
Notes IV

General Equilibrium and Welfare Properties

In this lecture we consider a general model of a private ownership economy,
i.e., a market economy in which a consumer’s wealth is derived from en-
dowments and from claims to profit shares of firms. Denote the claim of
consumer i to a share of (the profits of) firm j by θij. Then, θij ∈ [0, 1], and∑I

i=1 θij = 1 for all j = 1, ..., J . The notes are based on MWG, chapter 16.

1 Basic Model

I > 0, J > 0, L > 0, all of them are finite. Consumers are characterized by
consumption sets Xi ⊂ RL, and preferences %i. Each firm is characterized
by a production set Yj ⊂ RL. Initial endowments are given by a vector
ω̄ = (ω̄1, ..., ω̄L) ∈ RLI .

Definition 1 An economy, P, is defined by
P ≡ ({Xi,%i}I

i=1, {Yj}J
j=1, {ω̄i, θi1, ..., θiJ}I

i=1).

Definition 2 An allocation (x,y) is a consumption vector xi for each con-
sumer i = 1, ..., I, and a production vector yj for each firm j = 1, ..., J . An
allocation is feasible if

∑
i xli = ω̄l +

∑
j yl,j for every good l. The set of fea-

sible allocations is denoted by A, where A = {(x, y) :
∑

i xli = ω̄l +
∑

j yl,j}.
Be aware that the set A lives in RL(I+J) space! Notice the following: The
set A is closed and bounded (i.e. compact under the Euclidean topology) if:
every Xi is closed and bounded below; every Yj is closed, convex, admits the
possibility of inaction (0 ∈ Yj), satisfies the no-free-lunch property (there is
no yj ∈ Yj for which yj À 0), and satisfies irreversibility (for any yj 6= 0,
yj ∈ Yj implies −yj is not an element of Yj). Please study Appendix A in
MWG (p. 573 f) carefully to understand the argument.

A feasible allocation is Pareto efficient1 if there is no other allocation
(x′, y′) ∈ A that Pareto dominates it. I.e., if there is no feasible allocation

1“(Pareto) efficient” is synonymous to “Pareto optimal”. However, you should not
confuse Pareto optimality with (social) optimality, which is a pretty different concept.
In order to clearly distinguish Pareto efficiency from social optimality, we will refer to
Pareto efficiency (or Pareto optimality) as “efficiency,” and we’ll refer to social optimality
as “optimality.”
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(x′, y′) such that x′i % xi for all i, and x′i Â xi for some i. Notice that no
price vector is involved in defining Pareto efficiency.

Now we’ll define a concept, which we’ll employ over and over again...

Definition 3 (Price Equilibrium with Transfers)
Given an economy P, a price vector p and an allocation (x∗, y∗) constitute
a price equilibrium with transfers (PET) if there is an assignment of wealth
levels (w1, ..., wI) with

∑
i wi =

∑
i p · ω̄ +

∑
j p · y∗j such that

(i) for every j, y∗j maximizes profits in Yj,
(ii) for every i, x∗i is maximal for %i in the respective budget set,
(iii)

∑
i x∗i = ω̄ +

∑
j y∗j .

Please do not hesitate to think about this definition for a while (until tomor-
row). In short, a PET comes from optimization and equilibrium.

Query. Is a Walrasian equilibrium a PET?

Proposition 1 (First Fun Theorem of Welfare Economics) If prefer-
ences are locally nonsatiated, and if (p, y∗, x∗) is a PET, then allocation
(y∗, x∗) is Pareto efficient. In particular, any Walrasian equilibrium is Pareto
efficient.

Query. In Proposition 1 we (only) need that %i be locally nonsatiated. Show
that strong monotonicity implies monotonicity implies local nonsatiation.

Second Fun Theorem of Welfare Economics. We’ll progress in two
steps. First, we’ll state a result showing that under convexity assumptions,
every Pareto efficient allocation can be supported by a price vector as a
price quasiequilibrium with transfers (PQET). Second, we show that under a
rather innocent condition (“cheaper consumption condition”), every PQET
is a PET.

PQET. Define: (ii’): for every i, x∗i minimizes expenditure on the set
{xi ∈ Xi : xi %i x∗i }, which is the no-worse-than set with respect to x∗i .
Then, Definition 3, where (ii) is replaced by (ii’) defines a PQET. (Again,
feel free to rest for a day or two, to contemplate about the meaning of a
PQET.)

Clearly every PET is a PQET (however, not vice versa), as utility max-
imization (a consumption bundle being maximal on the budget set) always
implies expenditure minimization (a consumption bundle minimizing expen-
diture on the no-worse-than set). However, the converse may fail to hold if
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some prices are zero and/or some preferences are not monotone (see Figure
16.D.2 in MWG, p.555).

Proposition 2 (Second Fun Theorem of Welfare Economics) Consider
an economy P where every production set Yj is convex, every preference rela-
tion is convex and locally nonsatiated, and every consumption set is convex.
Then, for every Pareto efficient allocation (x∗, y∗) there exists a price vector
p such that (x∗, y∗, p) is a PQET.

Please study the separating hyperplane theorem before working through the
proof of Proposition 2 (in MWG, p. 552 ff.).

Proposition 3 (Cheaper Consumption Condition) Xi is convex and %i

is continuous. Suppose xi Âi x∗i implies p · xi ≥ wi. Then, if there is a
consumption vector x′i ∈ Xi such that p · x′i < wi (i.e., x′i is a “cheaper
consumption vector” for (p, wi)), it holds that xi Âi x∗i implies p · xi > wi.

Corollary 1 Suppose that for every i, Xi is convex, 0 ∈ Xi, and %i is
continuous. If w À 0, then any PQET is a PET.

So, Corollary 1 tells us that if w À 0, utility maximization is equivalent
to expenditure minimization (or alternatively, a PQET is equivalent to a
PET). So, under the assumptions of Proposition 2, for every Pareto efficient
allocation (x∗, y∗) there exists a price vector p such that (x∗, y∗, p) is a PET.

2 Pareto Efficiency and Optimality

Consider an economy ({Xi, %i}I
i=1, {Yj}J

j=1, ω̄). Each feasible allocation (x, y)
gives rise to a utility vector ui(xi) for i = 1, ..., I. The utility possibility set,
U , provides all attainable vectors of utility levels: U = {(u1, ..., uI) ∈ RI :
there exists a feasible allocation (x, y) such that ui ≤ ui(xi), i = 1, ..., I}.

The Pareto frontier, UP , is the set of all vectors in U that are not Pareto dom-
inated: UP = {u ∈ U : there is no u′ ∈ U such that u′i ≥ ui for all i and u′i >
ui for some i}. Consequently, a feasible allocation (x, y) is Pareto efficient if
and only if u(x) ∈ UP .

Besides efficiency, another normative criterion is “optimality.” Before dis-
cussing optimality, we need to define the concept of a social welfare function
(SWF).
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A social welfare function W (u1, ..., uI) assigns a social utility value to
every vector from the utility possibility set. A special case of a W is the linear
social welfare function: W (u1, ..., uI) =

∑
i λi ui, for some constant welfare

weights λ = (λ1, ..., λI). In the following, we’ll focus on this specification of
a social welfare function: W (u) = λ · u.

Denote the solution of the social welfare maximization problem (SWMP)
by u∗ = maxu∈U λ·u. u∗ is considered optimal according to the specific SWF.
Certainly, different SWF (e.g., different welfare weights) may give raise to
different solutions to the SWMP.

There exist relations between the normative notions of Pareto efficiency
and (social) optimality. If λ >> 0, u∗ ∈ UP . This result resembles the First
Fun Theorem. If λ >> 0, the solution to a SWMP is Pareto efficient.

There is a relation to the Second Fun Theorem as well. If U is convex,
then for any ũ ∈ UP there is a vector of welfare weights λ ≥ 0 such that ũ
is a solution to the SWMP.

3 First Order Conditions

and Pareto Efficiency

Suppose, preferences %i can be represented by utility functions that are twice
continuously differentiable and are strongly monotone: ∇ui(xi) À 0 at all
xi. All firms’ production frontiers are twice continuously differentiable, with
∇Fj(yj) À 0 for all yj ∈ RL.

For a Pareto efficient allocation, we need to maximize utility of a house-
hold — without loss of generality, utility of household i = 1 — subject to the
constraint that utility of all other households are equal to some predetermined
level ūi (or, more precisely, must not be smaller than some predetermined
level ūi). Formally:

max u1(x11, ..., xL1)

s.t. ui(x1i, ..., xLi) ≥ ūi ,∑
i

xli ≤ ω̄l +
∑

j

ylj ,

Fj(y1j, ..., yLj) ≤ 0 .

Denote the Lagrange multipliers of these restrictions by (δi, µl, γj) À 0 for
i = 2, ..., I, l = 1, ..., L, j = 1, ..., J respectively, and define δ1 = 1. So, δi
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represents the gain in household 1’s utility upon a reduction of ūi by one
unit (so, it is an “exchange rate” between consumer i’s and consumer 1’s
utilities). Next, µl shows the rise in household 1’s utility upon a rise in (a)
the initial endowment of some good l, and (b) the rise of production of good
l (so, it represents consumer 1’s shadow price of good l [= “price” of good l
in terms of consumer 1’s utility]). Finally, γj represents the shadow cost to
household 1 of a tightening of firm j’s production constraint (so, it converts a
change in Fj into units of consumer 1’s utility), by, e.g., a rise in production
of ylj.
First order conditions:

for all xli > 0 : δi (∂ ui/∂ xli) = µl , (1)

µl = γj (∂ Fj/∂ ylj) . (2)

First order condition (1) considers a marginal increase in the available re-
source xl (either by an increase of ω̄l or by an increase of production of good
l). If the additional amount of xl is given to consumer 1, its utility rises by
µl. If the additional amount of xl is given to consumer i, its utility rises by
(∂ ui/∂ xli). So, for given ūi, we can “relax” consumer i’s utility constraint
by (∂ ui/∂ xli) units. This, however, translates to an increase in consumer 1’s
utility by δi (∂ ui/∂ xli) units. In optimum, both consumer 1’s utility gains
must be equal.2

Next, first order condition (2) deals with an increase in production of good
l by firm j, ylj, and passing on the additional amount of good l to consumer 1.
In doing so, consumer 1’s utility rises by µl. However, at the same time, firm
j must produce less of all other outputs, which incurs losses for consumer
1 in terms of γj (∂ Fj/∂ ylj). In optimum, FOC (2) must hold, otherwise
consumer 1’s utility could be increased by a change in the production plan
of firm j.

2Otherwise, if δi (∂ ui/∂ xli) > µl, one could pass on the additional amount of xl to
consumer i. Then one could lower consumer i’s utility constraint by more than what
amounts to consumer 1’s shadow price of xl, and consumer 1 could do better (which
contradicts (1) being a solution to the optimization problem.

Ronald Wendner IV-5 v1.5



Notice that (1) and (2) also imply a different set of first order conditions:

∂ ui/∂ xli

∂ ui/∂ xl′i
=

∂ ui′/∂ xli′

∂ ui′/∂ xl′i′
, (3)

∂ Fj/∂ ylj

∂ Fj/∂ yl′j
=

∂ Fj′/∂ ylj′

∂ Fj′/∂ yl′j′
, (4)

∂ ui/∂ xli

∂ ui/∂ xl′i
=

∂ Fj/∂ ylj

∂ Fj/∂ yl′j
. (5)

FOC (3) says that that the marginal rate of substitution between two goods,
l and l′, is equal among consumers. FOC (4) requires the marginal rate of
transformation of l for l′ to be equal between any firms j and j′. Finally,
FOC (5) says that, a Pareto efficient allocation is characterized by equality
between the marginal rate of substitution of l for l′ (for any i) and the
marginal rate of transformation of l for l′ (for any j).

4 More on the Basics...

Nonconvex Production Technologies and Marginal Cost Pricing

Obviously, the Second Fun Theorem runs into trouble when production sets
are not convex. However, there is a (weaker) result, paralleling the Second
Fun Theorem, for nonconvex production sets.

Proposition 4 (Marginal Cost Price Equilibrium with Transfers)
Suppose, the basic assumptions of the previous section hold, except for con-
vexity of production sets. Suppose further that appropriate differentiability
assumptions hold. Then, if (x∗, y∗) is Pareto efficient, there exists a price vec-
tor p = (p1, ..., pL) and wealth levels (w1, ..., wI) with

∑
i wi = p · ω̄+

∑
j p ·y∗j

such that:
(i) For any firm j: p = αj ∇Fj(y

∗
j ) for some αj > 0 ,

(ii) for any i, x∗i is maximal for %i in the budget set {xi ∈ Xi : p · xi ≤ wi} ,
(iii)

∑
i x∗i = ω̄ +

∑
j y∗j .

Notice, that the definition of a marginal cost price equilibrium with transfers
closely resembles that of a PET (with the exception of (i)).

Query: Suppose there is just one input and one output. What exactly is (i)
saying in this case?
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The Set of Feasible Allocations

Suppose that (i) every Xi is closed, and bounded below, and (ii) every Yj is
closed, and (iii) Y is convex, admits the possibility of inaction, satisfies the
free lunch property, and is irreversible.
Then, the set of feasible allocations is closed and bounded. Moreover, it is
nonempty if we allow for free disposal. 3

3To be precise: ... and, in addition, we can choose x̂ ∈ Xi for every i such that∑
i x̂i ≤ ω̄.
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