

Information Economics

Ronald Wendner

Department of Economics Graz University, Austria

Course # 320.412 (part 1)

Business- & economic models: multi-person decision problems

- full information or symmetric information
- asymmetric incomplete information

Multi-person decision problems

- often: bilateral relationship contractor: principal contractee: agent
 - firmowner (shareholders) manager (effort)
 - employer worker (effort, type)
 - insurance company policy holder (effort)
 - bank firm (project risk)

Differing or opposing objectives

 $\circ~$ identify objectives in above examples

- Asymmetric information & differing objectives
 - hidden knowledge: adverse selection
 - hidden action: moral hazard
 - \circ incentive problems \leftarrow opposing objectives
 - inefficiencies: mutually beneficial trades go unexploited
- Remedies (incentives)
 - contract design
 - design of signalling and screening devices

But how to analyze multi-person strategic decision problems with asymmetric information and/or opposing objectives?

- Game theory
 - multi-person strategic decision problems
 - \circ strategic
 - behavior of one agent influences outcome of other agents example: duopoly
- ▶ Information economics ← game theory

The grand plan

- Setting the stage
- Game theory
 - methodological basis
 - important problems involving strategic behavior
 - study game theory on its own right,
 not only to solve problems in information economics
- Information economics (adverse selection, moral hazard) insurance model framework
 - perfect competition as a benchmark case
 - $\circ~$ application of game theory to derive solutions
 - signalling equilibria, screening equilibria
 - information economics: generalized framework

- Some important basics in probability theory
- VNM utility
- ▶ Games: a few conceptual issues

- definition and properties
 - "probability" is math language for dealing with (quantifying) uncertainty
 - $\circ \text{ sample space } \Omega \text{; event } A \text{: } A \subseteq \Omega$
 - 2 types of drivers with acc. prob $\pi_i \in \{\underline{\pi}, \overline{\pi}\}$
 - continuum of types with $\pi_i \in [\underline{\pi}, \overline{\pi}]$

$$\begin{split} ⪻:\Omega \rightarrow \mathbb{R} \\ ⪻(A) \geq 0 \\ ⪻(\Omega) = 1 \\ ⪻(\varnothing) = 0 \\ ⪻(A^c) = 1 - Pr(A) \\ &\text{if } A \cap B = \varnothing, \text{ then } Pr(A \cup B) = Pr(A) + Pr(B) \\ &\text{if } A \cap B \neq \varnothing, \text{ then } Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A, B) \\ &A, B \text{ are independent} \Leftrightarrow Pr(A, B) = Pr(A) Pr(B) \end{split}$$

▶ Independence. Suppose Pr(A) > 0, Pr(B) > 0, and $A \cap B = \emptyset$. Then A, B are not independent. Proof (\rightarrow class)

Conditional probability

• consider $A \subseteq \Omega$, $B \subseteq \Omega$ restrict attention to $B \subseteq \Omega$, Pr(B) > 0

 \rightarrow once we observe event B, what is the probability that event A has occurred?

 $(A,B) \equiv A \cap B \equiv A \wedge B$

Pr(A|B) = Pr(A, B)/Pr(B)

• If A independent of B, then Pr(A, B) = Pr(A) Pr(B). Thus, Pr(A|B) = Pr(A).

Example. Independence (Venn diagram)

$$Pr(A) = .6, Pr(B) = .5, Pr(A, B) = .3$$

 $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A, B) = 0.8,$
 $Pr(A \cup B)^{c} = 1 - Pr(A \cup B) = 0.2$

Pr(A|B) = Pr(A, B)/Pr(B) = 0.3/0.5 = 0.6 = Pr(A)

▶ Pr(A) indept. of whether or not *B* occurs

 $Pr \text{ of } A \text{ in } \Omega = Pr(A, B)/Pr(B)$ (share of A in Ω = share of $A \cap B$ in B)

Law of total probability

let $A_1, ..., A_k$ be a partition of Ω :

$$Pr(B) = \sum_{i=1}^{k} Pr(B|A_i) Pr(A_i)$$

Bayes' theorem

 $Pr(A_i|B) = \frac{Pr(B,A_i)}{Pr(B)} = \frac{Pr(B|A_i) Pr(A_i)}{\sum_{j=1}^k Pr(B|A_j) Pr(A_j)}$

 $\blacktriangleright \quad \mathsf{Random variable:} \ X: \Omega \to \mathbb{R}$

 $\rightarrow\,$ often values of X considered as random variable

 $\circ~$ example: 2 flips of a coin, X~# of heads

•
$$\Omega = \{(TT), (HT), (TH), (HH)\},\ X(TT) = 0, X(TH) = X(HT) = 1, X(HH) = 2$$

 $\circ\,$ distribution: Pr(X=0)=.25, Pr(X=1)=.5 , Pr(X=2)=.25

- Discrete distributions: X countable
 Continuous distributions: X convex set
- Cumulated distribution function $F(x) : X \rightarrow [0, 1]$
 - $\circ~\mbox{consider}~a\in[\underline{\pi},\overline{\pi}]$ then $F(a)=Pr(\pi\leq a)$
 - "share interpretation"
 - probability interpretation
- ▶ Probability density function $f(x) = \frac{\partial F(x)}{\partial x}$ ◦ consider $a, b \in [\pi, \overline{\pi}]$, then
 - $\int_{a}^{b} f(\pi) d\pi = Pr(a \le \pi \le b) = F(b) F(a)$

$$Pr(\pi = a) = Pr(a \le \pi \le a) = F(a) - F(a) = 0$$

$$Pr(\pi > a) = 1 - Pr(\pi \le a) = 1 - F(a)$$

$$F(a) = \int_{-\infty}^{a} f(\pi) d\pi, \quad \lim_{a \to \infty} F(a) = 1$$

Expectation and variance

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{-\infty}^{\infty} x \, dF(x)$$

$$\circ \text{ note: } dF(x)/dx = f(x) \Rightarrow f(x)dx = dF(x)$$

$$\circ \text{ example: } E[\pi] = \int_{\underline{\pi}}^{\overline{\pi}} \pi \, dF(\pi)$$

$$V[x] = \int_{-\infty}^{\infty} [x - E[x]]^2 f(x) \, dx = \int_{-\infty}^{\infty} [x - E[x]]^2 \, dF(x)$$

▶ Example: cont. uniform distribution

•
$$X \sim \text{Uniform}(a, b)$$
:
 $f(x) = 1/(b-a) \text{ for } x \in [a, b], \text{ otherwise } f(x) = 0$
 $F(x) = (x-a)/(b-a) \text{ for } x \in [a, b], \text{ otherwise } F(x) \in \{0, 1\}$

- set of uncertain outcomes $A = \{a_1, ..., a_n\}$ (consumption plans)
- gamble assigns probabilities to outcomes: $a_i \circ p_i$

 \circ set of gambles for given A:

$$G = \{ (a_1 \circ p_1, a_2 \circ p_2, ..., a_n \circ p_n) \mid p_i \ge 0, \sum_{i=1}^{n} p_i = 1 \}$$

 a_i outcome, gamble, compund gamble

- 6 axioms of choice under uncertainty
 - (A.1) Completeness: g, g' ∈ G, either g ≿ g', or g ≾ g', or both
 (A.2) Transitivity: g, g', g'' ∈ G, and g ≿ g', g' ≿ g'' then g ≿ g'' (A.1) + (A.2) allow for a complete ordering of A - order as follows: a₁ ≿ a₂ ≿ ≿ a_n
 (A.3) Continuity: ∀g ∈ G ∃α ∈ [0,1] : g ~ (α ∘ a₁, (1 - α) ∘ a_n) example: A = {\$1000, \$10, death}

- (A.4) Monotonicity (nonsatiation) $\alpha \ge \beta$: $(\alpha \circ a_1, (1 - \alpha) \circ a_n) \succeq (\beta \circ a_1, (1 - \beta) \circ a_n)$
- ▶ (A.5) Substitution (linearity): $g, h \in G$, $g = (p_1 \circ g_1, ..., p_n \circ g_n)$, $h = (p_1 \circ h_1, ..., p_n \circ h_n)$

if $g_i \sim h_i$ for all i, then: $g \sim h \Rightarrow (\alpha \circ g, (1 - \alpha) \circ h) \sim (\alpha \circ g, (1 - \alpha) \circ g) = g$

 $\rightarrow\,$ convex combinations are not better

- (A.6) Reduction to simple gambles compound gamble and effective probabilities let g ∈ G, and g_s simple gamble induced by effective probabilities: then g ~ g_s
- \gtrsim observing (A.1) (A.6) can be represented by a VNM utility function

$$u(g) = u(p_1 \circ a_1, ..., p_n \circ a_n) = \sum_{i=1}^n p_i u(a_i)$$

 $\circ \ u(a_i) \equiv u(1 \circ a_i)$

VNM utility

- VNM said to have "expected utility property" (linearity in effective probabilities)
- $\rightarrow\,$ In situations with incomplete information:
 - agents form beliefs using Bayes rule;
 - agents' *payoff* (utility) functions are of VNM type.

Basic coordinates of (noncooperative) games

▶ John Nash (1928 –)

- Game theory: robust predictions in multi-person decision problems
- Nash equilibrium

game consists of: players, actions, payoffs

		Bob	
		fink	mum
Adam	fink	-10 , -10	0,-20
	mum	-20, 0	-1 , -1

- \circ actions = {fink, mum}
- payoffs (matrix)
- strategic decision problem
- ▶ prediction of game theory: Nash equilibrium: (fink, fink) → worst outcome!

(idea behind leniency program)

▶ Game: every multi-person decision problem

- game theory (noncooperative)
- basic ingredients: players, actions, payoffs
- Types of games
 - time

static (simultaneous-move) vs. dynamic (sequential-move)

• information

complete information vs. incomplete information (Bayesian games)

perfect vs. imperfect information (dynamic games)

 $\rightarrow\,$ incomplete information & information economics

Solution concepts

complete information

incomplete information

Bayesian Nash equilibrium (BNE); Sequential equilibrium

Perfect Bayesian equilibrium; Sequential equilibrium

iterated elimination of static games strictly dominated strategies; Nash equilibrium (NE)

> backward induction outcome; subgame perfect Nash equilibrium (SPNE)

dynamic games

Representation of games

- normal form = strategic form (matrix)
- extensive form (tree)

To every extensive form game there corresponds a strategic form game. For a given strategic form game there may be different corresponding extensive form games.

frequently: static games – normal form; dynamic games – extensive form

Actions & strategies

- $\circ~$ set of actions
 - static vs. dynamic games
 - finitely vs. infinitely many actions
- strategy: complete contingent plan that specifies a player's possible actions in every possible distinguishable circumstance.

- set of actions of 1: $\{T, D\}$; of 2: $\{L, R\}$
- \circ strategies of 1: {T, D}
- strategies of 2:
 - (L if 1 plays T, L if 1 plays D), (L if 1 plays T, R if 1 plays D), (R if 1 plays T, L if 1 plays D), (R if 1 plays T, R if 1 plays D)

moves

strategies: pure vs. mixed

sometimes it is in the best interest to mix pure strategies

- pitcher-batter duel

pure strategy vs. mixed strategy equilibria

hierarchy of solution concepts

As games become progressively richer, equilibrium concepts need to be strengthened to rule out implausible equilibria.

- sequential equilibria ⊆ Bayesian Nash equilibria ⊆ subgame perfect NE ⊆ Nash equilibria
- stronger equilibrium concept always survives weaker concept

Example: Prisoner's dilemma

2 players {1,2}, actions=strategies = {*F*, *M*} time: static (simultaneous move-, one shot-) game information: complete and perfect solution concept: (i) IESDS, (ii) NE representation: normal form game strategies: pure