

Information Economics

Ronald Wendner

Department of Economics Graz University, Austria

Course: Information Economics (Adverse selection)

- Lesson 1 Moral hazard (hidden action): A's actions (e) not observable (verifiable): contract cannot include effort level \rightarrow incentive problem
- Lesson 2 Franchise contract solves incentive problem, but at a cost: if A is RA franchise contract implies degree of risk sharing that is not Pareto efficient
- Lesson 3 Tradeoff between incentive problem and Pareto inefficiency problem
- Lesson 4 Incentive constraint: for any given wage schedule, P takes into account that A chooses u-max effort level (backward induction)
- Lesson 5 If $e = e^{MIN}$ is optimal for P, the optimal contract equals symmetric information contract.
- Lesson 6 If $e > e^{MIN}$ is optimal for P, IC implies a rising $w(x_i)_{i=1}^n$, in spite of A being RA

- Problem of hidden information (player's type or payoff)
- Akerlof (1970), The market for lemons (QJE)

Adverse selection: only bad cars (lemons) survive bad quality drives good quality out of the market

- ▶ Adverse Selection: base model w/ symmetric information
- One principal, two agents
- When principals compete for agents
 - benchmark: symmetric information
 - asymmetric information (separating, pooling equilibrium)
- Applications
 - Competition b/w insurance companies
 - Optimal licensing contracts
 - \circ Regulation

Adverse Selection: benchmark – symmetric information

Agents (RA)

e verifiable

type: productivity; disutility v(e)

• A (RA)

- $\circ~$ 2 types: G, B
 - $U^{G}(w, e) = u(w) v(e); \ U^{B}(w, e) = u(w) k v(e); \ k > 1$ $u'(w) > 0, \ u''(w) < 0, \ v'(e) > 0, \ v''(e) > 0$

▶ P (RN) 2 contracts: (w^G, e^G) , (w^B, e^B) ,

◦ $\max_{e,w} \Pi(e) - w$, s.t. $u(w) - v(e) \ge \underline{U}$ and $u(w) - k v(e) \ge \underline{U}$ $\Pi(e) \equiv \sum_{i=1}^{n} p_i(e) x_i$, $\Pi'(e) > 0$, $\Pi''(e) < 0$ ◦ P can identify type

Optimal contracts under symmetric information

- Participation constraints bind (why?)
- G-type

$$u(w^{G*}) - v(e^{G*}) = \underline{U}$$

efficiency condition: $\Pi'(e^{G*}) = \frac{v'(e^{G*})}{u'(w^{G*})}$

B-type

$$u(w^{B*}) - k v(e^{B*}) = \underline{U}$$

efficiency condition: $\Pi'(e^{B*}) = \frac{k v'(e^{B*})}{u'(w^{B*})}$

- G less costly: $e^{G*} > e^{B*}$
- ▶ $w^{G*} \geq w^{B*}$, 2 opposing effects
- ▶ G would prefer contract (w^{B*}, e^{B*}) over (w^{G*}, e^{G*})

P designs self-selective (incentive compatible) menu of contracts {(e^G, w^G), (e^B, w^B)} q share of G-type (public knowledge)

$$\max_{\{(e^G, w^G), (e^B, w^B)\}} q \left[\Pi(e^G) - w^G \right] + (1 - q) \left[\Pi(e^B) - w^B \right]$$

s.t.
$$u(w^G) - v(e^G) \ge \underline{U}$$
 (1)

$$u(w^B) - k v(e^B) \ge \underline{U} \quad [\lambda]$$
(2)

for
$$G \ u(w^G) - v(e^G) \ge u(w^B) - v(e^B) \quad [\mu]$$
 (3)

for
$$B \ u(w^B) - k \ v(e^B) \ge u(w^G) - k \ v(e^G)$$
 [δ] (4)

▶ (3) + (2) ⇒ (1):

$$u(w^G) - v(e^G) \ge u(w^B) - v(e^B) \ge u(w^B) - k v(e^B) \ge \underline{U}$$

only participation constraint of least-efficient type is binding

© Ronald Wendner

▶ (3) + (4) ⇒
$$e^G \ge e^B$$

 $v(e^G) - v(e^B) \le u(w^G) - u(w^B) \le k [v(e^G) - v(e^B)]$
 $[v(e^G) - v(e^B)] [1 - k] \le 0$
as $k > 1$, $v(e^G) \ge v(e^B) \Leftrightarrow e^G \ge e^B$

first order conditions

$$\mu - \delta = \frac{q}{u'(w^G)}$$

$$\lambda - \mu + \delta = \frac{1 - q}{u'(w^B)}$$
(5)
(6)

$$\mu - \delta k = \frac{q \Pi'(e^G)}{v'(e^G)} \tag{7}$$

$$\lambda \, k - \mu + \delta \, k = \frac{(1 - q) \Pi'(e^B)}{v'(e^B)} \tag{8}$$

- (5) + (6): participation constraint of B binds: λ > 0
 λ = q/u'(w^G) + (1 − q)/u'(w^B) > 0!
 B gets exactly U, G gets at least U
- self-selection constraint of G binds: $\mu > 0$ from (5), $\mu - \delta > 0$, and $\delta \ge 0$ by Kuhn-Tucker
- $e^{G} > e^{B}$ (contracts differ) suppose $e^{G} = e^{B}$ then $w^{G} = w^{B}$ (from (3) & $\mu > 0$), $\lambda = 1/u'(w) = \Pi'(e)/[k v'(e)]$ then (5), (7):

$$\mu = q/u'(w) + \delta = q\lambda + \delta$$
$$\mu = q \Pi'(e)/v'(e) + k\delta = k (q\lambda + \delta)$$

but: $q\lambda + \delta \neq k(q\lambda + \delta) \Rightarrow e^G \neq e^B$

- e^G > e^B implies not: (μ > 0) and (δ > 0) otherwise, by (3)+(4): v(e^G) - v(e^B) = k [v(e^G) - v(e^B)]
 μ > 0 ⇒ δ = 0 self-selection constr. of B not binding
- Information rent (market power) of G

• from (3)+(2):

$$u(w^{G}) - v(e^{G}) = u(w^{B}) - v(e^{B}) \quad \text{by (3)}$$
$$= u(w^{B}) - k v(e^{B}) + (k - 1)v(e^{B})$$
$$= \underline{U} + \underbrace{(k - 1)v(e^{B})}_{\text{information rent}} \quad \text{by (2)}$$

- Participation constraint binds only for agent with *highest* cost, other agent receives information rent $(k-1) v(e^B)$
- Incentive constraint binds only for agent with *lowest* cost
- Non-distortion at the top (agent G)

$$\Pi'(e^G) = \frac{v'(e^G)}{u'(w^G)}$$

Distortion for agent B

$$\Pi'(e^B) = \frac{k \, v'(e^B)}{u'(w^B)} + \underbrace{\frac{q(k-1)}{1-q} \frac{v'(e^B)}{u'(w^G)}}_{1-q}$$

incomplete information

• $e^B \downarrow$ to make contract less attractive to G $e^B \downarrow \Rightarrow v(e^B) \downarrow \Rightarrow$ information rent \downarrow P minimizes information rent

- Setup: several principals
 - 2 types of agents: B, G; differing productivity; unique effort level
 - \circ results: success (x_S) , failure (x_F)
 - \circ probability of success p: $p^G > p^B$
 - \circ payoffs: w_S , w_F
 - \circ expected profit (of RN P): $p(x_S w_S) + (1 p)(x_F w_F)$
 - \circ expected utility (A):

 $U^{G} = p^{G} u(w_{S}) + (1 - p^{G}) u(w_{F}); U^{B} = p^{B} u(w_{S}) + (1 - p^{B}) u(w_{F})$

- disutility from *unique* effort level considered in \underline{U}
- menu of contracts $\{(w_S^G, w_F^G), (w_S^B, w_F^B)\}$

• Menu of contracts: $C^T \equiv (w_S^T, w_F^T)$, $T \in \{G, B\}$

 $\mathcal{L}^{T} = p^{T}(x_{S} - w_{S}^{T}) + (1 - p^{T})(x_{F} - w_{F}^{T}) + \lambda \left[p^{T} u(w_{S}^{T}) + (1 - p^{T}) u(w_{F}^{T}) - \underline{U} \right]$

• zero expected profits (competition among P)

 $\circ C^T$ are Pareto efficient

Full insurance: $w_S^T = w_F^T$

$$\circ \ \partial \mathcal{L} / \partial w_S^T = 0 = \partial \mathcal{L} / \partial w_F^T \Leftrightarrow \lambda \, u'(w_S^T) = 1 = u'(w_F^T) \, \lambda$$

$$(w_S^G, w_F^G) \gg (w_S^B, w_F^B)$$

- ▶ Indifference curve is steeper for G than for B
- ▶ Isoprofit line is steeper for G than for B
- Self selection constraint not satisfied for B

```
• B prefers C^{G*} over C^{B*}
```


- Equilibrium contract $\{C^G, C^B\} \equiv \{(w_S^G, w_F^G), (w_S^B, w_F^B)\}$
 - pooling (Bayesian Nash) equilibrium: $C^G = C^B$
 - separating (Bayesian Nash) equilibrium: $C^G \neq C^B$
- ▶ Requirements: given $\{C^G, C^B\}$
 - \exists no other contract preferred to $\,C^{\,G}$ only by $\,G,$ with $\Pi>0$
 - \exists no other contract preferred to C^B_{-} only by B with $\Pi > 0$
 - \exists no other contract preferred to C^T only by T with $\Pi > 0$, $T \in \{G, B\}$
 - $\rightarrow\,$ rules out B mimicking G
 - \rightarrow zero expected profits (due to many P)

Pooling zero profit line:

$$\circ \ p^I \equiv q \ p^G + (1-q)p^B$$

•
$$\Pi^{I} \equiv p^{I}(x_{S} - w_{S}) + (1 - p^{I})(x_{F} - w_{F}) = 0$$

• C^{I} : for every contract on pooling zero profit line, $MRS^{G}_{S,F} > MRS^{B}_{S,F}$

no pooling equ. b/c cream skimming

© Ronald Wendner

▶ B-type: $C^B = C^{B*}$ (Nash equilibrium contract)

 $C^{B'}$ violates equilibrium requirements

• Separating equilibrium (C^G, C^{B*})

 $\Pi = 0$ no other contract ($\Pi > 0$) strictly preferred by either B or G no other contract ($\Pi > 0$) strictly preferred by both B and G

- left: separating equilibrium exists
- right: equilibrium requirements violated; shaded area: both T prefer contract over their equilibrium contract (but positive expected profits)

Lesson 1 Adverse selection (AS): hidden information about type (payoff) of A

Lesson 2 Optimal contracts differ among type. AS may provoke

- $\circ\,$ good quality to drive out bad quality (lemons) = adverse selection or
- $\circ~$ absence of equilibrium (market) in the extreme
- \rightarrow inefficiency: gains from trade go unexploited
- *Lesson 3* AS: P designs menu of self-selevtive contracts
 - :. Moral hazard: pooling equilibrium (same contract for all A)

Lesson 4 Self-selection constraint rules out mimicking: cost to P = information rent to A

Lesson 5 1 P, 2 A:

PC is binding only for least productive A SSC not binding for least productive A (G wants to mimic B) non-distortion at the top (G) P distorts C^B (lowers e^B) in order to minimize information rent

Lesson 6 Many P, 2 A: Every equilibrium contract (if existing) is separating (due to cream skimming)

Lesson 7 Bad risks are fully insured (as w/ symmetric info)

Lesson 8 Good risk (while actuarially fair) get excess clause: less than full insurance due to signaling requirement.

• A. Single insurance company (P, RN)

• A: low (accident) risk π^{G} , high risk $\pi^{B} > \pi^{G}$

 $\circ~{\rm P}$ proposes p per unit of benefit $z{\rm ,}$ A choose coverage z

Symmetric information (efficient sol)

•
$$A \max_{\{z^T\}} \pi^T u(w - L - pz^T + z^T) + (1 - \pi^T) u(w - pz^T),$$

 $T \in \{G, B\}$

$$\frac{u'(w - L - pz^T + z^T)}{u'(w - pz^T)} = \frac{(1 - \pi^T)p}{\pi^T(1 - p)}$$

 $\circ~$ for given $p\text{, as }\pi^B>\pi^G\text{: }z^B>z^G$

 \circ actuarial fairness: $p^T = \pi^T$

 $\rightarrow \ z^B = L = z^G$, $p^B > p^G$

 $\circ~$ asymmetric information $\pi^B > p > \pi^G$

• E^B : B overinsures, E^G : G underinsures (expected loss)

• $p \uparrow$ (flatter contract menu line) re-enforcing adverse selection!

Asymmetric information

- AS drives out "good" risk from the market
- \circ inefficiently low insurance coverage for G
- possibly only equilibrium: I^B for B, 0 for G

- \circ premium $\alpha_1 \equiv pz$; net benefit $\alpha_2 \equiv z pz$
- \circ contract (α_1^T, α_2^T) : pooling, separating

Non-existence of pooling equilibrium contracts

$$\circ~$$
 actuarially fair price $\rho = q \pi^G + (1-q) \pi^B$

MRS differ: cream skimming on zero-profit pooling line "below" C

- both contracts must be on respective zero profit lines
- C^G must not be above B's indifference curve (expected loss)
- C^G must not be below B's indifference curve (competition for G)
- C^B must be on 45° line (most preferred one by B on zero profit line)

- Existence of separating contracts
 - \circ no dominating pooling contract (holds if q "low")
 - signalling π^G is costly (in terms of low coverage)
 - $\circ~$ only pays if there is significant amount of bad risk in the market
- Compared to symmetric info equilibrium
 - B gets same contract
 - G gets partial coverage at lower price $(p^G = \pi^G)$... needs to signal *G*-characteristic by accepting lower coverage

- P research lab, selling license f/ cost reducing technology
- A monopolist, AC c^0 ; technology lowers c^0 to $c < c^0$
- Contract (F, ϵ)
- Symmetric information (backward induction)
- ► A

$$\Pi^{m}(c+\epsilon) = \left[p^{m}(c+\epsilon) - (c+\epsilon)\right] D^{m}(p^{m}(c+\epsilon))$$
$$p^{m}(c+\epsilon) \in \arg\max_{p} \left[p - (c+\epsilon)\right] D(p)$$

▶ P

$$\begin{aligned} \max_{F,\epsilon} \ F + \epsilon \ D^m(p^m(c+\epsilon)) \\ \text{s.t.} \ \Pi^m(c+\epsilon) - F &\geq \Pi^m(c^0) \quad [\lambda] \\ \epsilon &\geq 0 \,, \quad F \geq 0 \end{aligned}$$

Optimal contract / symmetric information

•
$$\lambda > 0 \Rightarrow$$
 part. constraint binds
• $\epsilon^* = 0$, $F^* = \Pi^m(c) - \Pi^m(c^0)$

Asymmetric information on cost: $c^G < c^B < c^0$

•
$$\epsilon^{G^*} = 0, \ F^{G^*} = \Pi^m(c^G) - \Pi^m(c^0)$$

 $\epsilon^{B^*} = 0, \ F^{B^*} = \Pi^m(c^B) - \Pi^m(c^0)$

 $\rightarrow\,$ sym. inf. contract not optimal, as $\,G$ chooses (ϵ^{B^*},F^{B^*})

 $\circ~{\rm P}$ needs to make (ϵ^B,F^B) less attractive to ${\rm G}$

- $\epsilon^B > 0$ (distortion)

$$\max_{F^G,\epsilon^G,F^B,\epsilon^B} q[F^G + \epsilon^G D^m(p^m(c^G + \epsilon^G))] + (1-q)[F^B + \epsilon^B D^m(p^m(c^B + \epsilon^B))]$$

$$\Pi^m(c^G + \epsilon^G) - F^G \ge \Pi^m(c^G + \epsilon^B) - F^B \qquad [\mu]$$

$$\Pi^m(c^B + \epsilon^B) - F^B \ge \Pi^m(c^B + \epsilon^G) - F^G \qquad [\lambda]$$

$$\Pi^m(c^G + \epsilon^G) - F^G \ge \Pi^m(c^0) \qquad [\rho]$$

$$\Pi^m(c^B + \epsilon^B) - F^B \ge \Pi^m(c^0)$$
 [δ]

$$F^G \ge 0, \ F^B \ge 0, \ \epsilon^G \ge 0, \ \epsilon^B \ge 0$$

$$\circ~$$
 PC of G not binding $\rho=0,$ info rent for G

• PC for B binding
$$\delta > 0$$

$$\circ~$$
 SSC for G binding $\mu>0,$ and $\lambda=0$

FOC imply separating equilibrium contracts

- $\circ \ \epsilon^{G} = \epsilon^{G^{*}} = 0$ no distortion at the top
- $\circ~\epsilon^B > \epsilon^{B^*} = 0$ distortion to discourage mimicking
- $\circ~F^{\,G} < F^{\,G^*}$ information rent for G

$$\circ \ F^B < F^G$$

Regulation of natural monopolist (A)

- \circ prices, quantities, subsidies set by public sector (P)
- $\circ~$ cost function of monopoly often private information
- monopolist C(Q) = F + c Q (decreasing AC)
- $\circ~$ households $~U({\it Q}),~{\rm paying}~~T$
- government
 - S, with social cost (1+g)S, g > 0
 - max consumer surplus + firm profits social cost of subsidy

Symmetric information

$$\max_{T,S,Q} [U(Q) - T] + [T + S - cQ - F] - [(1 + g)S]$$

s.t. $T + S - cQ - F \ge 0$ [λ]
 $U(Q) - T \ge 0$ [μ]

 \circ both PC bind: $\lambda = \mu = g > 0$

• optimal quantity decision: U'(Q) = c (MWP = MC)

- Asymmetric information about c: $c^G < c^B$
 - for finding Bayesian NE: P proposes $\{(T^G, S^G, Q^G), (T^B, S^B, Q^B)\}$ given beliefs about types of monopolist q, (1 - q)

$$\max_{\substack{(T^G, S^G, Q^G), (T^B, S^B, Q^B)}} [q(U(Q^G) - T^G) + (1 - q)(U(Q^B) - T^B)] + q[T^G + S^G - c^G Q^G - F] + (1 - q)[T^B + S^B - c^B Q^B - F] - (1 + g)[qS^G + (1 - q)S^B]$$

s.t.
$$T^{G} + S^{G} - c^{G}Q^{G} - F \ge 0$$
; $T^{B} + S^{B} - c^{B}Q^{B} - F \ge 0$
 $U(Q^{G}) - T^{G} \ge 0$; $U(Q^{B}) - T^{B} \ge 0$
 $T^{G} + S^{G} - c^{G}Q^{G} - F \ge T^{B} + S^{B} - c^{G}Q^{B} - F$;
 $T^{B} + S^{B} - c^{B}Q^{B} - F \ge T^{G} + S^{G} - c^{B}Q^{G} - F$

- too complicated? no!
- eliminate some constraints and investigate foc
 - PC of G firm; SSC of B firm
 - $\circ~$ G wants to mimic B, SSC of G binds
 - $\circ~$ no distortion at top: $~U'(Q^G)=c^G$
 - $\circ~$ distortion for B $~U'(Q^B)>c^B$ to make contract less attractive for G
 - $\circ~$ information rent for G

distortion for B lowers information rent

optimal contract under asymmetric info

$$\circ~Q^G=\,Q^{G^st}$$
 , $\,Q^B<\,Q^{B^st}$

- G obtains an information rent
- government distorts B contract to lower information rent