

# Information Economics

Ronald Wendner

Department of Economics Graz University, Austria

Course # 320.412 (part 2)

### Main learning objectives:

basic coordinates of static games of complete information

- Static games of complete information
  - strategic form games
  - $\circ~$  dominant/dominated strategies
  - $\circ~$  iterated elimination of strictly dominated strategies
  - Nash equilibrium (in pure strategies)
- Applications (Cournot duopoly, Bertrand duopoly)
- Mixed strategies
  - $\circ~$  simplified Nash equilibrium tests
  - application (batter-pitcher duel)



## Strategic form games

- N players i = 1, ..., N, strategies  $s_i \in S_i$ , payoffs  $u_i$
- $\circ$  payoff function  $u_i: imes_{j=1}^N S_j \to \mathbf{R}$ ,  $S \equiv imes_{j=1}^N S_j \equiv S_1 imes S_2 imes ... imes S_N$
- definition:  $G = \{S_1, S_2, ..., S_n; u_1, u_2, ..., u_n\}$ 
  - define G for the Prisoner's dilemma
  - define  $\times_{j=1}^{N} S_j$  for the Prisoner's dilemma
  - explain  $\vec{u}_i$  for the Prisoner's dilemma

 Solution concept 1: Iterated elimination of strictly dominated strategies (IESDS)

- individual strategy  $s_i$ set of individual strategies  $S_i$ ,  $s_i \in S_i$
- specific joint strategy  $s = (s_1, s_2, ..., s_N)$

joint strategy set  $S \equiv \times_{j=1}^{N} S_j$ ,  $s \in S$ 

• "others" joint strategy  $s_{-i} = (s_1, s_2, ..., s_{i-1}, s_{i+1}, ..., s_N)$ 

"others" joint strategy set  $S_{-i} = S_1 \times S_2 \times ... \times S_{i-1} \times S_{i+1} \times ... \times S_N, s_{-i} \in S_{-i}$  $(s_i, s_{-i}) = s!$ 

• demonstrate all of these concepts for the Prisoner's dilemma





## Strictly dominant strategies

A strategy  $\hat{s}_i$ , for player *i* is strictly dominant if  $u_i(\hat{s}_i, s_{-i}) > u_i(s_i, s_{-i})$  for all  $(s_i, s_{-i}) \in S$ .

 $\circ~$  identify strictly dominant strategies in the following game

▶ If 
$$\hat{s}_i$$
 exists, *i* plays it.

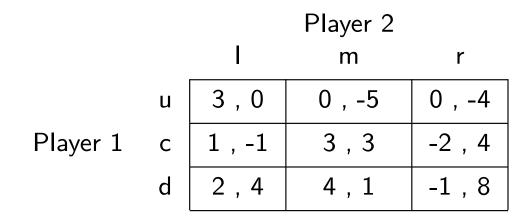


## Strictly dominated strategies

Player i's strategy  $\hat{s}_i$  strictly dominates another of her strategies  $\bar{s}_i$ , if  $u_i(\hat{s}_i, s_{-i}) > u_i(\bar{s}_i, s_{-i})$  for all  $s_{-i} \in S_{-i}$ . In this case,  $\bar{s}_i$  is strictly dominated in S.

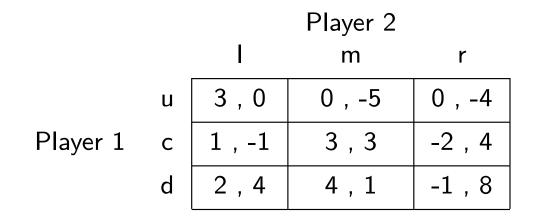
If  $\overline{s}_i$  exists, *i* does not play it.

 $\circ~$  identify strictly dominated strategies in the following game





- Strictly dominated strategies can be iteratively eliminated from game
- ▶ Game theory outcome: strategies that survive IESDS



calculate outcome according to IESDS



Drawbacks

#### $\circ$ rationality

• IESDS often not informative

|          |   |     | Player 2 |     |
|----------|---|-----|----------|-----|
|          |   | I   | m        | r   |
|          | u | 0,4 | 4,0      | 5,3 |
| Player 1 | С | 4,0 | 0,4      | 5,3 |
|          | d | 3,5 | 3,5      | 6,6 |

#### - all strategies survive IESDS



players don't play SD strategies – what do they play?

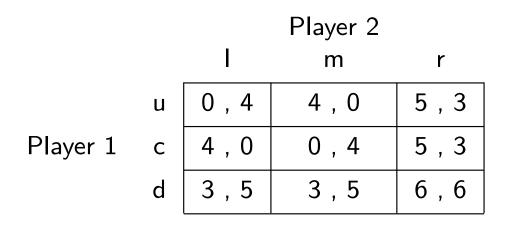
- best responses
- Nash equilibrium: Given G = (S<sub>i</sub>, u<sub>i</sub>)<sup>N</sup><sub>i=1</sub>, ŝ ∈ S is a pure strategy Nash equilibrium of G if for each player i, u<sub>i</sub>(ŝ)≥u<sub>i</sub>(s<sub>i</sub>, ŝ<sub>i-1</sub>) for all s<sub>i</sub> ∈ S<sub>i</sub>.

• NE is a joint strategy; observe the weak inequality

o find NE in the Prisoner's dilemma



find pure strategy Nash equilibria



Theorem. (i) If ŝ is a NE it survives IESDS.
 (ii) If only ŝ survives IESDS, then ŝ is the unique NE of the game.



## Cournot game

$$P(Q) = a - Q, \ Q = q_1 + q_2, \ Q < a, \ C_i(q_i) = c \ q_i, \ 0 < c < a$$

$$S_i = [0, \infty)$$
, as for  $Q \ge a$ ,  $P(Q) = 0$ , no firm produces  $q_i \ge a$   
 $s_i = q_i \in S_i$ ,  $i = 1, 2$ ;  $s = (q_1, q_2) \in \times_{i=1}^2 S_i$ ;  $\times_{i=1}^2 S_i = \mathbf{R}^2_+$ 

$$u_i(q_i, q_j) = q_i \left[ P(q_i + q_j) - c \right] = q_i \left[ a - q_i - q_j - c \right]$$

NE:  $u_i(\hat{s}_i, \hat{s}_j) \ge u_i(s_i, \hat{s}_j)$ 

 $\max_{q_i \in S_i} q_i \left[ a - q_i - \hat{q}_j - c \right]$ 

$$\Rightarrow \hat{q}_1 = (a - \hat{q}_2 - c)/2 \text{ and } \hat{q}_2 = (a - \hat{q}_1 - c)/2$$

 $\Leftrightarrow \hat{q}_1 = \hat{q}_2 = (a-c)/3$ 



• prediction of game theory:  $\hat{s} = ((a - c)/3, (a - c)/3)$ 

• unique pure strategy NE

• 
$$P(Q) = a - 2(a - c)/3 = a/3 - 2c/3 > c$$
 (as  $a > c$ )  
 $\Rightarrow$  oligopoly profits

 $\circ\,$  complete info vs. incomplete info (cost structure)  $\rightarrow\,$  Baysian version of Cournot game



# Bertrand game

•  $q_i(p_i, p_j) = a - p_i + b p_j$ , 2 > b > 0; constant marginal cost c < a

▶ 
$$p_i \in S_i = [0, \infty)$$
, thus:  $s = (p_1, p_2) \in S = \mathbf{R}^2_+$ 

• 
$$u_i(p_i, p_j) = q_i(p_i, p_j)(p_i - c) = (a - p_i + b p_j)(p_i - c)$$

• NE: 
$$\max_{p_i \in S_i} (a - p_i + b \, \hat{p}_j) (p_i - c)$$

$$\Rightarrow \hat{p}_1 = (a + b\,\hat{p}_2 + c)/2 \text{ and } \hat{p}_2 = (a + b\,\hat{p}_1 + c)/2$$
$$\Leftrightarrow \hat{p}_1 = \hat{p}_2 = (a + c)/(2 - b)$$



▶ prediction of game theory:  $\hat{s} = ((a + c)/(2 - b), (a + c)/(2 - b))$ 

 $\circ~$  unique pure strategy NE

◦ Bertrand NE  $\neq$  Cournot NE:  $p_B > p_C$ 

• 
$$(a+c)/(2-b) > c$$
 (as  $a > c$ )  
 $\Rightarrow$  oligopoly profits

 $\circ\,$  complete info vs. incomplete info (cost structure)  $\rightarrow\,$  Baysian version of Bertrand game

# Mixed strategies



- Mixed strategies: Consider a finite  $G = (S_i, u_i)_{i=1}^N$ . A mixed strategy for i is a probability distribution,  $m_i$ , over  $S_i$ . That is,  $m_i: S_i \to [0, 1], 0 \le m_i(s_i) \le 1$  and  $\sum_{s_i \in S_i} m_i(s_i) = 1$ .
- Set of *i*'s mixed strategies:  $M_i \equiv \{m_i : S_i \to [0,1] \mid \sum_{s_i \in S_i} m_i(s_i) = 1\}$

- simplex ( $\rightarrow$  show simplex for 2 or 3 strategies)

pure strategies  $\subset$  mixed strategies

> Payoffs: expected u- function

$$\circ \ s = (s_1, s_2, ..., s_N)$$

• probability of  $s \in S$ :  $m_1(s_1) m_2(s_2) \dots m_N(s_N)$ 

if strategies are chosen independently, prob(s) = product of probabilities  $m_i(s_i)$ 

complication: not only i randomizes, but so do all others as well



• 
$$u_i(m) = \sum_{s \in S} \underbrace{m_1(s_1) m_2(s_2) \dots m_N(s_N)}_{\text{probability of } s} u_i(s)$$

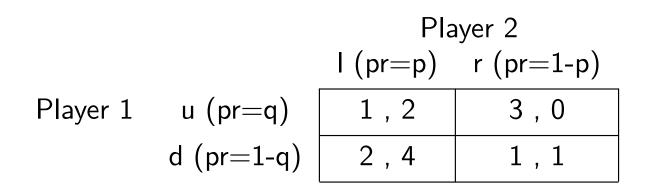
$$m = (m_1, m_2, ..., m_N)$$

$$m \in M \equiv M_1 \times M_2 \times \ldots \times M_N$$

$$m_{-i} = (m_1, m_2, ..., m_{i-1}, m_{i+1}, ..., m_N)$$

$$M_{-i} \equiv M_1 \times M_2 \times \dots M_{i-1} \times M_{i+1} \times \dots \times M_N$$
$$m_{-i} \in M_{-i}$$





• 
$$m_1 = (q, (1-q)), m_2 = (p, (1-p)), m = (m_1, m_2)$$

- expected payoff of playing u: p 1 + (1-p) 3; d: p 2 + (1-p) 1
- ▶ player 1's expected payoff of  $m_1$ , given  $m_2$ :  $u_1(m) = q p 1 + q (1 - p) 3 + (1 - q) p 2 + (1 - q) (1 - p) 1$
- calculate  $u_2(m)$

Example

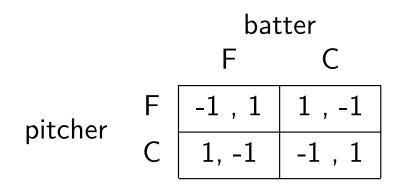


- Interpretation of mixed strategies
  - sometimes in one's best interest to employ randomization mechanism
  - $\rightarrow$  expected payoff of  $m_i > s_i$ , for probabilities chosen so to maximize expected payoff
- Mixed strategy Nash equilibrium
  - Given  $G = (S_i, u_i)_{i=1}^N$ ,  $\hat{m} \in M$  is a Nash equilibrium of G if for each player i,  $u_i(\hat{m}) = u_i(\hat{m}_i, \hat{m}_{-i}) \ge u_i(m_i, \hat{m}_{-i})$  for all  $m_i \in M_i$ .

- infinitely many strategies to be tested!



Batter-pitcher duel (baseball)



 $\circ~$  no SD strategies, no NE

- how to find mixed strategy NE,  $\hat{m}$ :  $u_i(\hat{m}) = u_i(\hat{m}_i, \hat{m}_{-i}) \ge u_i(m_i, \hat{m}_{-i}) \quad \forall m_i \in M_i, \forall i$
- mixed strategy NE test

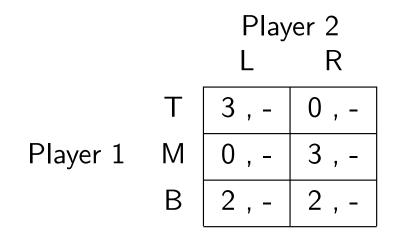


- Theorem. Mixed strategy Nash equilibrium test. For all *i*, the following holds:
  - $u_i(\hat{m}) = u_i(s_i, \hat{m}_{-i})$  for all  $s_i$  played with positive probability.
  - $u_i(\hat{m}) \ge u_i(s_i, \hat{m}_{-i})$  for all  $s_i$  played with zero probability.
  - batter-pitcher duel:  $S_i = \{F, C\}$ , both strategies played with positive probability:  $u_i(F, \hat{m}_{-i}) = u_i(C, \hat{m}_{-i})$
  - $\rightarrow\,$  calculate mixed strategy NE for batter pitcher duel





Proposition. A pure strategy of i can be a best response to a mixed strategy by j, even if it is not a best response to any other pure strategy by j.



• Let 
$$m_2 = (1/2, 1/2)$$
, and  $s_1 = B$ .

Then,  $s_1$  is a best response to  $m_2$ : E[B] = 2 > E[M] = E[T] = 3/2.



Proposition. A pure strategy can be dominated by a mixed strategy, even if it is not dominated by any other pure strategy.

• *B* is not dominated by either *T* or *M*. Let  $m_1 = (1/2, 1/2, 0)$ , and  $s_1 = B$ .

Then, for all  $m_2$ :  $u_1(s_1, m_2) = 2 < 3 = u_1(m_1, m_2)$ .

**Theorem.** In any finite G, there exists a Nash equilibrium.

• *Proof sketch.* (1) Define best-response correspondence and show that any fixed-point of correspondence is a NE;

(2) By Kakutani's fixed-point theorem, best-response correspondence has a fixed point.

(1) For any given m, define player i's set of best responses  $\phi_i(m) \subseteq M_i$   $\phi(m) \equiv \times_{i=1}^N \phi_i(m)$  (best response correspondence)  $m^*$  is a fixed point of  $\phi(m)$  if  $m^* \in \phi(m)$ 

 $m^* = \hat{m}$ , obviously.

(2) As m ∈ M, the domain of φ(m) is nonempty, compact, convex.
φ(m) is upper hemicontinuous from M into M.
By Kakutani's fixed point theorem, there exists m<sup>\*</sup> ∈ M such that m<sup>\*</sup> ∈ φ(m) . ||