Marking Definiteness and Universal Quantification via an Overt Situation Pronoun

Yaqing Hu, University of Southern California

yaqinghu@usc.edu

I. Introduction This paper investigates nominals in Nuosu Yi (Yi, SOV), which employs the morpheme **su**³³ to mark definiteness and universal quantification. It occurs in *definites* contingent on contextually accessible shared knowledge of referents: (1)-(4), while it is obligatory in *universal quantifiers*: (5)-(6). I propose that this morpheme is a morphosyntactic exponence of a situation pronoun in the situation semantics system, explicitly introducing domain restriction (cf. Schwarz 2009, Elbourne 2013, Kratzer 2021). The patterns not only contribute to cross-linguistic landscape of domain restriction of definites (e.g., Gillon 2006) and strong quantifiers (e.g., Giannakidou 2004), but might offer novel morphosyntactic evidence for the existence of situation pronouns.

II. Core Data *First*, for Yi definites, (i) the classifier (Clf) must undergo tone sandhi, i.e., $[^{33}] \rightarrow [^{44}]$: (3); (ii) [N+Clf⁴⁴] phrases are restricted to singular definites: (1)-(4). In (1): a larger situation and (2): an immediate situation, \mathbf{su}^{33} is *optional* if both A and B share the knowledge of the referents, e.g., 'the sun' in the actual world or 'the river' in the village: ...[(\mathbf{su}^{33})]^{C1/C3}, yet it is *obligatory* if such shared knowledge is absent, e.g., 'the sun' in a different world or 'the river' not familiar to all interlocutors: ...[*(\mathbf{su}^{33})]^{C2/C4}. For anaphoric definites: (3), \mathbf{su}^{33} is consistently *optional*, yet it is *obligatory* if the definite is interpreted relative to a salient context: (4).

- (1) C1: A and B are talking about their friend Muga's daily routine, and A remarked:
 C2: A is reading a story about the hero Muga from a children's storybook to her daughter: [ho³³bu³³-ma⁴⁴-[(su³³)]^{C1}/[*(su³³)]^{C2}] du³³-la³³ thu³³ko³³, tsh³³ dza³³ dzu³³ o⁴⁴.
 sun-Clf:DEF-SU out-come when 3SG food eat Asp 'When the sun rose, he (already) ate some food.'
- (2) C3: A and B are walking around the only river in their own village. A said:
 C4: A and B are walking around the only river in A's village, B is from another city. A said: [la³³da³³-tci⁴⁴-[(su³³)]^{C3}/[*(su³³)]^{C4}]-ko³³ a⁴⁴so³³mo³³ hu³³-a⁴⁴ni³³-tci³³ dzo³³. river-Clf:DEF-SU-LOC before fish-many-Clf have 'There used to be an abundance of fish in the river.'
- (3) $\eta a^{33} [a^{44}\eta e^{33} ma^{33}] mo^{33} ndzo^{33} [a^{44}\eta e^{33} ma^{44} (su^{33})] ndzuu^{33} dz_1^{33} ndzuu^{33}$. 1SG cat-Clf see-PAST cat-Clf:DEF-SU beautiful-very-beautiful 'I saw a cat. **The cat** is very beautiful.' (The hearer knew **the cat** based on the first sentence.)
- (4) ŋa³³ [sŋ³³bo³³-la³¹vu⁵⁵] [a⁴⁴ŋe³³-ma⁴⁴-*(su³³)] he³³vu³³.
 1SG tree-under cat-Clf:DEF-SU like
 'I like the cat under the tree.' (The hearer doesn't know the cat before (4) is uttered.)

Second, [N+Clf³³+su³³] phrases can be ambiguous between a universal quantifier and an indefinite reading (no definite reading) when serving as *subjects/topics*: (5), but not as objects: (6).

- (5) (zo⁴⁴du³³-ko³³) [co³³-ma³³-*(su³³)] (li³³) dzu³³mo³¹-va⁵⁵ tu⁵⁵ o⁴⁴.
 school-LOC person-Clf-SU TOP money-Clf donate Asp
 ✓ '(In school) every person donated a dollar.' / ✓ '(In school) a person donated a dollar.'
- (6) (zo⁴⁴dui³³-ko³³) mu⁴⁴ga³³ (li³³) [co³³-ma³³-*(su³³)] mo³³-ndzo³³.
 school-LOC Muga TOP person-Clf-SU see-PAST
 ✗ '(In school) Muga saw every person.' / ✓ '(In school) Muga saw a person.'

Q: How does su³³ help achieve definiteness and universal quantification in Yi nominals?

<u>III. su³³ Introduces Domain Restriction</u> *First*, su³³ may occur in novel contexts without asserting uniqueness of referents: (7a), where it only facilitates the interpretation of *some buffalo* as strong within a particular context, e.g., a farm. A parallel pattern arises in nominals containing *only*: (7b), where the absence of specific contexts renders su^{33} obligatory.

(7) a. $[la^{31}bu^{33}-a^{44}fu^{33}-su^{33}]$ ho⁵⁵ lu^{33} o⁴⁴. b. $[zui^{33}-a^{44}ti^{33}-ma^{44}-*(su^{33})]$ b $\underline{u}^{33}ma^{33}$ zo³³ bo³³. buffalo-strong-SU run Asp 'A/Several strong buffalo ran away.' b. $[zui^{33}-a^{44}ti^{33}-ma^{44}-*(su^{33})]$ b $\underline{u}^{33}ma^{33}$ zo³³ bo³³. son-only-Clf:DEF-SU character learn go 'The only son (in *x*'s family) went to school.'

For (7b), native speakers reported that su^{33} facilitates the inference that the referent necessarily belongs to *a specific family*. The felicity of the nominal in (7b) usually depends on a contextually supplied set of individuals (Sharvit 2015). The obligatory use of su^{33} seems to ensure the availability of this contextually supplied set. *Second*, the nominal in (8) containing su^{33} must be interpreted as *three red apples* introduced in the preceding discourse; it cannot refer to wholly new ones. (8) $mu^{44}ka^{33} sl^{31}ni^{33} vu^{33} o^{44}$. $na^{33} [sl^{31}ni^{33}-su^{33}-su^{33}-su^{33}-ma^{33}] dzu^{33} o^{44}$.

Muga apple buy Asp 1SG apple-red-SU-three-Clf eat Asp

'Muga bought apples. I ate three red apples (which are among the apples Muga bought).' This suggests that su³³ forces the nominal to refer to objects already under discussion. Thus, I argue that one important function of **su³³** is to explicitly introduce domain restriction for nominals. IV. su³³ Expones a Situation Pronoun *First*, the absence of su³³ does not preclude the definite interpretations of nominals: (1-C1)/(3), nor does its presence necessarily lead to definite interpretations of nominals: (5)/(6)/(7a). Thus, it should not be analyzed as a definite article, contra Jiang (2018). Instead, given that $[N+Clf^{44}]$ phrases can independently function as definites: (1-C1)/(3), I propose that Clf⁴⁴ serves as a definite article (glossed as Clf:DEF). Specifically, a covert ι with a phonological reflex [44] is introduced in D, which is phonologically supported by classifiers that move to D (cf. Cheng and Sybesma 2005): (11). Second, since su³³ introduces domain restriction, one option is to posit that it contributes a context variable C (cf. von Fintel 1994). Yet, a significant challenge for this approach lies in accounting for the universal quantifier reading introduced by [N+Clf³³+su³³] phrases: (5)-(6), despite the absence of a dedicated morpheme corresponding to every. If su^{33} merely contributes a C, the sequence would be expected to only mean 'a person (in a context)', contrary to observations. Particularly, the structural sensitivity of the sequence: (5) vs. (6) would be left unexplained. *Third*, (1-4) illustrate that (i) definites with an obligatory presence of su^{33} are interpreted relative to a topic situation or a salient situation introduced by an overt adverbial; and (ii) definites with an optional occurrence of su³³ are interpreted with respect to a salient situation characterized by shared knowledge of the referents. This interpretive difference seems to parallel two distinct approaches to interpreting definites in situation semantics. (9) a. $[s_{\text{topic}}[topic[\Sigma_1[[[\text{the NP}]s_1]VP]]]] \rightarrow b. \quad \lambda s.s \approx s_{\text{topic}} \& \exists !x.NP(x)(s) \& \iota x.VP(x)(s)$

(10) a. $[s_{topic}[topic[[[[the NP]s_r]VP]]]] \rightarrow b. \lambda s.s \approx s_{topic} \& \exists !x.NP(x)(g(r)) \& tx.VP(x)(s)$ A definite inherently contains a silent situation pronoun that determines options available for its interpretation. Situation pronouns are seen as introducing indexed variables (e.g., Schwarz 2009): (i) they can be identified with the topic situation via coindexing with the binding operator Σ adjoined below topic: (9); or (ii) they can be interpreted as a contextually salient situation by receiving a value via an assignment function, i.e., g(r): (10). The interpretive variation among Yi definites suggests that su^{33} introduces domain restriction by contributing a variable within definites, the value of which can be either bound or free. Yi definites appear to utilize a morphosyntactic mechanism, i.e., the occurrence of su^{33} , to determine the resolution of this variable: (i) if it obligatorily occurs, the variable must be bound: (1-C2)/(2-C4)/(4); or (ii) if it optionally occurs, the variable receives its value via an assignment function: (1-C1)/(2-C3)/(3). *Thus*, I propose that su^{33} serves as the morphosyntactic exponence of a situation pronoun. It is expected that if the variable introduced by su^{33} in the nominal in (5) is bound by various binders, ambiguity would arise.

V. Proposal *First*, the definite in (2) is assigned the structure in (11). I assume that NP, as the complement of ClfP, moves to [Spec, DP] to yield the correct word order (cf. Simpson 2005). ι is defined in (12) based on Elbourne (2013), and N (Schwarz 2009) and Clf (Jenks 2018) in (13).

(11) $\left[\left[_{DP}\left[_{NP} la^{33} da^{33} \text{ 'river'}\right]_{i} \left[_{D'}\left[_{D} t \varsigma i^{44}\right]_{j} \left[_{ClfP}\left[_{Clf} t_{j}\right] t_{i}\right]\right]\right] \mathbf{su}^{33}\right] \text{ 'the river'}$

(12) $\llbracket \iota \rrbracket = \lambda f_{\langle e, st \rangle} \lambda s : s \in D_s \& \exists ! x f(x)(s) = 1 \cdot \iota x f(x)(s) = 1$

(13) a. $[[N]] = \lambda x \lambda s. P(x)(s)$ b. $[[Clf]] = \lambda P \lambda x \lambda s. [P(x)(s) \& AT(x)]$ (*AT* for atomic function) (14) $[[(11)]] = [[DP]]([[su³³]]) = \exists !x[river(x)(g(1)/s^*) \& AT(x)].\iotax[river(x)(g(1)/s^*) \& AT(x)]$

In (14), **su**³³, which expones a situation pronoun, saturates the situation variable and returns s^* . (14) is then felicitous if: (i) s^* is bound by the binding operator Σ adjoined below topic, i.e., the topic situation that contains exactly one river: obligatory occurrence of **su**³³; or (ii) s^* receives a contextually accessible value g(1), i.e., shared knowledge of the referent: optional occurrence of **su**³³ (cf. Schwarz 2012). *Second*, building on Schein (2016), I take it that higher adverbials in (5)-(6) function to modify 'framing situations', i.e., a plurality of situations, with the topic situation asserted to be one of them. Structurally, there is a Framing Phrase (FrameP) above TP with a silent head \emptyset_{Frame} that is functionally analogous to a quantifier: TP is of type $\langle s,t \rangle$, and \emptyset_{Frame} is of type $\langle st, \langle st,t \rangle \rangle$ (cf. Hacquard 2010, Wellwood 2022). I propose that two possible structures are responsible for the ambiguity in (5), i.e., two potential binders are structurally available.

(16) $[F_{rame} [F_{rame}, \emptyset_{Frame}] [\beta [T_{opP}] [[person-Clf^{33}] s_j]_{2/3} [topic [\Sigma_j [T_P t_2 [V_P...t_3]...]]]]]]$ An overt topic marker may occur in (5). (i) If the sequence 'person-Clf^{33}-su^{33}' is base-generated in [Spec, TopP] (Yi is a pro-drop language): (15), the binding operator β adjoined below the Frame head binds the situation pronoun *s* that su^{33} expones the way *every* binds a pronoun, which results in a bound reading (i.e., a universal quantifier): for every situation *s*, a person in *s* donated a dollar in *s*. (ii) If the sequence is base-generated in the subject position t_2 : (5) or object position t_3 : (6) or moved to [Spec, TopP]: (16), *s* is always bound by the binding operator Σ adjoined below the topic situation, given Have Local Binding! (Büring 2005), i.e., 'a person in *s* donated a dollar in *s*', which results in an indefinite reading, if the topic situation contains exactly one person.

Selected References.

Büring, D. (2005). Binding Theory. Cambridge: Cambridge University Press.

- Cheng, L. and Sybesma, R. (2005). Classifiers in Four Varieties of Chinese. In Cinque, G. and Kayne, R., editors, <u>Oxford Handbook of Comparative Syntax</u>, chapter 7, pages 259–292. Oxford University Press.
- Elbourne, P. (2013). Definite Descriptions. Oxford: Oxford University Press.
- Giannakidou, A. (2004). Domain restriction and the arguments of quantificational determiners. In Young, R. B., editor, <u>Proceedings of SALT XIV</u>, pages 110–128. Ithaca, NY: CLC Publications.
- Gillon, C. (2006). <u>The Semantics of Determiners: Domain Restriction in Skwxwú7mesh</u>. PhD thesis, University of British Columbia.
- Jiang, L. J. (2018). Definiteness in Nuosu Yi and the theory of argument formation. <u>Linguistics</u> and Philosophy, 41:1–39.
- Schein, B. (2016). Noughty bits: the subatomic scope of negation. Linguistics and Philosophy, 39:459–540.
- Schwarz, F. (2009). <u>Two Types of Definites in Natural Language</u>. PhD thesis, University of Massachusetts, Amherst.
- von Fintel, K. (1994). <u>Restrictions on Quantifier Domains</u>. PhD thesis, University of Massachusetts, Amherst.