A Market Economy: Positive Theory

Main objectives of today's session:

- study existence of competitive equilibrium
- (bounded consumption/production sets)
- preliminary remarks

.

.

• existence of equilibrium

1 Preliminary Remarks

• excess demand

$$z_{l}(p) = \sum_{i=1}^{I} x_{li}(p) - \sum_{j=1}^{J} y_{lj}(p) - \sum_{i=1}^{I} \omega_{li}$$
$$z(p) = \begin{pmatrix} z_{1}(p) \\ z_{2}(p) \\ \vdots \\ z_{L}(p) \end{pmatrix}$$

• HD0 of $x_i(p)$ and $y_j(p)$ \rightarrow HD0 of z(p)

 \rightarrow normalization of p to unit simplex:

$$P = \{ p \in \mathbb{R}^{L}_{+} \mid p_{l} \ge 0, \sum_{l=1}^{L} p_{l} = 1 \}$$

Definition 1 A Walrasian equilibrium is a price vector $p^* \in P$ and an attainable allocation (x, y) such that:

(i) all households maximize utility s.t. budget constraints,
(ii) all firms maximize profit s.t. technology constraints,
(iii) all markets clear: z(p*) ≤ 0, and if z_l(p*) < 0 then p^{*}_l = 0.

• weak Walras law: $p \cdot z(p) \le 0$ and if $p \cdot z(p) < 0 \Rightarrow \exists l : z_l(p) > 0$

 \rightarrow under which assumptions does weak Walras' law hold?

• continuity of z(p)

 \rightarrow under which assumptions does continuity hold?

2 Existence of Equilibrium

 \rightarrow a story of price adjustment

Theorem 1 Suppose weak Walras law and continuity of z(p)hold. Then there exists a $p^* \in P$ so that p^* is a Walrasian equilibrium price vector.

Proof steps:

- 1. Set up price adjustment functions $\wp(p): P \to P$ equivalently: $\wp_l(p): P \to [0, 1], \ l = 1, ..., L$
- 2. Show denominator of $\wp_l(p)$ is strictly positive (...well defined)
- 3. Establish existence of a fixed point, $p^* \in P$, of $\wp(p)$
- 4. Show that this fixed point is a Walrasian equilibrium price vector
- 5. Argue that in equilibrium weak Walras law holds as an equality
- 6. Argue that in equilibrium, bound on X is not binding

• Step 1. price adjustment functions $\wp(p): P \to P$

$$\wp_l(p) = \frac{\max[0, \, p_l + \gamma_l \, z_l(p)]}{\sum_{n=1}^L \, \max[0, \, p_n + \gamma_n \, z_n(p)]}, \quad l = 1, ..., L$$

 $\gamma_l > 0$ (sensitivity to excess demand)

- Step 2. $\wp(p)$ is well defined: denominator $\neq 0$
 - denominator $\geq 0 \Rightarrow$ claim: denominator > 0
 - Proof.

Suppose not, then $\max[0, p_n + \gamma_n z_n(p)] = 0$ (*) for all $p_n > 0, z_n(p) < 0!$ consequently, $p \cdot z(p) < 0$ then, weak Walras law requires $z_l(p) > 0$ for some l but then, $\max[0, p_n + \gamma_n z_n(p)] > 0$, contradicting (*) QED

- thus: $\max[0, p_n + \gamma_n z_n(p)] > 0$ ($\wp(p)$ is well defined)

• Notation alert.

$$\alpha \equiv \left[\sum_{n=1}^{L} \max[0, p_n + \gamma_n z_n(p)]\right]^{-1} > 0$$

$$\wp_l(p) = \alpha \, \max[0, \, p_l + \gamma_l \, z_l(p)], \quad l = 1, ..., L$$

• Step 3. Establish existence of a fixed point, $p^* \in P$, of $\wp(p)$

- continuous (why?)
-
$$\wp_l(p) \ge 0, \ \wp_l(p) \le 1$$

- $\sum_{l=1}^{L} \wp_l(p) = 1$

 $\wp(p): P \to P$, continuous

by Brower's fixed point theorem:

 $\exists\,p^*\in P:\,\wp(p^*)=p^*$

 \rightarrow claim: p^* is a Walrasian equilibrium price vector

• Step 4. A fixed point is a Walrasian equilibrium price vector Case 1: $p_l^* = 0$. Then $z_l(p^*) \le 0$

Case 2: $p_l^* > 0$

$$p_{l}^{*} = \alpha \max[0, p_{l}^{*} + \gamma_{l} z_{l}(p^{*})] > 0$$

(1 - \alpha) p_{l}^{*} = \alpha \gamma_{l} z_{l}(p^{*})
(1 - \alpha) p_{l}^{*} z_{l}(p^{*}) = \alpha \gamma_{l} z_{l}(p^{*})^{2} \ge 0 \quad (**)

• if
$$\alpha \ge 1$$
: $z_l(p^*) \le 0$
but for no l , $z_l(p^*) < 0$; otherwise $p^* \cdot z(p^*) < 0$
then by weak Walras law: $\exists l : z_l(p^*) > 0$ contradicting (**)
 $\Rightarrow z_l(p^*) = 0$ for all markets with $p_l^* > 0$

from (**)

$$\sum_l (1-\alpha) p_l^* z_l(p^*) = \sum_l \alpha \gamma_l z_l(p^*)^2$$

• if $\alpha \leq 1$, by Weak Walras law:

$$0 \ge (1 - \alpha) \sum_{l} [p_{l}^{*} z_{l}(p^{*})]$$

= $(1 - \alpha) \sum_{l \in Case1} p_{l}^{*} z_{l}(p^{*}) + (1 - \alpha) \sum_{l \in Case2} p_{l}^{*} z_{l}(p^{*})$
= $0 + (1 - \alpha) \sum_{l \in Case2} p_{l}^{*} z_{l}(p^{*}) \le 0$
 $\Rightarrow \alpha \sum_{l \in Case2} \gamma_{l} z_{l}(p^{*})^{2} \le 0$
 $\Rightarrow z_{l}(p^{*}) = 0 \forall l \in Case 2$

• Step 5: In equilibrium, weak Walras law holds as an equality $\nexists z_l(p^*) > 0 \Rightarrow p^* \cdot z(p^*) = 0$ (weak Walras law) $\Rightarrow z_l(p^*) < 0 \Rightarrow p_l = 0$ • Step 6: In equilibrium, bound on X is not binding

 $\begin{array}{ll} \text{attainable aggregate consumption:}\\ 0\leq x_l\leq y_l+\omega_l, \, \text{for all } l=1,...,L \quad \Leftrightarrow \ 0\leq x\leq y+\omega \end{array}$

upper bound c on aggregate consumption set: c > |x| for any attainable x

 $p^*\cdot z(p^*)=0$

by attainability: $|x_i(p)| < c$ for all i = 1, ..., I

 \Rightarrow bound *c* not binding