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Static Games of Complete Information

Main learning objectives:

. basic coordinates of static games of complete information

Static games of complete information
◦ strategic form games
◦ dominant/dominated strategies
◦ iterated elimination of strictly dominated strategies
◦ Nash equilibrium (in pure strategies)

Applications (Cournot duopoly, Bertrand duopoly)
Mixed strategies
◦ simplified Nash equilibrium tests
◦ application (batter-pitcher duel)
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Static games of complete information

Strategic form games
◦ N players i = 1, ...,N , strategies si ∈ Si , payoffs ui

◦ payoff function ui : ×N
j=1Sj → R , S ≡ ×N

j=1Sj ≡ S1 × S2 × ...× SN

◦ definition: G = {S1,S2, ...,Sn ; u1, u2, ..., un}

– define G for the Prisoner’s dilemma
– define ×N

j=1Sj for the Prisoner’s dilemma
– explain ui for the Prisoner’s dilemma

Solution concept 1:
Iterated elimination of strictly dominated strategies (IESDS)
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A few notational conventions

individual strategy si

set of individual strategies Si , si ∈ Si

specific joint strategy s = (s1, s2, ..., sN )

joint strategy set S ≡ ×N
j=1Sj , s ∈ S

“others” joint strategy s−i = (s1, s2, ..., si−1, si+1, ..., sN )

“others” joint strategy set
S−i = S1 × S2 × ...× Si−1 × Si+1 × ...× SN , s−i ∈ S−i

(si , s−i) = s!

◦ demonstrate all of these concepts for the Prisoner’s dilemma
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Iterated elimination of strictly dominated strategies

Strictly dominant strategies

A strategy ŝi , for player i is strictly dominant if
ui(ŝi , s−i) > ui(si , s−i) for all (si , s−i) ∈ S .

◦ identify strictly dominant strategies in the following game

Player 2
L R

Player 1 U 3 , 0 0 , -4
D 2 , 4 -1 , 8

I If ŝi exists, i plays it.
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Strictly dominated strategies

Player i’s strategy ŝi strictly dominates another of her strategies s̄i ,
if ui(ŝi , s−i) > ui(s̄i , s−i) for all s−i ∈ S−i . In this case, s̄i is strictly
dominated in S .

If s̄i exists, i does not play it.

◦ identify strictly dominated strategies in the following game

Player 2
l m r

u 3 , 0 0 , -5 0 , -4
Player 1 c 1 , -1 3 , 3 -2 , 4

d 2 , 4 4 , 1 -1 , 8

c© Ronald Wendner Information Economics - MA - Econ – 2 – v1.0 6/23



Strictly dominated strategies can be iteratively eliminated from game

Game theory – outcome: strategies that survive IESDS

Player 2
l m r

u 3 , 0 0 , -5 0 , -4
Player 1 c 1 , -1 3 , 3 -2 , 4

d 2 , 4 4 , 1 -1 , 8

– calculate outcome according to IESDS

c© Ronald Wendner Information Economics - MA - Econ – 2 – v1.0 7/23



Drawbacks

◦ rationality

◦ IESDS often not informative

Player 2
l m r

u 0 , 4 4 , 0 5 , 3
Player 1 c 4 , 0 0 , 4 5 , 3

d 3 , 5 3 , 5 6 , 6

– all strategies survive IESDS
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Nash equilibrium

players don’t play SD strategies – what do they play?

best responses

Nash equilibrium: Given G = (Si , ui)N
i=1, ŝ ∈ S is a pure strategy

Nash equilibrium of G if for each player i, ui(ŝ)≥ui(si , ŝi−1) for all
si ∈ Si .

◦ NE is a joint strategy; observe the weak inequality

◦ find NE in the Prisoner’s dilemma
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find pure strategy Nash equilibria

Player 2
l m r

u 0 , 4 4 , 0 5 , 3
Player 1 c 4 , 0 0 , 4 5 , 3

d 3 , 5 3 , 5 6 , 6

Theorem. (i) If ŝ is a NE it survives IESDS.
(ii) If only ŝ survives IESDS, then ŝ is the unique NE of the game.
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Example. Cournot duopoly (1838)

Cournot game

P(Q) = a −Q, Q = q1 + q2, Q < a, Ci(qi) = c qi , 0 < c < a

Si = [0,∞) , as for Q ≥ a, P(Q) = 0, no firm produces qi ≥ a
si = qi ∈ Si , i = 1, 2; s = (q1, q2) ∈ ×2

i=1 Si ; ×2
i=1 Si = R2

+

ui(qi , qj) = qi [P(qi + qj)− c] = qi [a − qi − qj − c]

NE: ui(ŝi , ŝj) ≥ ui(si , ŝj)

maxqi∈Si qi [a − qi − q̂j − c]

⇒ q̂1 = (a − q̂2 − c)/2 and q̂2 = (a − q̂1 − c)/2

⇔ q̂1 = q̂2 = (a − c)/3
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prediction of game theory: ŝ = ((a − c)/3, (a − c)/3)

◦ unique pure strategy NE

◦ P(Q) = a − 2(a − c)/3 = a/3− 2c/3 > c (as a > c)
⇒ oligopoly profits

◦ complete info vs. incomplete info (cost structure)
→ Baysian version of Cournot game
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Example. Bertrand duopoly (1883)

Bertrand game

qi(pi , pj) = a − pi + b pj , 2 > b > 0; constant marginal cost c < a

pi ∈ Si = [0,∞), thus: s = (p1, p2) ∈ S = R2
+

ui(pi , pj) = qi(pi , pj)(pi − c) = (a − pi + b pj)(pi − c)

NE: maxpi∈Si (a − pi + b p̂j)(pi − c)

⇒ p̂1 = (a + b p̂2 + c)/2 and p̂2 = (a + b p̂1 + c)/2

⇔ p̂1 = p̂2 = (a + c)/(2− b)
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prediction of game theory: ŝ = ((a + c)/(2− b), (a + c)/(2− b))

◦ unique pure strategy NE

◦ Bertrand NE 6= Cournot NE: pB > pC

◦ (a + c)/(2− b) > c (as a > c)
⇒ oligopoly profits

◦ complete info vs. incomplete info (cost structure)
→ Baysian version of Bertrand game
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Mixed strategies

Mixed strategies: Consider a finite G = (Si , ui)N
i=1. A mixed

strategy for i is a probability distribution, mi , over Si . That is,
mi : Si → [0, 1], 0 ≤ mi(si) ≤ 1 and

∑
si∈Si

mi(si) = 1.

Set of i’s mixed strategies:
Mi ≡ {mi : Si → [0, 1] |

∑
si∈Si

mi(si) = 1}

– simplex (→ show simplex for 2 or 3 strategies)

pure strategies ⊂ mixed strategies

Payoffs: expected u− function

◦ s = (s1, s2, ..., sN )

◦ probability of s ∈ S : m1(s1) m2(s2) ...mN (sN )

if strategies are chosen independently, prob(s) = product of
probabilities mi(si)

complication: not only i randomizes, but so do all others as well
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ui(m) =
∑

s∈S m1(s1) m2(s2) ...mN (sN )︸ ︷︷ ︸
probability of s

ui(s)

m = (m1, m2, ..., mN )

m ∈ M ≡ M1 ×M2 × ...×MN

m−i = (m1, m2, ..., mi−1, mi+1, ..., mN )

M−i ≡ M1 ×M2 × ...Mi−1 ×Mi+1 × ...×MN

m−i ∈ M−i
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Example

Player 2
l (pr=p) r (pr=1-p)

Player 1 u (pr=q) 1 , 2 3 , 0
d (pr=1-q) 2 , 4 1 , 1

m1 = (q, (1− q)), m2 = (p, (1− p)), m = (m1, m2)

expected payoff of playing u: p 1 + (1− p) 3; d: p 2 + (1− p) 1

player 1’s expected payoff of m1, given m2:
u1(m) = q p 1 + q (1− p) 3 + (1− q) p 2 + (1− q) (1− p) 1

calculate u2(m)
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Interpretation of mixed strategies

◦ sometimes in one’s best interest to employ randomization mechanism

→ expected payoff of mi > si ,
for probabilities chosen so to maximize expected payoff

Mixed strategy Nash equilibrium

◦ Given G = (Si , ui)N
i=1, m̂ ∈ M is a Nash equilibrium of G if for each

player i, ui(m̂) = ui(m̂i , m̂−i) ≥ ui(mi , m̂−i) for all mi ∈ Mi .

– infinitely many strategies to be tested!
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Batter-pitcher duel (baseball)

batter
F C

pitcher
F -1 , 1 1 , -1
C 1, -1 -1 , 1

◦ no SD strategies, no NE

◦ how to find mixed strategy NE, m̂:
ui(m̂) = ui(m̂i , m̂−i) ≥ ui(mi , m̂−i) ∀mi ∈ Mi , ∀i

◦ mixed strategy NE test
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Theorem. Mixed strategy Nash equilibrium test.

For all i, the following holds:

◦ ui(m̂) = ui(si , m̂−i) for all si played with positive probability.

◦ ui(m̂) ≥ ui(si , m̂−i) for all si played with zero probability.

◦ batter-pitcher duel: Si = {F ,C}, both strategies played with
positive probability:
ui(F , m̂−i) = ui(C , m̂−i)

→ calculate mixed strategy NE for batter pitcher duel
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A few important results...

Proposition. A pure strategy of i can be a best response to a
mixed strategy by j, even if it is not a best response to any other
pure strategy by j.

Player 2
L R

T 3 , - 0 , -
Player 1 M 0 , - 3 , -

B 2 , - 2 , -

◦ Let m2 = (1/2, 1/2), and s1 = B.

Then, s1 is a best response to m2:
E [B] = 2 > E [M ] = E [T ] = 3/2.
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Proposition. A pure strategy can be dominated by a mixed
strategy, even if it is not dominated by any other pure strategy.

Player 2
L R

T 6 , - 0 , -
Player 1 M 0 , - 6 , -

B 2 , - 2 , -

◦ B is not dominated by either T or M . Let m1 = (1/2, 1/2, 0), and
s1 = B.

Then, for all m2: u1(s1,m2) = 2 < 3 = u1(m1,m2).
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Theorem. In any finite G, there exists a Nash equilibrium.

◦ Proof sketch. (1) Define best-response correspondence and show
that any fixed-point of correspondence is a NE;

(2) By Kakutani’s fixed-point theorem, best-response correspondence
has a fixed point.

(1) For any given m, define player i’s set of best responses φi(m) ⊆ Mi

φ(m) ≡ ×N
i=1 φi(m) (best response correspondence)

m∗ is a fixed point of φ(m) if m∗ ∈ φ(m)

m∗ = m̂, obviously.

(2) As m ∈ M , the domain of φ(m) is nonempty, compact, convex.

φ(m) is upper hemicontinuous from M into M .

By Kakutani’s fixed point theorem, there exists m∗ ∈ M such that
m∗ ∈ φ(m) . ||
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