Pareto Efficiency and Competitive Equilibrium

Main objectives of today's session:

- normative questions
- market equilibrium and efficiency
- Pareto efficiency
- 1st FUN Theorem
- 2nd FUN Theorem

1 Pareto Efficient Allocations

• allocation (x, y)

 \rightarrow attainable allocation: $0 \leq \sum_{i} x_{li} \leq \sum_{j} y_{lj} + \sum_{i} \omega_{li}$ l = 1, ..., L

- \rightarrow was teful vs. efficient allocations
 - inefficient production
 - inefficient consumption: $MRS_i(x_i) \neq MRS_{i'}(x_{i'})$

Definition 1 Consider x, x'. x' is Pareto superior to x (or Pareto dominates x) if $x'_i \succeq_i x_i$ for all i and $x'_i \succ_i x_i$ for some i.

Definition 2 x is Pareto efficient if \nexists attainable x' so that x' is Pareto superior to x.

 \rightarrow Pareto efficiency vs. equity (distribution)

Definition 3 A Walrasian equilibrium is a price vector $p \in P$ and an allocation (x, y):

(i) $y_j \in Y_j$ and $p \cdot y_j \ge p \cdot y'_j$ for all $y'_j \in Y_j$, j = 1, ..., J

(*ii*)
$$x_i \in X_i, p \cdot x_i \leq M_i(p) = p \cdot \omega_i + \sum_j \alpha_{ij} p y_j$$

and $x_i \succeq_i x'_i$ for all $p \cdot x'_i \leq M_i(p), i = 1, ..., I$

(*iii.a*)
$$\sum_{i} x_{li} - \sum_{j} y_{lj} - \sum_{i} \omega_{li} \le 0, \ l = 1, ..., L$$

(*iii.b*) if $\sum_{i} x_{l'i} - \sum_{j} y_{l'j} - \sum_{i} \omega_{l'i} < 0$ for some l', then $p_{l'} = 0$.

2 1st FUN Theorem

Theorem 1 Suppose C.IV, C.V holds. Let (p, x, y) be a Walrasian equilibrium. Then x is Pareto efficient.

•
$$x'_i \succ_i x_i(p) \Rightarrow p \cdot x'_i > p \cdot x_i(p)$$

 $p \cdot y'_j > p \cdot y_j(p) \Rightarrow y'_j \notin Y_j$
 $\sum_i x_i \le \sum_j y_j + \omega$
 $p \cdot x_i(p) = M_i(p) = p \cdot \omega_i + \sum_j \alpha_{ij}(p \cdot y_j(p))$

• summing over all i:

$$\sum_{i} p \cdot x_{i}(p) = \sum_{i} M_{i}(p) = p \cdot \omega + p \cdot \sum_{j} y_{j}(p)$$

 \bullet suppose there were a Pareto superior allocation (x',y'):

$$\begin{split} \sum_{i} p \cdot x'_{i} &> \sum_{i} p \cdot x_{i}(p) = \sum_{i} M_{i}(p) = p \cdot \omega + p \cdot \sum_{j} y_{j}(p) \\ \Rightarrow \sum_{i} p \cdot x'_{i} &> p \cdot \omega + p \cdot \sum_{j} y_{j}(p) \\ \text{suppose } x' \text{ attainable, then } \exists y': \\ \omega + \sum_{j} y'_{j} &\geq \sum_{i} x'_{i} \Rightarrow \\ p \cdot \omega + p \cdot \sum_{j} y'_{j} &\geq \sum_{i} p \cdot x'_{i} > p \cdot \omega + p \cdot \sum_{j} y_{j} \Rightarrow \\ p \cdot \sum_{j} y'_{j} &\geq p \cdot \sum_{j} y_{j}(p) \Rightarrow \exists j : p \cdot y'_{j} > p \cdot y_{j}(p) \\ \Rightarrow y'_{j} \notin Y \Rightarrow x' \text{ not attainable.} \end{split}$$

 \rightarrow formalization of invisible hand

3 Second FUN Theorem

• Every Pareto efficient allocation of "convex economy" is a WE for suitably chosen prices – subject to initial redistribution of endowments and ownership shares.

any PE (x, y) can be achieved through market mechanism

• Steps

- 1. duality UMP EMP
- 2. hyperplanes & Separating hyperplane theorem
- 3. proof strategy
- 4. sets & vectors employed in proof
- 5. theorem: existence of a p supporting PE allocation (x, y)
- 6. corollary: 2nd fundamental theorem of welfare economics
- 7. critical assumption: convexity; the role of government; and critical comments

Step 1. UMP & EMP: dual problems UMP max_{xi} u_i(x_i) s.t. p ⋅ x_i ≤ M_i(p) optimizer: x_i(p) Walrasian demand value function: v_i(p) indirect utility

EMP $\min_{x_i} p \cdot x_i$ s.t. $u_i(x_i) \ge u_0$ optimizer: $h_i(p, u_0)$ Hicksian demand value function: $e_i(p, u_0)$ expenditure function

Proposition 1 Suppose u(.) is cont., representing monotone \succeq , $p \gg 0$, and fix $u_0 = v_i(p)$. Then: (i) Suppose $M_i(p) > 0$, and $x_i^* \equiv x_i(p)$ solves UMP. Then $h_i(p, v_i(p)) = x_i^*$. (ii) Suppose $x_i^* \equiv h_i(p, v_i(p))$ solves EMP. Then $x_i(p) = x_i^*$, with wealth $M_i(p) = p \cdot h(p, v_i(p))$. 2nd FUN employs a given PE (x, y)idea: if $x = (x_1, x_2, ..., x_I)$ expenditure min. for all ithen x is utility max. for all i

- \rightarrow demonstrate the proposition graphically
- \rightarrow given a budget "line" show the price vector graphically

• Step 2. Hyperplanes & Separating hyperplane theorem

Consider $p \in \mathbb{R}^L$, $p \neq 0$ hyperplane $H(p, k) \equiv \{x \in \mathbb{R}^L | p \cdot x = k\}$ \rightarrow budget "line" (p = prices, x = consumption bundle, k = wealth) \rightarrow isoprofit "line" (k = profit)

Theorem 2 (Separating hyperplane theorem (SHT)) Consider $A, B \subset \mathbb{R}^L$, nonempty, convex, disjoint: $A \cap B = \emptyset$. Then, there exists $p \in \mathbb{R}^L \setminus \{0\}$: $p \cdot a \ge p \cdot b$, for all $a \in A$, $b \in B$.

 \rightarrow illustrate theorem by figure

• Step 3. Proof strategy

(i) characterize PE $\left(x,y\right)$ as on boundaries of two convex, disjoint sets

– attainable consumptions

– preferable consumptions

(ii) employ SHT to establish existence of hyperplane b/w them

(iii) normal to hyperplane = p supporting (x, y)

(iv) redistribute endowments so that p is WE price vector

• Step 4. Sets & vectors employed

$$x = (x_1, x_2, ..., x_I)$$

$$A_i(x_i) \equiv \{ x \in X_i \, | \, x \succeq_i x_i \}$$

$$A(x) = \sum_{i} A_i(x_i)$$

 $\mathcal{A}(x)$ set of all allocations Pareto superior to x

$$B \equiv (Y + \{\omega\}) \cap \mathbb{R}^L_+$$

- \rightarrow in which space lives x? $x \in \mathbb{R}^{?}_{?}$?
- \rightarrow what are the properties of $A_i(x_i), A(x), \mathcal{A}(x)$?
- \rightarrow show graphically the differences between: $Y, Y + \{\omega\}$, and set B?
- \rightarrow what are the properties of set $B = (Y + \{\omega\}) \cap \mathbb{R}^L_+$?
- \rightarrow give a graphical representation of those sets
 - set $\mathcal{A}(x)$ captures preferable consumptions
 - \bullet set B captures attainable consumptions

• Step 5. Existence of p supporting PE allocation (x, y)

Theorem 3 Assume Y_j is convex for all j = 1, ..., J, and C.I-C.VI. Let (x, y) be an attainable, Pareto efficient allocation. Then there exists $p \in P$ such that:

(i) $x_i(p)$ minimizes $p \cdot x$ in $A_i(x_i)$, i = 1, ..., I,

(ii) $y_j(p)$ maximizes $p \cdot y$ in Y_j , j = 1, ..., J.

A and B are convex sets. Let $x(p) = \sum_i x_i(p), y(p) = \sum_j y_j(p)$. \mathcal{A} is a convex set with closure A. \mathcal{A} and B are convex, disjoint sets. $x(p) \in A$ and $x(p) \in B$. But $x(p) \notin \mathcal{A}$, and $x(p) \notin interior$ of B. By the SHT,

- Separating hyperplane theorem: $\exists p$: $p \cdot x' \ge p \cdot (y' + \omega)$ for all $x' \in \mathcal{A}(x)$ and $(y' + \omega) \in B$
- continuity of \succeq and dot product:

$$p \cdot x' \ge p \cdot (y' + \omega)$$
 for all $x' \in A(x)$ and $(y' + \omega) \in B$ (*)

$$-x(p) \le y(p) + \omega, p \ge 0 \Rightarrow p \cdot x(p) \le p \cdot (y(p) + \omega)$$
 (**)

from (*) and (**): x(p) minimizes x' on A, $(y(p) + \omega)$ maximizes $(y' + \omega)$ on B

• additive structure of (x, y)

not only aggregate but all individual firms' profits are maximal by $y_j(p)$

for given utility values $u_i(x_i)$, i = 1, ..., I: all individual hh minimize expenditure by $x_i(p)$ households (parallel argument holds for firms)

$$p \cdot x(p) = \min_{x \in A} p \cdot x = \min_{x_i \in A_i(x_i(p))} p \cdot \sum_i x_i$$
$$= \sum_i \min_{x_i \in A_i(x_i(p))} p \cdot x_i$$

- $\rightarrow p$ not only characterizes expenditure minimum in aggregate, but also for every i
- \rightarrow in parallel, p not only characterizes a profit maximum in aggregate, but also for every j
- \rightarrow but hh may or may not be able to effort x at p

- Step 6. 2nd FUN Theorem
- reallocation (budget neutral lump sum tax system) $\hat{\omega}_i$ such that $\sum_i \hat{\omega}_i = \omega$ $\hat{\alpha}_{ij}$ such that $\sum_i \hat{\alpha}_{ij} = 1$

Corollary 1 Assume P.I–P.IV and C.I–C.VI. Let (x, y) be an attainable, Pareto efficient allocation. Then there exists $p \in P$, and a reallocation such that:

(i) y_j maximizes $p \cdot y$ in Y_j , j = 1, ..., J,

(*ii*)
$$p \cdot x_i = p \cdot \hat{\omega}_i + \sum_j \hat{\alpha}_{ij} (p \cdot y_j) = \hat{M}_i(p), \ i = 1, ..., I,$$

(iii) if
$$p \cdot x_i > \min_{x \in X_i} p \cdot x$$
:
 $x_i \succeq_i x \text{ for all } x \in X_i : p \cdot x \leq \hat{M}_i(p).$

- Step 7. Comments
- (i) Critical assumption convexity: show a graph demonstrating that the theorem may fail under nonconvexisties
- (ii) According to the 2nd FUN theorem of welfare economics, what is an important role for the government?
- (iii) Criticize the 2nd FUN theorem of welfare economics.

The usual U-shaped cost curve model of undergraduate intermediate economics includes a small nonconvexity (diminishing marginal cost at low output levels). This is a violation of our usual convexity assumptions on production (P.I or PV). Consider the general equilibrium of an economy displaying U-shaped cost curves. It is possible that a general equilibrium exists despite the small violation of convexity. After all, P.I and P.V are sufficient, not necessary, conditions. If a general equilibrium does exist despite the small nonconvexity, will the allocation be Pareto efficient? Does the First Fundamental Theorem of Welfare Economics apply? Explain.