
Notes VI

Existence, Once Again

In this lecture we give a more general existence proof compared to the ones
given in Notes V. In particular, we do not restrict ourselves to exchange
economies but consider production economies as well. The notes are based
on MWG, chapter 17 (appendix).

1 The Starting Point

I > 0, J > 0, L > 0, all of them are finite.

Definition 1 An economy with production is defined by
P ≡ ({Xi,%i}I

i=1, {Yj}J
j=1, {(ωi, θi1, ..., θiJ)}I

i=1).

In P , each household’s wealth is given by wi ≡ p ·ωi+
∑

j θijp ·y∗j . Household
i ’s budget set is Bi = {xi ∈ Xi : p · xi ≤ wi}.

We now consider a number of differing types of equilibria, each of which
is going to play a key role for the existence proof.

Definition 2 (Walrasian Equilibrium)
In P, a Walrasian equilibrium is an allocation (x∗, y∗) and a nonzero price
vector p = (p1, ..., pL) if:
(i) For every j, y∗j ∈ Yj maximizes profits in Yj: p · y∗j ≥ p · yj for all yj ∈ Yj.
(ii) For every i, x∗i ∈ Xi is maximal for %i in the respective budget set Bi.
(iii)

∑
i x∗i = ω̄ +

∑
j y∗j , where ω̄ =

∑
i ωi is the exogenous, aggregate

endowment vector.

Definition 3 (Walrasian Quasiequilibrium)
A Walrasian quasiequilibrium is a Walrasian equilibrium with condition (ii),
above, replaced by:
(ii’) For every i, p ·x∗i ≤ p ·ωi +

∑
j θijp · y∗j , and if xi Âi x∗i then p ·xi ≥ wi.

Notice that (ii’) implies expenditure minimization on the no-worse-than set
{xi ∈ Xi : xi %i x∗i }, but not necessarily utility maximization on the budget
set Bi. Moreover, every Walrasian equilibrium is a Walrasian quasiequilib-
rium, but not vice versa.
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Definition 4 (Free Disposal Quasiequilibrium)
A free disposal quasiequilibrium is a Walrasian quasiequilibrium with con-
dition (iii), above, replaced by:
(iii’)

∑
i x∗i ≤ ω̄ +

∑
j y∗j and p · (∑i x∗i − ω̄ −∑

j y∗j ) = 0 .

Here, the feasibility condition (iii’) is changed. Free goods (with a respective
price of zero) are allowed to be there in excess supply and can be disposed
for free. Notice that every Walrasian quasiequilibrium is a free disposal
quasiequilibrium, but not vice versa.

Definition 5 (Truncated Free Disposal Quasiequilibrium)
A truncated free disposal quasiequilibrium is a free disposal quasiequilibrium
with truncated production and consumption spaces Ŷj, X̂i, defined as follows:

X̂i ≡ {xi ∈ Xi : |xli| ≤ r for all l}, and Ŷj ≡ {yj ∈ Yj : |ylj| ≤ r for all l}.

Here all consumption and production spaces are truncated, so Ŷj, X̂i are
closed and bounded (hence compact) spaces.

Finally, and with less rigor, we define the Market Game. As for every
game, we need to specify who the players are, what their strategy sets and
strategies are (I don’t comment on the payoffs here).
1. Players: I consumers, J firms, and 1 market agent (Walrasian auctioneer,
if you like) who determines prices.
2. Strategy sets: X̂i for consumers, Ŷj for firms, and the price simplex for
the market agent: ∆ = {p ∈ RL : pl ≥ 0, and

∑
l pl = 1}.

3. Strategies: (a) Consumers: choose x′i ∈ X̂i such that (i) p · x′i ≤ wi(p, y),
(ii) x′i %i x′′i for all x′′i ∈ X̂i satisfying p ·x′′i < wi(p, y). (b) Producers: choose
production plans y′j ∈ Ŷj that maximize profits in Ŷj (given p). (c) Market
Agent: chooses p ∈ ∆ such as to maximize the value of excess demand:
(
∑

i xi −
∑

i ωi −
∑

j yj) · p.

Denote the best-response correspondences by x̃i(x, y, p) ∈ X̂i, ỹi(x, y, p) ∈ Ŷj,
p̃(x, y, p) ∈ ∆.

Two points merit commentation. First, consumers are not maximizing
utility, they are minimizing expenditure — hence, at the level of the market
game, we are going for a quasiequilibrium rather than for an equilibrium.
Second, the market agent attaches the highest price (=1) to that commodity
whose excess demand is the largest.

Ronald Wendner VI-2



2 Mathematical Preliminaries

Of course, we already had a look at these concepts before. I shortly replicate
the discussion for your convenience.

Compactness of a set in RN . The set A ⊂ RN is compact if it is closed and
bounded relative to RN .
Consider all converging sequences {xn

i }∞n=1 in A (i.e., every element of a se-
quence {xn

i }∞n=1 belongs to the set A), and denote the respective limit point
by xi. The set A ⊂ RN is closed if for every converging sequence in A,
xi ∈ A.
The set A ⊂ RN is bounded if there is r ∈ R such that for all y ∈ A we have:
‖y‖ < r.1 Clearly, any continuous function defined on a compact set attains
a maximum.

Continuity of Preferences. Suppose there is a sequence {xn
i }∞n=1 ∈ A that

converges to xi ∈ A, such that for all n: xn
i %i x′i. Then continuity of %i

implies that xi %i x′i.

Strict Convexity of Preferences. Suppose there is a sequence {xn
i }∞n=1 ∈

A, such that for all n: xn
i %i x∗i . Then, for any α ∈ (0, 1) we have:

(α xn
i + (1− α) x∗i ) Âi x∗i .

If, in addition, (i) the sequence {xn
i }∞n=1 ∈ A converges to xi ∈ A, and (ii) %i

is continuous, we know that (α xi + (1− α) x∗i ) Âi x∗i .

3 Structure of the Existence Proof

Several steps are involved for proofing existence of a Walrasian equilibrium,
which is the ultimate objective. Each of these steps works only when certain
assumptions (like continuity of preferences etc.) are satisfied. In the follow-
ing, we consider the proof strategy, consisting of 3 parts (9 steps). In the
presentation, we go from the last step to the first step.

Part 3 of Proof: Walrasian Equilibrium
Part 2 of Proof: Solution of the Market Game
Part 1 of Proof: Nonemptiness of Best Response Correspondences

1Notice that r ∈ R implies r < ∞!
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Part 3 of Proof: Walrasian Equilibrium

• Walrasian equilibrium (To show existence of a WE is the final step.)

↖
If: cheaper consumption condition, then: WQE ⇒ WE [step 9]

↗

• Walrasian quasiequilibrium

↖
If: 1 firm satisfies free disposal, then: FDQE ⇒ WQE [step 8]

↗

• free disposal quasiequilibrium

↖
If: Xi, Yj convex, then: TFDQE ⇒ FDQE [step 7]

↗

• truncated free disposal quasiequilibrium .
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Part 2 of Proof: Solution of the Market Game

• Truncated free disposal quasiequilibrium

↖
If: %i are locally nonsatiated, then a solution to the market game is a
TFDQE [step 6]

↗

• Solution of the Market Game

↑
Solution exists if best response correspondences are:
nonempty, convex valued, upper hemicontinuous. [step 5]

↑
Nonemptiness follows from (i) nonemptiness of the set of feasible allo-
cations/of the strategy sets, and from (ii) continuity of %i (see Part 1
of Proof)

Convex valuedness follows from convexity of %i, Xi, and Yj [step 4]

Upper hemicontinuity follows from continuity of %i [step 3] .

Part 1 of Proof:
Nonemptiness of Best Response Correspondences

• Nonemptiness of best response correspondences is ensured if the the
set of feasible allocations, A, is (i) compact, and (ii) nonempty.

↑
Compactness of A follows from:
Every Xi is closed, bounded below. Every Yj is closed. Moreover, the
aggregate Y is convex, admits the possibility of inaction, satisfies the
no-free-lunch property and is irreversible. [step 2]

Nonemptiness of A follows from:
−RL

+ ⊂ Y , and for all i there exists x̂i ∈ Xi such that
∑

i x̂i ≤ ω̄.
[step 1]
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4 Existence of Walrasian Equilibrium

Theorem 1 Suppose that for an economy P the following assumptions (i)
to (iii) hold. Then a Walrasian equilibrium exists.

(i) For every i, Xi ⊂ RL is closed and convex; %i is rational, continuous,
locally nonsatiated, and convex; ωi ≥ x̂i ∈ Xi;
(ii) Every Yj ⊂ RL is closed, convex, includes the origin, and satisfies free
disposal;
(iii) The set of feasible allocations is compact (i.e.: for all i there exists
x̂i ∈ Xi such that

∑
i x̂i ≤ ω̄, all Xi are bounded below, all Yj satisfy the no

free lunch condition as well as irreversibility).

5 Sketches of Proofs for each Step

Step 1 (Nonemptiness of A)

The set of feasible allocations, A, is nonempty if −RL
+ ⊂ Y , and for all i

there exists x̂i ∈ Xi such that
∑

i x̂i ≤ ω̄. Certainly,
∑

i x̂i− ω̄ ∈ −RL
+ ⊂ Y .

Thus, x̂i exists, and x̂i and
∑

i x̂i − ω̄ are feasible. So, A is nonempty.
Notice that the requirements are: (i) 0 ∈ Y (possibility of inaction), and (ii)
0− RL

+ = −RL
+ ⊂ Y (free disposal).2

Step 2 (Compactness of A)

The set A needs to be closed and bounded. Closedness follows from the fact
that all individual production and consumption sets are closed (and the fact
that the sum of closed sets is closed).
Boundedness: If all production sets are bounded, the consumption sets are
bounded as well, because (i) for all l,

∑
i xli ≤

∑
j ylj +

∑
i ωli, and (ii) all

Xi are bounded below by assumption. So we need to argue that all Yj are
bounded above. Suppose not, then there is a Yj that contains a nonnegative
vector (production plan). This, however, is precluded by the no-free-lunch
property.

2Remember, we defined the set of feasible allocations as A = {(x, y) ∈ X1 × ...×XI ×
Y1 × ...× YJ :

∑
i xi = ω̄ +

∑
j yj} ⊂ RL(I+J).
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Step 3 (UHC of Best Response Correspondences)

As A is bounded, we first restrict our attention to the truncated economy.
Consider the best response correspondence x̃i(x, y, p), and four converging
sequences: pn → p, yn → y, xn → x, x

′n
i → x′i, such that x

′n
i ∈ x̃i(x

n, yn, pn).
So, x

′n
i is an expenditure minimizing consumption bundle. Then, x̃i(x, y, p)

is uhc if x′i ∈ x̃i(x, y, p).
As pn·x′ni ≤ wi(p

n, yn), continuity (of the dot product) implies p·x′i ≤ wi(p, y).
Consider any x′′i ∈ X̂i for which x′′i Â x′i. By continuity of %i, for n large
enough, x′′i Â x

′n
i . Thus, pn · x′′i ≥ wi(p

n, yn). Otherwise there is a cheaper
consumption bundle that gives more utility as x

′n
i — but then x

′n
i is not an

element of the best response correspondence.
In the limit, as n → ∞, p · x′′i ≥ wi(p, y). Thus, any consumption bundle
which is strictly preferred does not cost less than x′i, so x′i is an expenditure
minimizing consumption bundle, and therefore x′i ∈ x̃i(x, y, p).
Notice, we need continuity of %i to establish uhc of the the best response
correspondences. Similar arguments can be found for p̃ and ỹ.

Step 4 (Convex Valuedness of Best Response Correspondences)

For any two elements of the best response correspondence, xi, x
′
i, any linear

combination, xiα = α xi + (1−α)x′i is (i) affordable, (ii) at least as good (by
convexity of preferences). For any cheaper consumption bundle x

′′
i , it holds

that xi %i x
′′
i (otherwise, xi would not be an element of the best response

correspondence), hence, xiα %i x
′′
i . Thus all xiα ∈ x̃i(x, y, p).

So, by steps 1 to 4, the best response correspondences are nonempty, convex
valued, and uhc.
Nonemptiness follows from step 1. For p̃(.), x̃(.), and ỹ(.), we are maximizing
continuous functions on nonempty, compact sets — so, by the Weierstrass
Theorem, there are solutions to the maximization problems, and so the best
response correspondences are nonempty.

Step 5 (Existence of a Fixed Point)

A solution to the market game exists, if we are having a fixed point: x∗i ∈
x̃i(x

∗, y∗, p) for all i, y∗j ∈ ỹj(x
∗, y∗, p) for all j, and p ∈ p̃(x∗, y∗, p). Step 6

shows that such a fixed point actually is a solution.
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Considering the best response correspondences jointly, we define a corre-
spondence Ψ from X1× ...×XI ×Y1× ...×YJ ×∆ to itself. Notice that Ψ is
an uhc correspondence, and X1× ...×XI × Y1× ...× YJ ×∆ is a nonempty,
compact, and convex set. Thus, by Kakutani’s Fixed Point Theorem, there
is a fixed point, i.e., there is (x∗, y∗, p?) such that (x∗, y∗, p∗) = Ψ(x∗, y∗, p∗).

Step 6 (A Fixed Point is a TFDQE)

We only need to establish property (iii’), as (i) and (ii’) are satisfied by
definition of the market game. Thus, we need to show that

∑
i

x∗i −
∑

i

ωi −
∑

j

y∗j ≤ 0 and p ·
(∑

i

x∗i −
∑

i

ωi −
∑

j

y∗j

)
= 0 .

From the feasibility condition for each consumer it follows that p · (∑i x
∗
i −∑

i ωi −
∑

j y∗j ) ≤ 0. This implies that
∑

i x
∗
i −

∑
i ωi −

∑
j y∗j ≤ 0. Oth-

erwise there would be one commodity, say l, in excess demand. The mar-
ket agent would then set pl = 1 and all pk = 0 for all k 6= l. Conse-
quently, p · (∑i x

∗
i −

∑
i ωi −

∑
j y∗j ) would exceed zero. Thus, (x∗, y∗) ∈

A, and as A is bounded, x∗li < r for all i and all l. By local nonsatia-
tion, all individual budget constraints are satisfied with equality. Thus,

p ·
(∑

i x
∗
i −

∑
i ωi −

∑
j y∗j

)
= 0. So a fixed point is a TFDQE.

Step 7 (A TFDQE is a FDQE)

This result follows from convexity of %i. As all (x∗, y∗) ∈ A, and as A is
bounded, we know that x∗li < r for all l and i.
Proof strategy: We know that in the (nontruncated) FDQE, (ii’) definitely
holds (by definition). (TFDQE ⇒ FDQE) ⇔ (¬ FDQE ⇒ ¬ TFDQE).
So the proof by the contrapositive says: suppose (ii’) does not hold in the
nontruncated equilibrium (so FDQE does not hold), then (ii’) does not hold
in the truncated equilibrium (so TFDQE does not hold). This statement is
equivalent to TFDQE ⇒ FDQE.
If (ii’) does not hold in the nontruncated economy, then there exists an
xi ∈ Xi such that xi Âi x∗i , and p · xi < wi. Now, consider a sequence:
xn

i = (1 − 1/n)x∗i + (1/n) xi. It certainly holds that p · xn
i < wi for all n.

By convexity of preferences, xn
i %i x∗i . For n large enough, |xn

li| < r (and we
are back in the truncated economy). Then, by local nonsatiation, there is an
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x′i ∈ X̂i such that x′i Âi xn
i and still p ·x′i < p ·wi. But then, we have x′i ∈ X̂i

and x′i Âi xn
i Âi x∗i . Thus, in the truncated economy, x∗i fails to satisfy (ii’),

as we found a strictly preferred, cheaper consumption bundle. Consequently,
(x∗, y∗) is not in TFDQE. So we are done here.

Step 8 (A FDQE is a WQE)

Suppose there is one firm, say firm 1, for which its production set Y1 satisfies
the free disposal property. If (x∗1, ..., x

∗
I , y

∗
1, ..., y

∗
J , p) is a FDQE (with some

goods in excess supply), then there is a y∗′1 ≤ y∗1 such that
(x∗1, ..., x

∗
I , y

∗′
1, y

∗
2, ..., y

∗
J , p) is a WQE .

Step 9 (A WQE is a WE)

A WQE satisfies the cheaper consumption (CC) condition for consumer i if
there exists an xi ∈ Xi: p · xi < p · wi.

Consider the WQE (x∗, y∗, p). Any consumer who satisfies the CC property
at (x∗, y∗, p) is preference maximizing in her budget set (in addition to ex-
penditure minimizing in her no-worse-than set). Hence, if the CC property
holds for all i ∈ I, (x∗, y∗, p), a WQE is also a WE.

(Now I am pretty exhausted ... so, there is no bonus stuff today!)
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