

Information Economics

Ronald Wendner

Department of Economics Graz University, Austria

Course # 320.412 (part 4)

- \circ incomplete information
- $\circ\;$ type space, beliefs
- Associated games that can be solved
- Cournot competition with incomplete information
- Incomplete information and mixed strategies (BoS)
- Further examples

Information: incomplete versus imperfect

- *imperfect*: not all *information sets* are singletons; types of other agents are known
- *incomplete*: **types** (payoff functions) of other agents are not known
- examples: Cournot, insurance market, market for used cars, BoS
- Additional ingedients
 - type spaces
 - beliefs about others' types
 - *expected* payoff functions

Incomplete information

type space

- \circ T_i set of possible types of player i
- $T \equiv \times_{i=1}^{N} T_i$, $t \in T$ joint type vector (space)

beliefs

- $\circ p_i(t_{-i}|t_i)$, for all i, for all t_i
- $p_i(t_{-i}|t_i) \in [0,1]$, and $\sum_{t_{-i} \in T_{-i}} p_i(t_{-i}|t_i) = 1$
- $\circ~$ prior beliefs identical $\rightarrow~$ nature chooses type vector $\rightarrow~$ posterior (conditional) beliefs formed via Bayes rule

$u_i: S \times T \to \mathbb{R} \quad \text{expected payoff}$

• Common joint distribution:
$$p(t) > 0$$
, $\sum_{t \in T} p(t) = 1$

Bayes rule:
$$p_i(t_{-i}|t_i) = \frac{p(t_i, t_{-i})}{\sum_{t_{-i} \in T_{-i}} p(t_i, t_{-i})}$$

$$T_{i} = \{T, D\}, T_{j} = \{L, M, R\}$$
$$T = \times_{i=1}^{2} T_{i} = \{(T, L), (T, M), (T, R), (D, L), (D, M), (D, R)\}$$
$$t \in T, \text{ e.g., } t = (T, L), p(t) = p(t_{1}, t_{2}) = 0.4 \text{ (prior believe)}$$

Posterior beliefs

• verify
$$\sum_{t \in T} p(t) = 1$$

• $p(t_i) = \sum_{t_{-i} \in T_{-i}} p(t_{-i}, t_i)$
 $p(T) = p(L, T) + p(M, T) + p(R, T) = 0.6$
• $p_i(t_{-i}|t_i)$: e.g., $p_1(t_2|t_1) = p_1(M|T) =$?
Bayes' rule: $p_1(M|T) = \frac{p(M,T)}{p(T)} = \frac{0.1}{0.6} = 0.17$

▶ Independence: p(T,L) = p(T)p(L) but: $0.4 \neq 0.6 * 0.7 = 0.42$

 t_i not independent of $t_j \Leftrightarrow$ prior belief \neq posterior belief

- \circ prior belief p(T, M) = 0.1
- \circ posterior belief $p_1(M|T) = 0.17$

Bayesian Game

$$G = (p, T_i, S_i, u_i)_{i=1}^N$$

 $\circ \ u_i: S \times T \to \mathbf{R}$

 $\circ p$ prob. distribution over T

Cournot duopoly w/ incomplete information

• both players: constant marginal cost ; player 2: c_H , c_L . type space

Player 2
$$c_L$$
 c_H $p(t_1)$ Player 1 $1-\theta$ θ 1.0 $p(t_2)$ $1-\theta$ θ 1.0

 $T_{1} = \{1\}, T_{2} = \{c_{L}, c_{H}\}, T = T_{1} \times T_{2} = \{(1, c_{L}), (1, c_{H})\}$ independence: $(1 - \theta) = p(1, c_{L}) = p(1) p(c_{L}) = 1 (1 - \theta).$ $\rightarrow p(c_{L}) = p_{1}(c_{L}|1)$ (prior = posterior belief)

- Associate equivalent game G^* : each type is separate player
 - each type of player chooses her strategy
 - $\circ\,$ nature, using p, randomly chooses type vector those players actually play the game
 - joint pure strategy $s^* = (s_1(t_1), ..., s_N(t_N))_{t \in T}$ where $* \to types$

$$\boldsymbol{s}^*$$
 is a joint pure strategy for every $t \in T$

- Example. N = 2, player 1 has 1 type, player 2 has 2 types 2 type vectors: $t, t' \in T$ one joint strategy for t, s(t); and one joint strategy for t', s'(t') $\rightarrow s^* = (s(t), s(t'))$
- expected payoffs (VNM!): note payoff of type, not of player

$$v_{t_i}(s^*) = \sum_{t_{-i} \in T_{-i}} p_i(t_{-i}|t_i) u_i(s^*, t_1, ..., t_N)$$

• **Theorem.** A Bayesian NE of G is a NE of the associated G^* .

Player 2
$$c_L$$
 c_H $p(t_1)$ Player 1 $1-\theta$ θ 1.0 $p(t_2)$ $1-\theta$ θ 1.0

$$s(t) \equiv (q_1, q_{cL}), \ s'(t') \equiv (q_1, q_{cH})$$

expected payoffs (* = type dependent)

$$v_1(s^*) = (1 - \theta) u_1(s, (1, c_L)) + \theta u_1(s', (1, c_H))$$

 $v_2 \in I(s^*) = u_2(s (1, c_L))$

$$v_{2,cL}(s^*) = u_2(s, (1, c_L))$$

$$v_{2,cH}(s^*) = u_2(s', (1, c_H))$$

$$\begin{split} v_1(\hat{s}^*) &\geq v_1(s_1, \hat{s}_{-1}^*), \\ v_{2_L}(\hat{s}^*) &\geq v_{2_L}(\hat{s}_1^*, s_{2_L}), \ v_{2_H}(\hat{s}^*) \geq v_{2_H}(\hat{s}_1^*, s_{2_H}) \\ & \text{ every player chooses } q_i \text{ so as to maximize expected payoff} \end{split}$$

© Ronald Wendner

▶
$$P(Q) = a - Q, \ Q = q_1 + q_2, \ Q < a, \ C_1(q_1) = c \ q_1, \ 0 < c < a, \ C_2(q_2) = c_2 \ q_2, \ c_2 \in \{c_L, c_H\}$$
S_i = [0,∞), as for $Q \ge a, \ P(Q) = 0$, no firm produces $q_i \ge a$
firm 2, type c_H : $\max_{q_2 \in S_2} \ q_2 \ [a - q_2 - \hat{q}_1 - c_H]$
firm 2, type c_L : $\max_{q_2 \in S_2} \ q_2 \ [a - q_2 - \hat{q}_1 - c_L]$
firm 1
 $\max_{q_1 \in S_1} \ \theta \ [a - q_1 - \hat{q}_2(c_H) - c] \ q_1 + (1 - \theta) \ [a - q_1 - \hat{q}_2(c_L) - c] \ q_1$

$$\rightarrow \hat{q}_2(j) = (a - \hat{q}_1 - c_j)/2, \ j \in \{H, L\}$$

$$\rightarrow \hat{q}_1 = \left[\theta \left[a - \hat{q}_2(c_H) - c\right] + (1 - \theta) \left[a - \hat{q}_2(c_L) - c\right]\right]/2$$

Result

•
$$\hat{q}_2(c_H) = \frac{a - 2c_H + c}{3} + \frac{1 - \theta}{6}(c_H - c_L)$$

• $\hat{q}_2(c_L) = \frac{a - 2c_L + c}{3} - \frac{\theta}{6}(c_H - c_L)$
• $\hat{q}_1 = \frac{a - 2c + \theta c_H + (1 - \theta)c_L}{3}$

• incomplete information affects Bayesian Nash equilibrium

$$- \hat{q}_{2}(c_{H}) > \hat{q}_{2} = \frac{a - 2c_{2} + c_{1}}{3}$$
$$- \hat{q}_{2}(c_{L}) < \frac{a - 2c_{2} + c_{1}}{3}$$
$$- \hat{q}_{1} = \frac{a - 2c + \theta c_{H} + (1 - \theta)c_{L}}{3}$$

 $\circ~$ information rent

Information rent

 \circ suppose 2 is of type c_H

 $- \hat{q}_2(c_H) > \hat{q}_2 \quad \mathbf{b/c} \quad \hat{q}_1(\theta < 1) < \hat{q}_1(\theta = 1)$

 \circ suppose 2 is of type c_L

 $- \hat{q}_2(c_L) < \hat{q}_2 \quad \mathbf{b/c} \quad \hat{q}_1(\theta > 0) > \hat{q}_1(\theta = 0)$

Incomplete information: payoff (rather than type)

private information: t_c , t_p

- $t_c \sim \mathsf{Uniform}[0, x]$, $t_p \sim \mathsf{Uniform}[0, x]$
- type spaces: $T_c = [0, x]$, $T_p = [0, x]$

beliefs about x

- $\circ~$ density for $x\in [0,x]=1/(x-0)=1/x$
- Chris plays Opera if $t_c > c$, c = critical valuePat plays Fight if $t_p > p$, p = critical value

© Ronald Wendner

Chris:
$$Pr(t_c > c) = 1 - Pr(t_c \le c) = 1 - F(c) = 1 - (c - 0)/(x - 0) = 1 - c/x$$

Pat: $Pr(t_p > p) = 1 - Pr(t_p \le p) = 1 - F(p) = 1 - (p - 0)/(x - 0) = 1 - p/x$

Chris Opera
$$(1 - c/x)$$

Fight (c/x) Pat
Opera (p/x) Fight $(1 - p/x)$
 $2+t_c$, 1 0, 0
0, 0 1, $2+t_p$

Chris

expected payoff of Opera: (2 + t_c)p/x + 0(1 - p/x) = (2 + t_c)p/x
expected payoff of Fight: 0 p/x + 1 (1 - p/x) = 1 - p/x

• play Opera if $(2 + t_c)p/x \ge 1 - p/x \Leftrightarrow t_c \ge x/p - 3 \equiv c$ (*)

Pat

• expected payoff of Opera: 1(1 - c/x) + 0 c/x = 1 - c/x

 \circ expected payoff of Fight: $0(1 - c/x) + (2 + t_p)c/x = (2 + t_p)c/x$

• play Fight if $(2 + t_p)c/x \ge 1 - c/x \Leftrightarrow t_p \ge x/c - 3 \equiv p$ (**)

• (*)+(**)
$$\Rightarrow c = p$$
 and...

Pure strategy Bayesian NE

• Chris: play Opera if $t_c \ge c = [-3 + \sqrt{9 + 4x}]/2$ Pat: play Fight if $t_p \ge p = [-3 + \sqrt{9 + 4x}]/2$

Probabilities

$$\frac{x-p}{x} = \frac{x-c}{x} = 1 - \frac{-3 + \sqrt{9+4x}}{2x}$$

•
$$\lim_{x \to 0} \frac{x-p}{x} = \lim_{x \to 0} \frac{x-c}{x} = \frac{2}{3}$$

 In limit, incomplete information BoS approaches behavior in mixed strategy NE in BoS with complete information.

 Interpretation of mixed strategies (Harsanyi, 1973): A mixed-strategy NE in a game with complete information can be interpreted as a pure strategy Bayesian NE in a closely related game with a bit of incomplete information.