <y}

For fixedx € I consider the sectioPp, = {(y,&): (x, y, &) € D}, hence

D= U D,.

[x|<1

Observe thaD, can be written as

Dx={(y,§)3x<§<x+1, 0<§—x<y<1}
U{(ré:x—1<é<x, 0<x—&<y<1}]

Therefore Fubini's theorem yields



684 J. Haslinger et al. / J. Math. Anal. Appl. 290 (2004) 665-685

1 x 1
2 _ u@ —u@? |7 2/ 3
|3x5u|L2(R+)<61// |sin(n/2)(g—x)|2[s'n2(§ x) y=3dy | d& dx
71)671 X—E
FF e —uwP [|on 2 f
u —u(x LT _3
+Cl//|Sin(71/2)(f§—x)|2|:sm2(é x) /y dy:|d§dx.
-1 x %‘*X
Note that
T 2/1 3 1
sin= (& —x) yRdy < =,
2 P
[x—&]
which implies
1 x ) x+1 5
|8, Eul? ﬂ/ @ —u@ o ®—e@P
2@ =5 ] L) Tsin2E - 0R T T sine/2@ - 0P
1 2
ﬂ// |u(€) —u(x)|? ik dx
w |sin(m/2)(€ — x)|2
-1-2
1 1 -1 5
g/ / / / @) —uP
B | sin(z/2) (& — x)|?
-1 -2

By the periodicity ofu we have, for example,

-1 -1
/ |u(§) —ux))? dé_/ u(§ +2) —ux)|? d
2|Sin(n/2)($+2—x)|2 ) Isin(m/2)(E +2—x)|2

lu(€) —u(x)|? g
|sin(r/2) (& — x)|?

which leads to the estimate
C
|0:EulF o gey < 5l

Analogously a similar estimate can be denved|ﬁ;r€u|L2(R+) A density argument com-

pletes the proof thaf extends continuously int®*. Finally we define€u by reflexion on
y=0. O

Remark 11. Multiplying £¢ by a functiony € C*°(R) such thaty(-,0) =1, x > 0 and
x (-, £1) = 0 one obtains an extension @fwhich vanishes foy = +1.
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