

Curriculum für das Masterstudium

Chemistry

(Chemistry)

Curriculum 2022 in der Version 2025

Dieses Curriculum wurde vom Senat der Karl-Franzens-Universität Graz in der Sitzung vom tt.mm.20jj und vom Senat der Technischen Universität Graz in der Sitzung vom tt.mm.20jj genehmigt.

Das Studium ist ein gemeinsam eingerichtetes Studium (§ 54e UG) der Karl-Franzens-Universität Graz (Uni Graz) und der Technischen Universität Graz (TU Graz) im Rahmen von "NAWI Graz", basierend auf den für die Kooperation NAWI Graz geltenden Vorgaben und Richtlinien. Rechtsgrundlagen für dieses Studium sind das Universitätsgesetz (UG) sowie die Studienrechtlichen Bestimmungen der Satzungen der Uni Graz und der TU Graz in der jeweils geltenden Fassung.

Inhaltsverzeichnis:

I. A	ALLGEMEINES	2
§ 1	GEGENSTAND DES STUDIUMS UND QUALIFIKATIONSPROFIL	2
§ 2	ZULASSUNGSBEDINGUNGEN	
§ 3	GLIEDERUNG DES STUDIUMS	5
§ 4	Gruppengrößen	6
§ 5	RICHTLINIEN ZUR VERGABE VON PLÄTZEN FÜR LEHRVERANSTALTUNGEN	6
II. S	TUDIENINHALT UND STUDIENABLAUF	ε
§ 6	Module, Lehrveranstaltungen und Semesterzuordnung	6
§ 7	WAHLMODULE	8
§ 8	Freie Wahlfächer	13
§ 9	Masterarbeit	13
§ 10	Anmeldevoraussetzungen für Lehrveranstaltungen/Prüfungen	13
§ 11	AUSLANDSAUFENTHALTE UND PRAXIS	13
III. P	RÜFUNGSORDNUNG UND STUDIENABSCHLUSS	14
§ 12	Modulnoten	14
§ 13	Masterprüfung	14
§ 14	STUDIENABSCHLUSS	14
IV. II	NKRAFTTRETEN UND ÜBERGANGSBESTIMMUNGEN	15
§ 15	INKRAFTTRETEN	15
§ 16	ÜBERGANGSBESTIMMUNGEN	15
ANHAN	NG I: MODULBESCHREIBUNGEN	16
ANHAN	NG II: MUSTERSTUDIENVERLAUF	20
ANHAN	NG III: EMPFOHLENE LEHRVERANSTALTUNGEN FÜR DIE FREIEN WAHLFÄCHER	21
ANHAN	NG IV: ÄQUIVALENZLISTE	22

I. Allgemeines

§ 1 Gegenstand des Studiums und Qualifikationsprofil

Das Masterstudium Chemistry ist ein naturwissenschaftliches Studium. Absolvent*innen dieses Studiums wird der akademische Grad "Master of Science", abgekürzt "MSc", verliehen.

Das Masterstudium Chemistry wird als fremdsprachiges Studium in englischer Sprache durchgeführt.

(1) Gegenstand des Studiums

Das Ziel des Masterstudiums Chemistry ist eine thematisch umfassende, wissenschaftlich und methodisch hochwertige Ausbildung in Chemie. Durch Auswahl geeigneter Inhalte wird eine Schwerpunktsetzung entsprechend den Neigungen und Interessen der Studierenden ermöglicht.

Das Masterstudium Chemistry mit seinem modularen Aufbau ist mit Fokus auf aktuelle Forschungsfelder in enger Verknüpfung von theoretischer Ausbildung und experimentellen/praktischen Kompetenzen konzipiert.

Es vermittelt die fachlichen Kompetenzen und Methoden zu chemisch-wissenschaftlicher Forschung und verantwortungsbewusstem Handeln als Chemikerin oder Chemiker.

Neben der fachspezifischen Qualifikation ist auch die Vermittlung von fachübergreifenden Themen und Kompetenzen Ziel des Masterstudiums Chemistry. Ein Mobilitätsfenster im dritten Semester ermöglicht es, einen Auslandsaufenthalt überschneidungsfrei und ohne Verzögerung durchzuführen.

(2) Qualifikationsprofil und Kompetenzen

Die Absolvent*innen dieses Studiums haben aufbauend auf ein Bachelorstudium ihre fachspezifischen Kenntnisse in der gesamten Breite der modernen Chemie wesentlich vertieft. Durch frei wählbare Vertiefungsrichtungen wird ein fachlich spezifisches Profil gemäß persönlichen Interessen und Stärken gewährleistet. Dadurch sind die Absolventinnen und Absolventen in besonderem Maß befähigt zur wissenschaftlichen Weiterentwicklung der Chemie beizutragen.

Die Absolvent*innen des Masterstudiums Chemistry verfügen über folgende Kenntnisse, Fertigkeiten und Kompetenzen:

Wissen und Verstehen

Die Absolvent*innen

- haben ihr fachspezifisches Wissen in den Bereichen Synthese, Angewandte Analytik, Katalyse, Chemie in den Lebenswissenschaften und Umwelt, Struktur und Eigenschaften von kondensierter Materie sowie Modellierung und Theorie vertieft / erweitert,
- verfügen über die Grundlage zur Entwicklung und Anwendung von Ideen zum selbstständigen Planen und Durchführen von Experimenten nach dem neuesten Stand von Wissenschaft und Technik,
- demonstrieren die Fähigkeit, komplexe und interdisziplinäre Zusammenhänge wissenschaftlicher Fragestellungen zu identifizieren und zu analysieren,
- demonstrieren fachliche Kompetenz durch wissenschaftlich korrektes Formulieren und Argumentieren.
- Wahlweise haben sie Spezialkenntnisse in drei der folgenden Themenbereiche erworben: Synthese, Angewandte Analytik, Katalyse, Chemie in den

Lebenswissenschaften und Umwelt, Struktur und Eigenschaften von kondensierter Materie sowie Modellierung und Theorie.

Anwenden von Wissen und Verstehen

Die Absolvent*innen

- können aktuelle Arbeits- und Analysetechniken anwenden,
- können naturwissenschaftliche Aufgaben eigenverantwortlich bearbeiten,
- sind in der Lage innovative Lösungen für chemische Probleme zu finden,
- sind in der Lage, ihr Wissen sowie ihre Fähigkeiten zur Problemlösung auch in neuen und unvertrauten Situationen anzuwenden,
- sind für ein weiterführendes Doktoratsstudium qualifiziert.

Beurteilungen abgeben

Die Absolvent*innen

- sind in der Lage, mit komplexen Situationen umzugehen,
- können wissenschaftlich fundierte Einschätzungen auch auf der Grundlage unvollständiger oder begrenzter Informationen formulieren,
- haben die Fähigkeit, wissenschaftliche Daten kritisch zu analysieren, verantwortungsvoll und integer zu interpretieren und nachvollziehbar darzustellen,
- sind in der Lage, bei ihren fachlichen oder wissenschaftlichen Handlungen die gesellschaftlichen, sozialen und ethischen Auswirkungen zu berücksichtigen.

Kommunikative und soziale Kompetenzen

Die Absolvent*innen

- beherrschen Kommunikations- und Präsentationstechniken und können sie adäquat einsetzen,
- beherrschen die englische Fachsprache in einem sehr guten Ausmaß,
- sind in der Lage, wissenschaftliche Texte zu verfassen,
- können Informationen, Ideen, Probleme und deren Lösung einem Publikum klar und eindeutig kommunizieren und zwar Spezialist*innen als auch Nichtspezialist*innen,
- besitzen ein hohes Maß an Teamfähigkeit,
- sind in der Lage die Ergebnisse ihrer Arbeit sowohl an andere Expertinnen und Experten als auch an Laien zu kommunizieren.

Organisatorische Kompetenzen

Die Absolvent*innen

- verfügen über Lernstrategien für autonomen Wissenserwerb,
- sind in der Lage, selbständig zu arbeiten und sich und andere zu motivieren.
- (3) Bedarf und Relevanz des Studiums für die Wissenschaft und für den Arbeitsmarkt

Das Masterstudium Chemistry bildet die Basis für den Einstieg in den Beruf einer Chemikerin oder eines Chemikers in Forschung, Technik, Industrie, Medizin, Agrarwirtschaft, Lebensmittelproduktion, umwelt- und chemierelevante behördliche Tätigkeitsfelder.

Die Absolventinnen und Absolventen des Studiums sind befähigt, wissenschaftliche Forschung in chemischen und chemieverwandten Fächern selbstständig und in leitender Funktion durchzuführen, sowie erworbene Kompetenzen fachübergreifend für die Lösung chemischer Fragestellungen einzusetzen. Damit sind sie auch zu selbständigem wissenschaftlichem Arbeiten im Rahmen eines Doktoratsstudiums befähigt.

Chemikerinnen und Chemiker sind unter anderem in den Bereichen Chemie, Pharmazie, medizinische Chemie, Lebensmittelchemie, Umweltchemie, Materialchemie oder Naturstoffchemie tätig, zum Beispiel in folgenden Berufsfeldern:

- Forschung und Lehre an Universitäten und Instituten
- Industrielle Forschung und Entwicklung
- Qualitätssicherung und -kontrolle, Prozessüberwachung
- Öffentliche Verwaltung in Chemie-, Umwelt- oder Medizinbereichen (z.B. in der Risikobewertung, Chemikaliensicherheit und dem Immissionsschutz)
- Produktmanagement
- Chemische Analytik, Medizin- und Umweltdiagnostik (z. B. in der Industrie, in Kliniken, bei Behörden)
- Patentwesen (nationale oder internationale Organisationen und Firmen)

§ 2 Zulassungsbedingungen

- (1) Das Masterstudium Chemistry baut auf dem im Rahmen von NAWI Graz angebotenen Bachelorstudium Chemie auf. Dieses Studium erfüllt jedenfalls die Zulassungsvoraussetzungen für das Masterstudium Chemistry. Zusätzlich dazu sind folgende Vorstudien fachlich in Frage kommend:
 - Bachelorstudium Chemie und/oder Technische Chemie an einer österreichischen, deutschen oder Schweizer Universität.
- (2) Studien, die nicht unter Abs. 1 genannt werden, sind fachlich in Frage kommend, wenn sie einen Umfang von mindestens 180 ECTS-Anrechnungspunkten aufweisen und aus den folgenden Fachgebieten insgesamt mindestens 120 ECTS-Anrechnungspunkte absolviert wurden und jeweils zumindest im Umfang von 5 ECTS-Anrechnungspunkten Prüfungen aus jedem der Fachgebiete positiv absolviert wurden:
 - a. Grundlagen der Chemie
 - b. Analytische Chemie
 - c. Anorganische Chemie
 - d. Organische Chemie
 - e. Physikalische Chemie/Theoretische Chemie
 - f. Biochemie
 - g. Technologische/Technische Chemie.

Daraus müssen mindestens 20 ECTS-Anrechnungspunkte als Laborübung positiv absolviert worden sein.

(3) Studien, die nicht unter Abs. 1 oder Abs. 2 fallen, weisen wesentliche fachliche Unterschiede auf. Diese können durch Ergänzungsprüfungen ausgeglichen werden, wenn das Studium einen Umfang von mindestens 180 ECTS-Anrechnungspunkten aufweist und aus den in Abs. 2 genannten Fachgebieten mindestens 90 ECTS-Anrechnungspunkte absolviert wurden. Im Rahmen dieser Ergänzungsprüfungen können maximal 30 ECTS-Anrechnungspunkte vorgeschrieben werden.

- (4) Bei Studien, die nicht unter Abs. 1 bis Abs. 3 fallen, bestehen wesentliche fachliche Unterschiede, die nicht ausgeglichen werden können. In diesem Fall ist die Zulassung zum Masterstudium Chemistry nicht möglich.
- (5) Als Voraussetzung für die Zulassung zum Studium ist die für den erfolgreichen Studienfortgang erforderliche Kenntnis der englischen Sprache nachzuweisen. Die Form des Nachweises ist in einer Verordnung des Rektorats festgelegt.

§ 3 Gliederung des Studiums

(1) Das Masterstudium Chemistry mit einem Arbeitsaufwand von 120 ECTS-Anrechnungspunkten umfasst vier Semester und ist wie folgt modular strukturiert:

	ECTS
Compulsory Module A1: Synthesis	5
Compulsory Module B1: Applied Analytics	4
Compulsory Module C1: Catalysis	5
Compulsory Module D1: Chemistry in Life Science and Environment	4
Compulsory Module E1: Structure and Properties of Condensed Matter	4
Compulsory Module F1: Modeling and Theory	4
Main Focus Elective Modules A2-F2	13-15
Special Focus Elective Modules A3-F3	16
Elective Module Interdisciplinary	14-16
Laboratory Elective Modules A4-F4	10
Master's Thesis	30
Master's Thesis Seminar	1
Master's Examination	1
Free Choice Subjects	7
Summe	120

Das Masterstudium Chemistry besteht aus 6 Pflichtmodulen (A1 bis F1). Darauf bauen sich Vertiefungsrichtungen auf. Drei frei zu wählende Main Focus Module (A2 bis F2) werden jeweils vollständig absolviert, darauf aufbauend werden aus 2 Special Focus Modulen (A3 bis F3) je 8 ECTS-Anrechnungspunkte gewählt. Hinzu kommen allgemeine Wahlfächer (Elective Module Interdisciplinary) gemäß § 7 Abs. 4, sowie das Laboratory Modul (A4 bis F4) und freie Wahlfächer (Free Choice Subjects) gemäß §8.

(2) Prüfungen, die im Rahmen eines Bachelor- oder Diplomstudiums absolviert wurden, das als Voraussetzung für die Zulassung zu einem Masterstudium diente, können für das betreffende Masterstudium nur soweit anerkannt werden, als der Umfang des Bachelor- oder Diplomstudiums 180 ECTS-Anrechnungspunkte überschreitet.

§ 4 Gruppengrößen

Folgende maximale Teilnehmendenzahlen (Gruppengrößen) werden festgelegt:

Vorlesung (VO)	Keine Beschränkung
Vorlesungsanteil von VU	
Übung (UE)	25
Übungsanteil von VU	
Laborübung (LU)	5
Seminar [SE]	25

§ 5 Richtlinien zur Vergabe von Plätzen für Lehrveranstaltungen

- (1) Melden sich mehr Studierende zu einer Lehrveranstaltung an, als verfügbare Plätze vorhanden sind, dann erfolgt die Aufnahme der Studierenden nach dem folgenden Reihungsverfahren, wobei die einzelnen Kriterien in der angegebenen Reihenfolge anzuwenden sind:
 - a. Stellung der Lehrveranstaltung im Curriculum (gem. § 6 und § 7): Die Lehrveranstaltung ist im Curriculum, für das die Lehrveranstaltungsanmeldung erfolgt, in den Pflicht- oder Wahlmodulen vorgeschrieben. Diese Lehrveranstaltungen werden gleichrangig gereiht und jeweils gegenüber dem Freien Wahlfach bevorzugt.
 - b. Im Studium absolvierte/anerkannte ECTS-Anrechnungspunkte: Für die ECTS-Reihung werden alle Leistungen des Studiums, für das die Lehrveranstaltungsanmeldung erfolgt, herangezogen. Eine höhere Gesamtsumme wird bevorzugt gereiht.
 - c. Bisher benötigte Semesteranzahl im Studium: Reihung nach der Anzahl der bisher benötigten Semester innerhalb des Studiums. Eine höhere Anzahl wird bevorzugt gereiht.
 - d. Losentscheid: Ist anhand der vorangehenden Kriterien keine Reihungsentscheidung möglich, entscheidet das Los.
- (2) An Studierende, die im Rahmen von Mobilitätsprogrammen einen Teil ihres Studiums an den an NAWI Graz beteiligten Universitäten absolvieren, werden vorrangig bis zu 10 % der Plätze vergeben.

II. Studieninhalt und Studienablauf

§ 6 Module, Lehrveranstaltungen und Semesterzuordnung

(1) Die einzelnen Lehrveranstaltungen dieses Masterstudiums und deren Gliederung in Pflicht- und Wahlmodule sind nachfolgend angeführt. Die in den Modulen zu vermittelnden Kenntnisse, Methoden oder Fertigkeiten werden im Anhang I näher beschrieben. Die Zuordnung der Lehrveranstaltungen zur Semesterfolge ist eine Empfehlung für Studierende und stellt sicher, dass die Abfolge der Lehrveranstaltungen optimal auf Vorwissen aufbaut und das Arbeitspensum des Studienjahres 60 ECTS-Anrechnungspunkte nicht überschreitet. Die Zuordnung der Lehrveranstaltungen zu den beteiligten Universitäten erfolgt in Anhang II und § 7.

Die sechs Pflichtmodule A1 bis F1 enthalten folgende Lehrveranstaltungen, die zur Gänze zu absolvieren sind:

Master	studium Chemistry							
					Somos	ter mit E	CTS Dun	kton
Modul	Lehreveranstaltung	SSt.	Tun	ECTS	Jeilles			IV
wodui	Lenreveranstaitung	331.	Тур	ECIS		<u>II</u>	III	IV
Compu	Isory Module A1: Synthesis							
A1.1	Organometallic Chemistry of the Main Group	1,33	VO	2			2	
	Elements	_,00		_			_	
A1.2	Advanced Organic Chemistry	2	VO	3	3			
Zwische	ensumme Compulsory Module A1	3,33		5	3		2	
Compul	sory Module B1: Applied Analytics							
B1.1	Advanced Inorganic Analytical Chemistry	1,33	VO	2	2			
B1.2	Advanced Organic Analytical Chemistry	1,33	VO	2		2		
Zwische	ensumme Compulsory Module B1	2,66		4	2	2		
Compul	Isory Module C1: Catalysis							
C1.1	Biocatalysis	2	VO	3		3		
C1.2	Transition Metal Chemistry: from Structure	1,33	VO	2	2			
	to Catalysis ensumme Compulsory Module C1	3,33		5	2	3		
	Isory Module D1: Chemistry in Life Science and		ment		_	<u> </u>		
D1.1	Green Chemistry	1,33	VU	2			2	
D1.2	Food Chemistry	1,33	VO	2	2		_	
	ensumme Compulsory Module D1	2,66		4	2		2	
	Isory Module E1: Structure and Properties of Co		d Matte		_			
E1.1	Concepts in Applied Physical Chemistry	1,33	VO	2	2			
E1.2	Structure and Matter	1,33	VO	2	_		2	
	ensumme Compulsory Module E1	2,66		4	2		2	
	Isory Module F1: Modeling and Theory	2,00			_			
F1.1	Introduction to Computational Chemistry	1,33	VU ¹	2	2			
F1.2	Statistical Thermodynamics	1,33	VU^1	2	_		2	
	ensumme Compulsory Module F1	2,66		4	2		2	
	Compulsory Modules A1-F1	2,00		26	13	5	8	
Jannine	compaisory modules ATTT							
				ECTS	1	Ш	Ш	IV
Summo	Elective Modules Main Focus A2-F2			13-15	6	5-7	2	
	7 Abs. 1			13-13	U	3-7	-	
Summe	Elective Modules Special Focus A3-F3			16	6	3	7	
	7 Abs. 2							
C	Floating Modules John Thomas A 54			10	-			
	Elective Modules Laboratory A4-F4 7 Abs. 3			10	5	5		
D 3								
Summe	Elective Module Interdisciplinary			14-16		7-9	7	
	7 Abs. 4							
Free Ch	oice Subjects gem. § 8			7		3	4	
	's Thesis Seminar			1				1

Master's Thesis	30			2	28
Master's Examination	1				1
Summe Gesamt	120	30	30	30	30

¹½ Vorlesungsteil, ½ Übungsteil

§ 7 Wahlmodule

- (1) Eine erste Schwerpunktsetzung erfolgt durch die Wahl von drei Vertiefungs-richtungen (Focus Areas) bestehend aus den Wahlmodulen A2 bis F2 (Main Focus). In den drei gewählten Main Focus Richtungen sind die Module A2 bis F2 jeweils zur Gänze zu absolvieren (13 15 ECTS-Anrechnungspunkte).
- (2) Aus den drei in Abs. 1 gewählten Vertiefungsrichtungen A bis F sind zwei Special Focus Module A3 bis F3 zu wählen, aus denen je mindestens 8 ECTS-Anrechnungspunkte zu absolvieren sind (gesamt 16 ECTS-Anrechnungspunkte).
- (3) Aus den drei in Abs. 1 gewählten Vertiefungsrichtungen A bis F sind zwei Laborübungen inklusive der zugehörigen Seminare A4 bis F4 im Umfang von jeweils 5 ECTS-Anrechnungspunkte zu absolvieren (gesamt 10 ECTS-Anrechnungspunkte).
- (4) In einem weiteren Wahlmodul können aus den Angeboten der Pflicht- und Wahlfächer der Curricula der Masterstudien Chemistry, Technical Chemistry, Chemical and Pharmaceutical Engineering, Advanced Materials Science und Biochemie und Molekulare Biomedizin Lehrveranstaltungen im Ausmaß von 14-16 ECTS-Anrechnungspunkten gewählt werden. Es darf dabei maximal eine zusätzliche Laborübung inkl. Seminar im Umfang von 5 ECTS-Anrechnungspunkten aus dem Masterstudium Chemistry gewählt werden

Elective	Modules Main Focus gem. § 7 Abs. 1									
Lehrver	anstaltung	Semesterzu- ordnung								
							Uni	TU		
Elective	Module A2: Synthesis	SSt.	Тур	ECTS	WS	SS	Graz	Graz		
A2.1	Reaction Mechanism	2	VO	3		х		х		
A2.2	Advanced Polymer Synthesis	1,33	VO	2		х		х		
Elective Module B2: Applied Analytics										
B2.1	Analytical Strategy, Method Develop- ment and Data Interpretation 1	1,33	VU ¹	2	х		Х			
B2.2	Analytical Strategy, Method Develop- ment and Data Interpretation 2	2	VU ¹	3	х			х		
Elective	Elective Module C2: Catalysis									
C2.1	Heterogenous Catalysis and Surface Chemistry	1,33	VO	2	х		Х			
C2.2	Applied Catalysis	2	VO	3		Х	х			
Elective	Module D2: Chemistry in Life Science and	Environn	nent							
D2.1	Chemistry of Biobased Systems	2	VO	3	Х			х		
D2.2	Energy and Environmental Science	1,33	VO	2	х			х		
Elective	Module E2: Structure and Properties of Co	ondensed	Matter							
E2.1	Radiation Techniques and Materials	1,33	VO	2	х			Х		
E2.2	Characterization of Condensed Matter	1,33	VO	2		х	х			
Elective	Module F2: Modeling and Theory									
F2.1	Hartree-Fock Theory	1,33	VU ¹	2		х	х			
F2.2	Advanced Computational Chemistry	1,33	VU^1	2	x			х		

¹½ Vorlesungsteil, ½ Übungsteil

Elective	Modules Special Focus § 7 Abs. 2							
Lehrvera	anstaltung				Semeste ordnung			
						,	Uni	TU
	Module A3: Synthesis	SSt.	Тур	ECTS	WS	SS	Graz	Graz
A3.1	Advanced Aspects in Synthetic Main Group Chemistry	1,33	VO	2	Х			х
A3.2	Molecules and (Nano)Materials	1,33	VO	2		x		х
A3.3	Modern Polymerization Concepts for Functional Polymers	1,33	SE	2	х			х
A3.4	Advanced Aspects of Small Molecule Activation ²	1,33	VO	2		х	x	
A3.5	Flow Chemistry and Continuous Processing	1,33	VO	2	х		x	
A3.6	Advanced and Applied Glycoscience	1,33	VU^1	2	x			х
A3.7	Stereochemistry	1,33	VO	2		х		х
A3.8	Retrosynthesis	1,33	VO	2		х	х	
A3.9	Electroorganic Synthesis ²	1,33	VO	2		х	х	
A3.10	Synthetic Methods and Synthesis of Complex Molecules ²	1,33	VO	2	×			х
A3.11	Photochemistry and Energy Conversion ²	1,33	VO	2	х			х
F1								
B3.1	Module B3: Applied Analytics Multidimensional NMR Spectroscopy in	2	VO	3		ν,	ν,	
D3.1	Liquid State	2	VO	3		Х	X	
B3.2	Advanced Aspects of Magnetic Resonance	1,33	VO	2		х		х
B3.3	Applied Mass Spectrometry of Organic Compounds	1,33	VO	2	х			х
B3.4	Hyphenated and Multidimensional Separation Methods	1,33	VU¹	2		х		х
B3.5	Elemental Mass Spectrometry and Imaging	1,33	SE	2	x		x	
B3.6	Professional Skills in Analytical Chemistry	1,33	SE	2		х	x	
B3.7	Chemo- and Biosensors	1,33	VO	2		х		х
B3.8	Speciation	1,33	SE	2		х	х	
B3.9	Advanced Spectra Interpretation	1,33	SE	2	х		х	х
B3.10	Single Crystal Structure Determination	1,33	VU^1	2		х		х
Elective	Module C3: Catalysis							
C3.1	Bioinorganic Chemistry	1,33	VO	2	х		х	
C3.2	Electrochemical Reactions and Electrocatalysis ²	1,33	VO	2	x			х
C3.3	Catalytic Aspects in Macromolecular Science ²	1,33	VO	2		х		х

1,33

2

2

VO

VO

 VU^1

2

3

3

Photochemistry and Photocatalysis in

Catalysis with Renewable Resources

Organic Synthesis

Advanced Catalysis

C3.4

C3.5

C3.6

Х

х

C3.7	Asymmetric Catalysis	1,33	VO	2	Х		Х			
C3.8	Mechanistic Elucidation of Catalytic Reactions ²	1,33	VO	2	х		х			
Elective Module D3: Chemistry in Life Science and Environment										
D3.1	Molecular Physiology	2	VO	3	х			х		
D3.2	Organic Chemistry of Metabolic Pathways	1,33	VO	2		х	х			
D3.3	Chemical Biology and Drug Development	1,33	VO	2		х		x		
D3.4	Medical Aspects in Glycoscience	1,33	VU^1	2	x			x		
D3.5	Polymers in Life Science and Environment	1,33	VO	2		х		х		
D3.6	Biomedical Analysis	1,33	VO	2	x			x		
D3.7	Transformation and Shaping of Biobased Systems	1,33	VO	2		х		х		
D3.8	Chemical Processing and Environment	1,33	VO	2	x			x		
D3.9	Environmental Chemistry and Toxicology	1,33	SE	2		х	х			
D3.10	Environmental Metallomics	1,33	SE	2	X		Х			

	Modules Special Focus § 7 Abs. 2 Instaltung				Semes			
	Module E3:						Jni T	~
	e and Properties of Condensed Matter	SSt.	Тур	ECTS	WS	SS	Graz	Graz
E3.1	Solid State Electrochemistry	1,33	VO	2	Х			Х
E3.2	Self-Assembly and Nanomaterials	1,33	VO	2	х			х
E3.3	Transport Phenomena and Charge Delocalization in Condensed Matter ²	2	VO	3		x		х
E3.4	Batteries and Capacitors	1,33	VO	2		х		Х
E3.5	Theory of Condensed Matter	1,33	VO	2	х		х	
E3.6	Introduction to Modern Materials	2	VO	3	х		х	
E3.7	Synchrotron Radiation	1,33	VO	2	х			х
E3.8	Surface Science	2	VO	3	х		X	
E3.9	Current Topics in Condensed Matter	1	SE	1	х		х	
Elective	Module F3: Modeling and Theory							
F3.1	Applications in Computational Chemistry ²	2	UE	3	х			х
F3.2	Concepts of Chemical Bonding ²	1,33	SE	2	Х			Х
F3.3	Density Functional Theory ²	1,33	VO	2		х	х	
F3.4	Group Theory for Scientists ²	2	VU^1	3		х	х	
F3.5	Intermolecular Forces in Hybrid Materials	1,33	VO	2	X		x	

½ Vorlesungsteil, ½ Übungsteil
 Diese Lehrveranstaltung wird im Zweijahresrhythmus angeboten

F3.6	Informatics 1	3	VU^1	3	X			х
F3.7	Machine Learning for Data Analysis	1,33	VO	2		x	X	
F3.8	Post-Hartree-Fock Methods ²	1,33	VO	2	х		х	

¹½ Vorlesungsteil, ½ Übungsteil

² Diese Lehrveranstaltung wird im Zweijahresrhythmus angeboten

Elective	Modules Laboratory gem. § 7 Abs. 3							
Lehrvera	anstaltung				Semes			
					ordnu	ng	Uni	TU
Elective	Module A4: Synthesis	SSt.	Тур	ECTS	WS	SS	Graz	Graz
A4.1.1	Organometallic Chemistry and Nanoparticles	4	LU	4		Х		Х
A4.1.2	Organometallic Chemistry and Nanoparticles	1	SE	1		х		X
A4.2.1	Organic and Organometallic Synthesis	4	LU	4		Х	х	
A4.2.2	Organic and Organometallic Synthesis	1	SE	1		X	х	
A4.3.1	Organic Chemistry - Synthesis	4	LU	4	х			х
A4.3.2	Organic Chemistry - Synthesis	1	SE	1	х			х
Elective	Module B4: Applied Analytics							
B4.1.1	Advanced Analytics for Food and Food Contact Material	4	LU	4	Х			x
B4.1.2	Advanced Analytics for Food and Food Contact Material	1	SE	1	Х			x
B4.2.1	Advanced Environmental and Pharmaceutical Analysis	4	LU	4		x	x	
B4.2.2	Advanced Environmental and Pharmaceutical Analysis	1	SE	1		х	Х	
Elective	Module C4: Catalysis							
C4.1.1	Metal- and Biocatalysis	4	LU	4		х	Х	
C4.1.2	Metal- and Biocatalysis	1	SE	1		x	х	
Elective	Module D4: Chemistry in Life Science and	l Enviror	nment					
D4.1.1	Environment and Biobased Systems	4	LU	4		Х		х
D4.1.2	Environment and Biobased Systems	1	SE	1		х		х
D4.2.1	Green Chemistry and Life Sciences	4	LU	4	х		х	
D4.2.2	Green Chemistry and Life Sciences	1	SE	1	х		х	
Elective	Module E4: Structure and Properties of C	ondense	ed Matter					
E4.1.1	Advanced Methods for Condensed- phase Investigations	4	LU	4		Х		х
E4.1.2	Advanced Methods for Condensed- phase Investigations	1	SE	1		Х		Х
E4.2.1	Solids and Interfaces	4	LU	4		x	х	
E4.2.2	Solids and Interfaces	1	SE	1		x	х	

Elective	Module F4: Modeling and Theory						
F4.1.1	Computational Chemistry: Molecular	4	LU	4	Х		Х
	Structures and Spectroscopy						
F4.1.2	Computational Chemistry: Molecular	1	SE	1	X		Х
	Structures and Spectroscopy						
F4.2.1	Computational Chemistry: Molecules,	4	LU	4	X	х	
	Solids and Interfaces						
F4.2.2	Computational Chemistry: Molecules,	1	SE	1	X	х	
	Solids and Interfaces						

§ 8 Freie Wahlfächer

- (1) Die im Rahmen der freien Wahlfächer im Masterstudium Chemistry zu absolvierenden Lehrveranstaltungen dienen der individuellen Schwerpunktsetzung und Weiterentwicklung der Studierenden und können frei aus dem Lehrangebot aller anerkannten in- und ausländischen Universitäten, sowie aller inländischen Fachhochschulen und Pädagogischen Hochschulen gewählt werden. Anhang III enthält eine Empfehlung für frei wählbare Lehrveranstaltungen.
- (2) Sofern einem freien Wahlfach keine ECTS-Anrechnungspunkte zugeordnet sind, erfolgt die Zuordnung von ECTS-Anrechnungspunkten entsprechend dem tatsächlichen Aufwand durch das zuständige Studienrechtliche Organ.
- (3) Die Anerkennung von gegebenenfalls zusätzlich zu erbringenden Leistungen entsprechend § 2 Abs. 3 ist für den Bereich der freien Wahlfächer bis zu einem Umfang von 5 ECTS-Anrechnungspunkte zulässig.

§ 9 Masterarbeit

- (1) Die Masterarbeit dient dem Nachweis der Befähigung, wissenschaftliche Themen selbstständig sowie inhaltlich und methodisch korrekt zu bearbeiten.
- (2) Das Thema der Masterarbeit ist aus einem der Pflicht- oder Wahlmodule zu entnehmen oder es muss mit diesen in einem sinnvollen Zusammenhang stehen.
- (3) Die Masterarbeit ist vor Beginn der Bearbeitung beim zuständigen studienrechtlichen Organ über das zuständige Dekanat anzumelden.

§ 10 Anmeldevoraussetzungen für Lehrveranstaltungen/Prüfungen

(1) Die Anmeldevoraussetzung zur kommissionellen Masterprüfung ist der Nachweis der positiven Beurteilung aller Prüfungsleistungen gemäß §§ 6 bis 8 sowie die positiv beurteilte Masterarbeit.

§ 11 Auslandsaufenthalte und Praxis

(1) Empfohlene Auslandsstudien

Studierenden wird empfohlen, in ihrem Studium einen Auslandsaufenthalt zu absolvieren. Dafür kommt in diesem Masterstudium insbesondere das 3. Semester in Frage.

Ferner können auf Antrag an das zuständige studienrechtliche Organ auch die erbrachten Leistungen von kürzeren Studienaufenthalten im Ausland, wie beispielsweise die aktive Teilnahme

an internationalen Sommer- bzw. Winterschulen, im Rahmen der freien Wahlfächer anerkannt werden.

(2) Praxis

Im Rahmen der freien Wahlfächer besteht die Möglichkeit, eine berufsorientierte Praxis zu absolvieren.

Dabei entsprechen jeder Arbeitswoche bei Vollbeschäftigung 1,5 ECTS-Anrechnungspunkte. Als Praxis gilt auch die aktive Teilnahme an einer wissenschaftlichen Veranstaltung. Diese Praxis hat in sinnvoller Ergänzung zum Studium zu stehen und ist vom zuständigen studienrechtlichen Organ zu genehmigen. Eine einmalige Anrechnung im Ausmaß von maximal 6 ECTS-Anrechnungspunkten ist möglich.

III. Prüfungsordnung und Studienabschluss

§ 12 Modulnoten

Die Beurteilung der Module hat so zu erfolgen, dass der nach ECTS- Anrechnungspunkten gewichtete Notendurchschnitt der im Modul zu absolvierenden Prüfungen herangezogen wird. Dabei ist bei Nachkommawerten, die größer als 0,5 sind, aufzurunden, sonst abzurunden. Prüfungen, deren Beurteilung ausschließlich die erfolgreiche/nicht erfolgreiche Teilnahme bestätigt, sind in diese Berechnung der Modulnote nicht einzubeziehen. Die positive Beurteilung eines Moduls setzt die positive Beurteilung aller im Modul zu absolvierenden Prüfungen voraus.

§ 13 Masterprüfung

- (1) Die Masterprüfung ist eine mündliche, kommissionelle Prüfung und besteht aus
 - der Präsentation der Masterarbeit (maximal 20 Minuten),
 - der Verteidigung der Masterarbeit (ein Prüfungsgespräch über die Masterarbeit und ihr thematisches Umfeld), sowie
 - einem Prüfungsgespräch über einen weiteren Themenbereich des Masterstudiums.
- (2) Die Themenbereiche gem. Abs. 1 werden vom zuständigen studienrechtlichen Organ der Universität der Zulassung auf Vorschlag der/des Kandidat*in festgelegt. Die Gesamtzeit der kommissionellen Masterprüfung beträgt im Regelfall 60 Minuten und hat 75 Minuten nicht zu überschreiten.
- (3) Der Prüfungskommission der Masterprüfung gehören die/der Betreuer*in der Masterarbeit und zwei weitere Mitglieder an, die auf Vorschlag der/des Kandidat*in vom zuständigen studienrechtlichen Organ festgelegt werden. Den Vorsitz führt ein Mitglied der Prüfungskommission, welches nicht Betreuer*in der Masterarbeit ist.
- (4) Für die Masterprüfung ist eine einheitliche Note auf Basis der während der Prüfung erbrachten Leistungen zu vergeben.

§ 14 Studienabschluss

- (1) Mit der positiven Beurteilung aller gemäß § 3 zu erbringenden Studienleistungen wird das Masterstudium abgeschlossen.
- (2) Über den erfolgreichen Abschluss des Studiums ist ein Abschlusszeugnis auszustellen. Das Abschlusszeugnis über das Masterstudium Chemistry enthält

- a. eine Auflistung aller absolvierten Module gemäß § 3 (inklusive ECTS-Anrechnungspunkte) und deren Beurteilungen,
- b. den Titel und die Beurteilung der Masterarbeit,
- c. die Beurteilung der Masterprüfung,
- d. den Gesamtumfang in ECTS-Anrechnungspunkten der freien Wahlfächer gemäß § 8 sowie
- e. die Gesamtbeurteilung.

IV. Inkrafttreten und Übergangsbestimmungen

§ 15 Inkrafttreten

Dieses Curriculum 20XX [in der Version 20ZZ] tritt mit dem 1. Oktober 20jj in Kraft.

§ 16 Übergangsbestimmungen

Eine passende Formulierung wird im Rahmen des Stellungnahmeverfahrens zur Verfügung gestellt.

Anhang zum Curriculum des Masterstudiums Chemistry

Anhang I: Modulbeschreibungen

Compulsory and Elective Modules Focus Area A	Synthesis
ECTS-Anrechnungspunkte	5 - 39
Inhalte	 Grundlagen der Organometallchemie Fortgeschrittene organische Chemie inklusive Stereochemie, Retrosynthese, elektroorganische Chemie Anorganische und Organische Reaktionsmechanismen Fortgeschrittene Polymersynthese Aktivierung von kleinen, inerten Molekülen Durchflusschemie und kontinuierliche Prozesse Photochemie und Energieumwandlung
Lernziele	 Studierende sind nach Absolvierung des Moduls in der Lage die Prinzipien zur Herstellung von organometallischen Hauptgruppenverbindungen und organischen Verbindungen anzuwenden Mechanismen zur Herstellung von organischen Verbindungen inklusive der Aktivierung kleiner, inerter Moleküle anzuwenden die Herstellung und Funktionalität von Polymeren zu verstehen die Prinzipien der Durchflusschemie und von kontinuierlichen Prozessen anzuwenden die Prinzipien der Photochemie und der Energieumwandlung zu verstehen
Lehr- und Lernaktivitäten, -methoden	Vorlesungen, Seminare, Laborübungen
Inhaltliche Voraussetzungen für die Teilnahme	
Häufigkeit des Angebots des Moduls	jährlich; einzelne Lehrveranstaltungen aus den Elective Modules werden zweijährig angeboten

Compulsory and Elective	Applied Analytics
Modules Focus Area B	
ECTS-Anrechnungspunkte	4 - 38
Inhalte	 Anwendungen analytischer Methoden auf die Bestimmung von anorganischen und organischen Verbindungen im Bereich der Umwelt-, Lebensmittel-, und Pharmazeutischen Chemie Planung und Strategieentwicklung zur Lösung analytischer Fragestellungen; welche analytischen Methoden sind zur Beantwortung umweltrelevanter Fragen sinnvoll Strategien zur Auswertung von großen Datenmengen ("big data") Fortgeschrittene und multidimensionale Methoden der NMR-Spektroskopie inklusive Spektrenauswertungen Einkristallstrukturanalyse Chemo- und Biosensoren
Lernziele	Studierende sind nach Absolvierung des Moduls in der Lage

	 analytische Methoden in Abhängigkeit der Fragestellung zu wählen und die Vor- und Nachteile sowie die Limitierungen der Methoden zu evaluieren neue (mehrdimensionale) instrumentelle analytische Methoden anzuwenden analytische Messergebnisse kritisch zu interpretieren Qualitätssicherung und -kontrolle, sowie in die gute Laborpraxis anzuwenden
Lehr- und Lernaktivitäten, -methoden	Vorlesungen, Seminare, Laborübungen
Inhaltliche Voraussetzungen für die Teilnahme	
Häufigkeit des Angebots des Moduls	jährlich; einzelne Lehrveranstaltungen aus den Elective Modules werden zweijährig angeboten

Compulsory and Elective	Catalysis						
Modules Focus Area C							
ECTS-Anrechnungspunkte	5 - 39						
Inhalte	Grundlagen der Biokatalyse						
	Synthese von Organometallverbindungen mit Übergangsmetal-						
	len und deren Einsatz in katalytischen Anwendungen						
	Grundlagen der heterogenen Katalyse und Oberflächenchemie						
	Grundlagen der makromolekularen, bioanorganischen und						
	elektrokatalytischen Chemie						
	Grundlagen der Photokatalyse in der organischen Synthese						
	Fortgeschrittene Katalysechemie inklusive asymmetrischer Ka-						
	talyse und Katalyse mit erneuerbaren Rohstoffen						
	Mechanismusaufklärung in metallorganischen						
	Katalysereaktionen						
Lernziele	Studierende sind nach Absolvierung des Moduls in der Lage						
	die Prinzipien der Biokatalyse zu verstehen						
	experimentelle Methoden zur Herstellung von metallorgani-						
	schen Verbindungen mit Übergangsmetallen zu verstehen						
	katalytische Zyklen mit Übergangsmetallkatalysatoren und						
	Prinzipien zur deren Aufklärung zu verstehen						
	das Produkt einer katalytischen Reaktion vorauszusagen						
	experimentelle Methoden zur Herstellung von heterogene						
	talysatoren und Reaktionen auf Oberflächen zu verstehen						
	experimentelle Methoden zur Herstellung von Polymeren mit						
	Hilfe geeigneter Katalysatoren zu verstehen						
	Metalloenzyme sowie deren katalytische Reaktivität zu verste-						
	hen						
	Prinzipien elektrokatalytischer und photokatalytischer						
	Reaktionen zu verstehen						
	Katalysesysteme zur Umsetzung von erneuerbaren Rohstoffen						
	sowie zur Herstellung chiraler Verbindungen zu verstehen						
Lehr- und Lernaktivitäten,	Vorlesungen, Seminare, Laborübungen						
-methoden	ronesangen, semmare, Laborabangen						
Inhaltliche Voraussetzungen für die							
Teilnahme							
	jährlich; einzelne Lehrveranstaltungen aus den Elective Modules wer-						
Häufigkeit des Angebots des Moduls	den zweijährig angeboten						
	1						

Masterstudium Chemistry Version vom 04.11.2024 NAWI Graz 17

Compulsory and Elective Modules Focus Area D	Chemistry in Life Science and Environment
ECTS-Anrechnungspunkte	4 - 38
Inhalte	 Konzept der Nachhaltigkeit in der Chemie "Grüne Chemie" und erneuerbare Rohstoffe Biobasierte Systeme und Materialien Chemie für eine nachhaltige Energieversorgung Anwendungen der Chemie im Bereich der Life Sciences Lebensmittelchemie und -technologie (Bio)medizinischen Chemie Chemische Biologie Physiologie und Toxikologie
Lernziele	Studierende sind nach Absolvierung des Moduls in der Lage die vielfältigen Rollen der Chemie in den Bereichen der Life Science und der Umwelt zu verstehen und diese zu beurteilen die Relevanz des Beitrags der Chemie zur Nachhaltigkeit (Sustainability Goals) zu verstehen, zu bewerten und sie kennen verschiedene Lösungsansätze
Lehr- und Lernaktivitäten, -methoden	Vorlesungen, Seminare, Übungen, Laborübungen
Inhaltliche Voraussetzungen für die Teilnahme	
Häufigkeit des Angebots des Moduls	jährlich; einzelne Lehrveranstaltungen aus den Elective Modules werden zweijährig angeboten

Compulsory and Elective Modules Focus Area E	Structure and Properties of Condensed Matter
ECTS-Anrechnungspunkte	4 - 38
Inhalte	 Eigenschaften von Festkörpern und Kristallen Festkörperklassen Struktur und Eigenschaften von Flüssigkeiten Charakterisierung von Kristallen und periodischen Strukturen durch Beugung mit Röntgenstrahlung oder Teilchen Elektronische Eigenschaften verschiedener Festkörper Grenzflächen eines Festkörpers, thermodynamische Eigenschaften, Adsorption und Wachstumsprozesse Eigenschaften und Struktur von Makromolekülen Kolloide, Einteilung je nach Aggregatszuständen, Stabilisierung und elektrische Doppelschicht Charakterisierung von Kristallen und Festkörpern durch Mikroskopie, Spektroskopie und Streuung Aufbau und Entwicklung der experimentellen Methoden sowie Vor- und Nachteile im Hinblick auf die Untersuchung von Kristallen und Festkörpern Elektrochemie des Festkörpers Moderne Materialien: 2D Materialien, Selbst-Assemblierung von Nanomaterialien und Kohlenstoffnanostrukturen Transportphänomene und elektrische Anwendungen von Festkörpern
Lernziele	 Studierende sind nach Absolvierung des Moduls in der Lage Strukturen von Festkörpern zu erkennen und je nach Kristallgittern sowie chemischer Zusammensetzung zu klassifizieren

Masterstudium Chemistry
NAWI Graz
Version vom 04.11.2024
18

	 Unterschiede der Struktur und der Eigenschaften von Flüssigkeiten und Festkörpern zu verstehen Eigenschaften von Festkörpern und den Zusammenhang mit makroskopischen Größen zu kennen Moderne experimentelle Methoden zur Charakterisierung von Festkörpern zu verstehen und ihre Anwendungsmöglichkeiten zu kennen fortgeschrittene Versuche im Bereich von Festkörpern und Grenzflächen durchzuführen, die Daten zu analysieren und die Ergebnisse zu präsentieren moderne Themen der Condensed Matter zu erfassen und in Referaten kritisch zu diskutieren
Lehr- und Lernaktivitäten, -methoden	Vorlesungen, Seminare, Übungen, Laborübungen
Inhaltliche Voraussetzungen für die Teilnahme	
Häufigkeit des Angebots des Moduls	jährlich; einzelne Lehrveranstaltungen aus den Elective Modules werden zweijährig angeboten

Compulsory and Elective	Modeling and Theory
Modules Focus Area F	Wodeling and Theory
ECTS-Anrechnungspunkte	4 - 38
Inhalte	 Grundlagen, Theorie, sowie Anwendung von Simulationsmethoden zur Beschreibung von chemischen Verbindungen und Materialien sowie zur Vorhersage derer Eigenschaften Standard-Rechenmethoden (Kraftfelder, Moleküldynamik, semiempirische Methoden, Hartree-Fock, Post-Hartree-Fock, sowie Dichtefunktionaltheorie) Praktische Anwendungen zur Charakterisierung, Vorhersage und dem Design von Molekülstrukturen, Oberflächen und (Hybrid)-Materialien und deren Eigenschaften Standardprogramme zur Simulation und Visualisierung Programmiertechniken sowie Tools zur Datenauswertung
Lernziele	 Studierende sind nach Absolvierung des Moduls in der Lage den quantenmechanischen Hintergrund der jeweiligen Methoden zu erfassen die Anwendungsbereiche, aber auch Grenzen und Fehler der Standardrechenmethoden der Computerchemie zu beurteilen den theoretischen Hintergrund einiger Rechenmethoden inklusive deren Herleitungen zu verstehen ein Computerchemieprojekt zu planen, auch in Hinblick auf die notwendigen Rechenmethoden und Rechenzeitabschätzung Strukturen von Molekülen und Oberflächen, Reaktionen, sowie deren Eigenschaften zu berechnen wissenschaftliche Publikationen zum Thema des Moduls, speziell in den Bereichen der Computerchemie, nachzuvollziehen
Lehr- und Lernaktivitäten, -methoden	Vorlesungen, Seminare, Übungen, Laborübungen
Inhaltliche Voraussetzungen für die Teilnahme	
Häufigkeit des Angebots des Moduls	jährlich; einzelne Lehrveranstaltungen aus den Elective Modules werden zweijährig angeboten

Masterstudium Chemistry
NAWI Graz

Version vom 04.11.2024
19

Anhang II: Musterstudienverlauf

Studienablauf

Studienablauf					
1. Semester	SSt.	Тур	ECTS	Uni Graz²	TU Graz²
A1.2 Advanced Organic Chemistry	2	VO	3	х	
B1.1 Advanced Inorganic Analytical Chemistry	1,33	VO	2	х	
C1.2 Transition Metal Chemistry: from Structure to Catalysis	1,33	VO	2	х	
D1.2 Food Chemistry	1,33	VO	2		х
E1.1 Concepts in Applied Physical Chemistry	1,33	VO	2		х
F1.1 Introduction to Computational Chemistry	1,33	VU^1	2		x
Elective Modules gem. § 7			17		
1. Semester Summe			30		
2. Semester					
B1.2 Advanced Organic Analytical Chemistry	1,33	VO	2		x
C1.1 Biocatalysis	2	VO	3	Х	
Elective Modules gem. § 7			22		
Free Choice Subjects gem. § 8			3		
2. Semester Summe			30		
3. Semester					
A1.1 Organometallic Chemistry of the Main Group Elements	1,33	VO	2		Х
D1.1 Green Chemistry	1,33	VU	2	Х	
E1.2 Structure and Matter	1,33	VO	2	Х	
F1.2 Statistical Thermodynamics	1,33	VU^1	2	Х	
Elective Modules gem. § 7			16		
Free Choice Subjects gem. § 8			4		
Master's Thesis			2		
3. Semester Summe			30		
A Compactor					
4. Semester Master's Thesis Seminar			1		
			1		
Master's Thesis			28		
Master's Examination			1		
4. Semester Summe			30		
Summe ECTS gesamt			120		
11/1/ Land 11/1/11 Land 11			120		

¹½ Vorlesungsteil, ½ Übungsteil

² Zuordnung der Lehrveranstaltung zu den beteiligten Universitäten. Beide Universitäten sind genannt, wenn die Lehrveranstaltung von beiden Universitäten gemeinsam, parallel oder im Wechsel angeboten werden.

Anhang III: Empfohlene Lehrveranstaltungen für die freien Wahlfächer

Freie Wahlfächer können gem. § 8 dieses Curriculums frei gewählt werden.

Im Sinne einer Verbreiterung der Wissensbasis werden Lehrveranstaltungen aus den Gebieten Fremdsprachen, soziale Kompetenz, Technikfolgenabschätzung sowie Frauen- und Geschlechterforschung empfohlen. Insbesondere wird auf das Angebot folgender Serviceeinrichtungen hingewiesen:

- Sprachen, Schlüsselkompetenzen und Interne Weiterbildung und
- Science, Technology and Society Unit (STS Unit) der TU Graz,
- Treffpunkt Sprachen,
- Transferinitiative für Management- und Entrepreneurship-Grundlagen, Awareness, Training und Employability (TIMEGATE), sowie
- Zentrum für Soziale Kompetenz der Universität Graz.

Anhang IV: Äquivalenzliste

Für Lehrveranstaltungen, deren Äquivalenz in diesem Teil des Anhangs zum Curriculum definiert ist, ist keine gesonderte Anerkennung durch das für studienrechtliche Angelegenheiten zuständige Organ mehr erforderlich. Auf die Möglichkeit einer individuellen Anerkennung gem. § 78 UG per Bescheid durch das für studienrechtliche Angelegenheiten zuständige Organ wird hingewiesen.

Eine Äquivalenzliste definiert die Gleichwertigkeit von positiv absolvierten Lehrveranstaltungen dieses vorliegenden Curriculums und des vorhergehenden Curriculums. Diese Äquivalenz gilt in beide Richtungen, d.h. dass positiv absolvierte Lehrveranstaltungen des vorhergehenden Curriculums zur Anrechnung im vorliegenden Curriculum heranzuziehen sind und positiv absolvierte Lehrveranstaltungen des vorliegen-den Curriculums zur Anrechnung im vorhergehenden Curriculum.

Curriculum in der Fassung 2022				Curriculum in der Fassı	ung 202	25	
Lehrveranstaltung	LV-Typ	SSt.	ECTS	TS Lehrveranstaltung LV- Typ SSt			
Green Chemistry	VO	1,33	2	Green Chemistry	VU	1,33	2

Curriculum in der Fass	ung 200	9		Curriculum in der Fassung 2022			
Lehrveranstaltung	LV-Typ	SSt.	ECTS	Lehrveranstaltung	LV- Typ	SSt.	ECTS
Inorganic Chemistry I – Organometallic Chemistry of Main Group Elements	VO	1,33	2	Organometallic Chemistry of the Main Group Elements	VO	1,33	2
Anorganische Chemie – Metallorganik II	VO	1,33	2	Transition Metal Chemistry: from Structure to Catalysis	VO	1,33	2
Organische Chemie II	VO	2,66	4	Advanced Organic Chemistry	VO	2	3
Analytische Chemie	VO	2,66	4	Advanced Inorganic Analytical Chemistry und Advanced Organic Analytical Chemistry	VO	1,33	2
				That arrect or game ranely area. Greenist,	VO	1,33	2
Theoretische Chemie – Grundlagen	VU	1,33	2	Introduction to Computational Chemistry	VU	1,33	2
Theoretische Chemie – Anwendungen	VU	1,33	2	Hartree-Fock Theory	VU	1,33	2
Physikalische Chemie II – Struktur und Strahlung	VO	1,33	2	Concepts in Applied Physical Chemistry	VO	1,33	2
Physical Chemistry I - Structure and Matter	VO	1,33	2	Structure and Matter	VO	1,33	2
Ökotechnik und Umweltchemie	VO	2,66	4	Energy and Environmental Science und	VO	1,33	2
				Green Chemistry	VO	1,33	2
Chemische Prozesstechnik	vo	2,66	4	Chemical Processing and Environment und Transformation and Shaping of Biobased Systems	vo	1,33	2
Elektrochemische Reaktionen	VO	2	3	Solid State Electrochemistry	VO	1,33	2
Applied Catalysis und Cluster und Festkörperchemie	VO VO	1,33 1,33	2	Applied Catalysis	VO	2	3

Curriculum in der Fass	Curriculum in der Fassung 2022						
Lehrveranstaltung	LV-Typ	SSt.	ECTS	Lehrveranstaltung	LV- Typ	SSt.	ECTS
Asymmetrische Synthese	VO	2	3	Asymmetric Catalysis	VO	1,33	2
Bioanorganische Chemie	vo	1,33	2	Bioinorganic Chemistry	VO	1,33	2
Biokatalyse	vo	2	3	Biocatalysis	VO	2	3
Renewable Resources – Chemistry and Technology I und Renewable Resources	VO SE	1,33 2	2	Chemistry of Biobased Systems	VO	2	3
Chemo- und Biosensoren	VO	1,33	2	Chemo-and Biosensors	VO	1,33	2
Funktionspolymere für Hochtechnologie-	vo	1,33	2	Polymers in Life Science and Environment	VO	1,33	2
Anwendungen Moderne experimentelle kinetische Methoden	VO	1,33	2	Transport Phenomena and Charge Delocalization in Condensed Matter	VO	2	3
Molekulare Physiologie	vo	2	3	Molecular Physiology	VO	2	3
Fortgeschrittene Quantenchemie	UE	2	2	Advanced Computational Chemistry	VU	1,33	2
Organometallische Polymere, Materialien und Nanopartikeln	VO	1,33	2	Molecules and (Nano)Materials	VO	1,33	2
Paramagnetic Systems – from Radicals and Enzymes towards functional Materials	VO	1,33	2	Photochemistry and Energy Conversion	VO	1,33	2
Photochemie	VO	1,33	2	Photochemistry and Photocatalysis in Organic Synthesis	VO	1,33	2
Radiochemie	VO	1,33	2	Biomedical Analysis	VO	1,33	2
Retrosynthese und Syntheseplanung	VO	1,33	2	Retrosynthesis	VO	1,33	2
Simulationsmethoden für kondensierte Phasen	VO	1,33	2	Applications in Computational Chemistry	UE	2	3
Spezielle Aspekte der Hauptgruppenelementchemie	VO	1,33	2	Advanced Aspects in Synthetic Main Group Chemistry	VO	1,33	2
Statistische Thermodynamik und Reaktionskinetik	VO	1,33	2	Statistical Thermodynamics	VU	1,33	2
Structure and Matter II – Scattering Methods	VO	2	3	Synchrotron Radiation	VO	1,33	2
Toxikologie	VO	1,33	2	Environmental Chemistry and Toxicology	SE	1,33	2
High-Throughput Synthesis	VO	1,33	2	Flow Chemistry and Continuous Processing	VO	1,33	2
Organische Synthesemethoden – Synthese komplexer Moleküle	VO	2	3	Synthetic Methods and Synthesis of Complex Molecules	VO	1,33	2
Organische Reaktionsmechanismen oder Anorganische Strukturen und	VO VO	2 1,33	3	Reaction Mechanism	VO	2	3
Reaktionsmechanismen	1/0	4.00		Applied Mass Spectrometry of Organic		4.00	
Angewandte Massenspektrometrie Ein- und mehrdimensionale NMR-	VO	1,33	2	Compounds Multidimensional NMR Spectroscopy in	VO	1,33	2
Spektroskopie (inkl. Heterokerne)	VO	2	3	Liquid State Elemental Mass Spectrometry and	VO	2	3
Elemental Mass Spectrometry	VO	1,33	2	Imaging	SE	1,33	2
ESR-Spektroskopie	VO	1,33	2	Advanced Aspects of Magnetic Resonance	VO	1,33	2
Molekülspektroskopie und Symmetrie	VO	1,33	2	Group Theory for Scientists	VU	2	3
Qualitätssicherung in der Analytischen Chemie	vo	1,33	2	Professional Skills in Analytical Chemistry	SE	1,33	2
Röntgen-Einkristallstrukturanalyse	VO	1,33	2	Single Crystal Structure Determination	VU	1,33	2

Curriculum in der Fassung 2009				Curriculum in der Fassung 2022			
Lehrveranstaltung	LV-Typ	SSt.	ECTS	Lehrveranstaltung	LV- Typ	SSt.	ECTS
Seminar zur Spektreninterpretation	SE	1	1	Advanced Spectra Interpretation	SE	1,33	2
Speziation	VO	1,33	2	Speciation	SE	1,33	2
LU aus Metallorganik und Katalyse	LU	5	5	Organometallic Chemistry and Nanoparticles oder Organic and Organometallic Synthesis oder Metal- and Biocatalysis	LU	4	4
Seminar zu den LU aus Metallorganik und Katalyse	SE	1	1	Organometallic Chemistry and Nanoparticles oder Organic and Organometallic Synthesis oder Metal- and Biocatalysis	SE	1	1
LU aus Organischer Chemie	LU	5	5	Organic and Organometallic Synthesis oder Organic Chemistry – Synthesis	LU	4	4
Seminar zu den LU aus Organischer Chemie	SE	1	1	Organic and Organometallic Synthesis oder Organic Chemistry – Synthesis	SE	1	1
LU aus Computational Chemistry (Computerlabor)	LU	5	5	Computational Chemistry: Molecular Structures and Spectroscopy oder Computational Chemistry: Molecules, Solids and Interfaces	LU	4	4
Seminar zu den LU aus Computational Chemistry (Computerlabor)	SE	1	1	Computational Chemistry: Molecular Structures and Spectroscopy oder Computational Chemistry: Molecules, Solids and Interfaces	SE	1	1
LU aus Physikalischer Chemie	LU	5	5	Advanced Methods for Condensed-phase Investigations oder Solids and Interfaces	LU	4	4
Seminar zu den LU aus Physikalischer Chemie (Master)	SE	1	1	Advanced Methods for Condensed-phase Investigations oder Solids and Interfaces	SE	1	1
LU aus Analytischer Chemie	LU	5	5	Advanced Analytics for Food and Food Contact Material oder Advanced Environmental and Pharmaceutical Analysis	LU	4	4
Seminar zu den LU aus Analytischer (Master)	SE	1	1	Advanced Analytics for Food and Food Contact Material oder Advanced Environmental and Pharmaceutical Analysis	SE	1	1