

# Information Economics

Ronald Wendner

Department of Economics Graz University, Austria

Course # 320.412 (part 3)



- Games of complete and perfect information: backward induction
- Games of complete but imperfect information:
  - subgame perfection
- Repeated games
  - $\circ~$  infinitely repeated games, Folk theorem

## Games of complete and perfect information



### Setup

• moves occur in sequence

previous moves are observed before the next move is chosen

players' payoffs (types) are common knowledge

- Central theme: credibility
  - rule out non-credible threats
  - backward induction





#### Entrant-incumbent game



- extensive form game
- $\circ~$  identify actions & strategies

*complete* contingent plan saying how to play for every possible history of the game, in every information set of a player

 $\circ~$  identify both NE & non-credible threat

© Ronald Wendner





Solution: backward induction rules out non-credible threats

- Backward induction algorithm
  - **Definition.** x = penultimate node if followed by endnode
  - $a_{i(x)}$  action at x, maximizing i's payoff with  $u_x$  payoff vector
  - replace x, actions and payoff vectors by  $u_x \rightarrow$  reduced game with new x
  - repeat until action assigned to every node.
- resulting set of actions: backward induction outcome associated joint strategy: backward induction strategy
- $\circ~$  if s is a backward induction strategy, s is a NE
- if s is a NE  $\Rightarrow$  s is a backward induction strategy
  - NE with non-credible threats don't survive backward induction



Leadership in oligopolies (GM, US automobile industry)

- 1. firm 1 chooses  $q_1 \ge 0$
- 2. firm 2 observes  $q_1$ , chooses  $q_2 \ge 0$
- 3. payoffs:  $\pi_i(q_i, q_j) = q_i[P(Q) c]$ , where P(Q) = a Q,  $Q = q_1 + q_2$

Backward induction

firm 2 chooses  $\pi_2$ -max.  $q_2$  for every  $q_1 \rightarrow R_2(q_1)$ firm 2's node is replaced by  $R_2(q_1)$ firm 1 chooses  $\pi_1$ -max.  $q_1$  for  $R_2(q_1)$ 



firm 2:  $\max_{q_2 \ge 0} \pi_2(q_1, q_2) = \max_{q_2 \ge 0} q_2[a - q_1 - q_2 - c]$   $R_2(q_1) = (a - q_1 - c)/2$ firm 1:  $\max_{q_1 \ge 0} \pi_2(q_1, R_2(q_1)) = \max_{q_1 \ge 0} q_1[a - q_1 - R_2(q_1) - c]$ 

backward induction outcome:

$$\hat{q}_1 = \frac{a-c}{2}, \quad \hat{q}_2 = R_2(\hat{q}_1) = \frac{a-c}{4}$$

backward induction strategy (NE):

$$\hat{q}_1 = \frac{a-c}{2}, \quad R_2(q_1) = \frac{a-q_1-c}{2}$$

compare Stackelberg- with Cournot equilibrium





Identify the backward induction outcome/strategy





Imperfect information: previous move(s) not completely observed decision node not a singleton set → information set is not a singleton



backward induction – no penultimate node!



#### Subgames

- replace "penultimate node" by...
- Definition. Node x defines subgame whenever
  (i) x belongs to singleton information set,
  (ii) if x' is a node following x, x' belongs to subgame,
  (iii) if node x'' belongs to same information set as x', x'' follows x.
- $\circ~$  game itself is considered a subgame







• **Theorem.** A joint strategy *s* is a pure strategy subgame perfect equilibrium if *s* induces a NE in every subgame of the extensive form game.



 ((OUT, r), R) is NE but not subgame perfect identify SPNE



Identify NE and SPNE





#### Identify NE and SPNE



- identify the players' strategies
- $\circ~$  identify subgames
- $\circ~$  identify NE and SPNE
- Subgame perfection generalizes backward induction

Credible threats and promises influence future behavior

- *G* stage game (to be repeated)
- $\circ~T~\#$  of stages,  $G(\,T)$  repeated game
- finitely vs. infinitely repeated games
- ▶ If G has unique NE, the finitely repeated game G(T) has unique SP outcome: NE of G is played in every stage.





Suppose G has unique NE. The infinitely repeated game G(∞, δ) may have SP outcome that is not a NE of G.

Intuition: cooperation vs. defection (trigger strategy)



 $\blacktriangleright$  PV of infinite stream of payoffs, with  $\delta$  discount factor

$$PV = \pi_1 + \delta \pi_2 + \delta^2 \pi_3 + ... = \sum_{t=1}^{\infty} \delta^{t-1} \pi_t$$

- $\circ$  re-interpretation of  $G(\infty)$  as G(T)
  - after each t, probability that game ends (continues) immediately is p (is (1-p))
  - discount rate = r, then  $\delta = (1 p)/(1 + r)$
- Trigger strategies
  - roughly: cooperate as long as others cooperate, deviate forever once another player fails to cooperate
    - trigger strategy is a NE once  $\delta$  close enough to 1
    - such a strategy is SP



- Trigger strategy: play  $R_i$  in first stage. In  $t^{th}$  stage, if outcome in all t-1 preceding stages was  $(R_1, R_2)$ , play  $R_i$ ; otherwise, play  $L_i$ .
  - $\circ\,$  if  $\delta$  large enough, a one-time higher payoff from deviation does not compensate for an infinite sequence of lower payoffs as result from deviation  $\rightarrow\,$  NE
  - every subgame of infinitely repeated game is identical to game as a whole
    - given NE, it's a NE of every subgame  $\rightarrow$  NE is SPNE



▶ *Feasible* payoffs in *G*, as convex combinations





• Average payoff  $\pi$ 

• 
$$\sum_{t=1}^{\infty} \delta^{t-1} \pi_t \equiv \sum_{t=1}^{\infty} \delta^{t-1} \pi = \pi \sum_{t=1}^{\infty} \delta^{t-1} = \pi/(1-\delta)$$
  
•  $\pi = (1-\delta) \sum_{t=1}^{\infty} \delta^{t-1} \pi_t = (1-\delta) PV$ 

Folk theorem. Let G be finite stage game with complete information. Let (e<sub>1</sub>, ..., e<sub>n</sub>) denote the payoffs from NE of G, and let (x<sub>1</sub>, ..., x<sub>n</sub>) denote any other feasible payoffs. If x<sub>i</sub> > e<sub>i</sub> for every player i, and if δ is sufficiently close to one, then there exists a SPNE of G(∞, δ) that achieves (x<sub>1</sub>, ..., x<sub>n</sub>) as the average payoff.





Calculate  $\delta$  for which (4,4) is average payoff of SPNE

PV of return on deviation < PV of return from cooperation notice: Σ<sub>t=0</sub><sup>∞</sup> δ<sup>t</sup> = 1/(1 − δ), and Σ<sub>t=1</sub><sup>∞</sup> δ<sup>t</sup> = δ/(1 − δ)
5 + [δ/(1 − δ)] 1 < [1/(1 − δ)] 4</li>

 $\rightarrow \delta > 0.25 \Leftrightarrow r < 300\%$ 

Other examples: collusion b/w Cournot duopolists, time-consistent monetary policy