

Natural Hazards in a Changing Climate

D. Maraun Wegener Center for Climate and Global Change, University of Graz

D. Maraun Natural Hazards 25 May 2023 1 / 20

Outline

Natural Hazards

Changing Weather Extremes

Changing Natural Hazards

Natural Hazards

Changing Weather Extremes

Changing Natural Hazards

D. Maraun Natural Hazards 25 May 2023 3/20

Natural Hazards

Natural phenomena that might have negative effects on humans or the environment

Geological

- (Earthquakes, volcanoes)
- Avalanches
- Landslides & Debris Flows
- Rock falls
- Floods
- (Meteorological extreme events)

Biological

Epidemics & pandemics

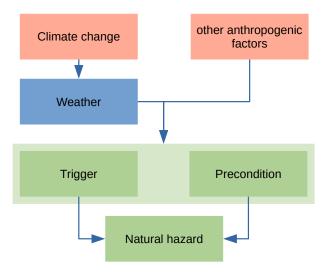
National Risk Index, US Federal Emergency Management Agency

Natural Hazards

Natural phenomena that might have negative effects on humans or the environment

Geological

- (Earthquakes, volcanoes)
- Avalanches
- Landslides & Debris Flows
- Rock falls
- Floods
- (Meteorological extreme events)


Biological

Epidemics & pandemics

National Risk Index, US Federal Emergency Management Agency

Natural hazards and weather and climate

6 / 20

- How does weather precondition and trigger natural hazards?
- ▶ How does climate change alter these weather conditions?
- What is the relative role of climate change and other anthropogenic factors?

Natural Hazards

Changing Weather Extremes

Changing Natural Hazards

D. Maraun Natural Hazards 25 May 2023 7 / 20

Observed changes in hot and wet extremes

Since 1950; red/green: increase; grey: limited data; hatched: low agreement

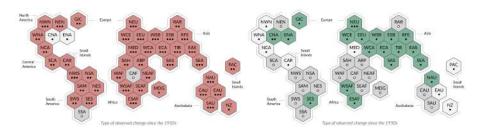


Fig SPM.3, Masson-Delmotte et al., IPCC, 2021; Seneviratne et al., IPCC, 2021

Projected changes in hot and wet extremes

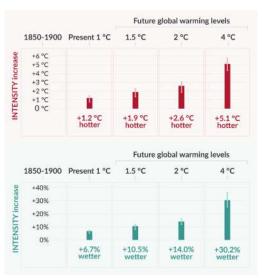
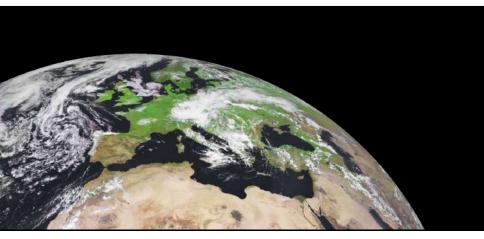
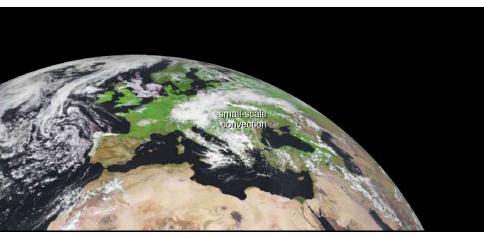



Fig SPM.3, Masson-Delmotte et al., IPCC, 2021; Seneviratne et al., IPCC, 2021

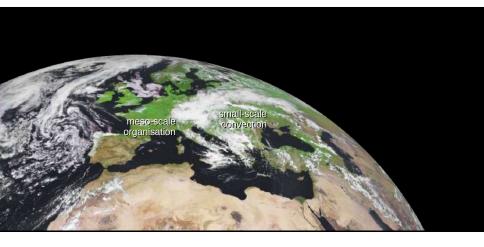
25 May 2023


9/20

But regional changes are often still uncertain Processes governing extreme events in Europe - An incomplete sketch

EUMETSAT, inspired by Woollings, 2010

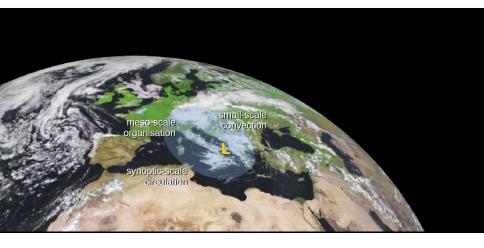
But regional changes are often still uncertain Processes governing extreme events in Europe - An incomplete sketch



EUMETSAT, inspired by Woollings, 2010

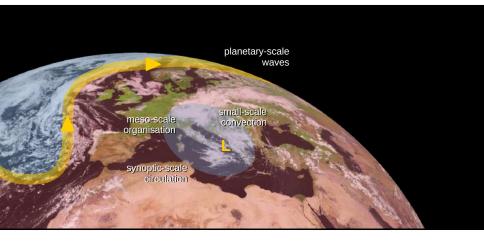
But regional changes are often still uncertain

Processes governing extreme events in Europe - An incomplete sketch



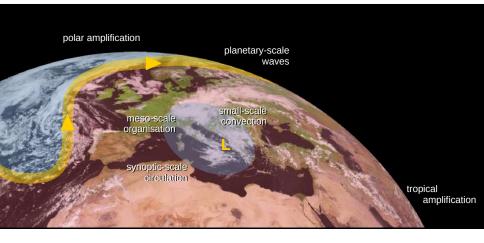
EUMETSAT, inspired by Woollings, 2010

But regional changes are often still uncertain


Processes governing extreme events in Europe - An incomplete sketch

EUMETSAT, inspired by Woollings, 2010

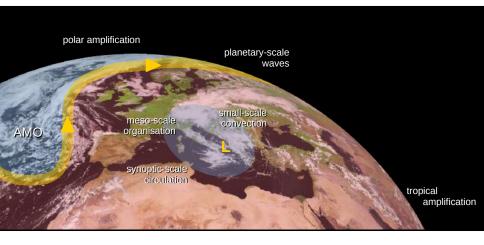
But regional changes are often still uncertain


Processes governing extreme events in Europe - An incomplete sketch

EUMETSAT, inspired by Woollings, 2010

But regional changes are often still uncertain

Processes governing extreme events in Europe - An incomplete sketch



EUMETSAT, inspired by Woollings, 2010

But regional changes are often still uncertain

Processes governing extreme events in Europe - An incomplete sketch

EUMETSAT, inspired by Woollings, 2010

10 / 20

Chapter 10

10

Linking Global to Regional Climate Change

Coordinating Lead Authors:

Francisco J. Doblas-Reyes (Spain), Anna A. Sörensson (Argentina)

Lead Authors:

Mansour Almazrou (Saudi Arabia), Alessandro Dosio (Italy), William J. Gutowski (United States of America), Rein Haarsma (The Netherlands), Rafiq Hamdi (Belgium), Bruce Hewitson (South Africa), Won-Tae Kwon (Republic of Korea), Benjamin L. Lamptey (Nige, Ghana/Ghana), Douglas Maraun (Austria/Germany), Tannecia S. Stephenson (Jamaica), Lzuur Jakayabu (Japan), Laurent Terray (France), Andrew Turner (United Kingdom), Zhiyan Zuu (China)

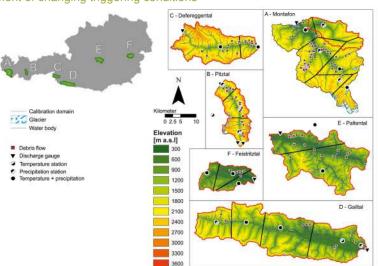
IPCC, Doblas-Reyes et al., 2021

Natural Hazards

Changing Weather Extremes

Changing Natural Hazards

D. Maraun Natural Hazards 25 May 2023 12 / 20


13 / 20

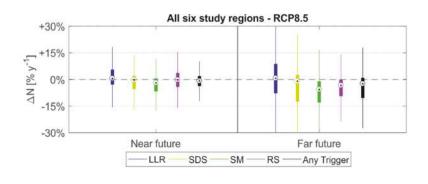
Changing Natural Hazards Debris Flows

Debris flow in the Alps

Assessment of changing triggering conditions

Kaitna et al., Science of the Total Environment, 2023

25 May 2023

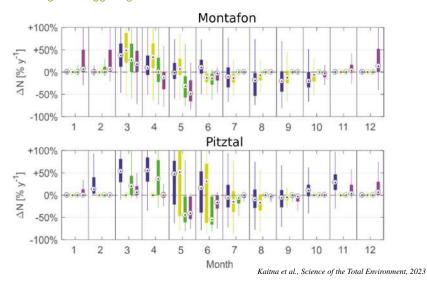

14 / 20

D. Maraun Natural Hazards

15 / 20

Debris flow in the Alps

Overall changes in triggering conditions, scenario RCP8.5, 2071-2100 vs. 1971-2000



LLR: long lasting rain; SDS: short duration storms; SM: snow melt; RS: rain on snow

Kaitna et al., Science of the Total Environment, 2023

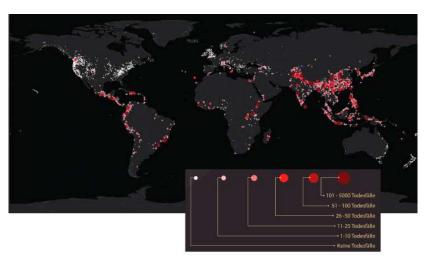
Debris flow in the Alps

Seasonal changes in triggering conditions

D. Maraun

Natural Hazards

25 May 2023

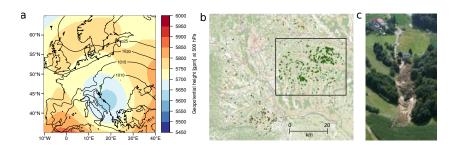


Changing Natural Hazards Landslides

D. Maraun Natural Hazards 25 May 2023 17 / 20

Fatalities from landslide events, 2007-2017

300 Mio people exposed, up to 18 BEUR per year damages



NASA's Scientific Visualization Studio

D. Maraun Natural Hazards 25 May 2023 18 / 20

Feldbach region, Styria, June 2009

- Persistent cut-off low over the Adriatic;
- widespread heavy rain 22-25 June 2009 in Feldbach region;
- Some 3000 landslides triggered.

Maraun et al., Comms. Earth Env., 2022

Research Questions

- ▶ What would be the hazard of a 2009 event in a warmer climate?
- What is the relative contribution of changes in rainfall and soil moisture to changes in the landslide hazard?
- What is the role of climate mitigation?
- How could land-use management reduce the hazard?

Maraun et al., Comms. Earth Env., 2022

D. Maraun Natural Hazards 25 May 2023 20 / 20