Competitive Equilibrium and the Core

Main objectives of today's session:

- price taking assumption
- bargaining solution vs. competitive equilibrium
- The Core
- Competitive Equilibrium and the Core

1 The Core of an Exchange Economy

• competition I: buyers and sellers meet at large marketplace – treat prices parametrically

 \rightarrow price takers (market so large that individuals are powerless)

• competition II: every agent tries to do as well as possible by making the best available deals

 \rightarrow competition as conflict

- comp I \rightarrow WE, comp II \rightarrow bargaining solution
- \rightarrow in large economies: WE \Leftrightarrow bargaining solution

- exchange economy: I > 1, L > 0households: $\{X_i, \succeq_i\}_{i=1}^I, \{\omega_i\}_{i=1}^I$ allocation: $x = (x_1, x_2, ..., x_I)$ feasible allocation: $\sum_i x_{li} \leq \sum_i \omega_{li}, l = 1, ..., L$ free disposal
 - \succeq_i : weak mono, cont, strict conv
- coalition
 - *I* hh, set of all hh: $H = \{1, 2, ..., I\}$
 - 2^{I} subsets of households: coalition
 - \rightarrow coalition: $S \subseteq H$

endowment of coalition: $\sum_{i \in S} \omega_i$

- \rightarrow coalition can realize any allocation: $\sum_{i \in S} x'_i \leq \sum_{i \in S} \omega_i$
- \bullet blocking of an allocation x
 - x blocked if $\exists S \subseteq H$ and the coalition's S allocation x':

(i)
$$\sum_{i \in S} x'_{li} \leq \sum_{i \in S} \omega_{li}, l = 1, ..., L$$

(ii) $x'_i \succeq_i x_i$ for all $i \in S$
(iii) $x'_i \succ_i x_i$ for some $i \in S$.

Definition 1 The core of an economy is the set of all allocations that are blocked by no coalition $S \subseteq H$.

- if allocation $x = (x_1, x_2, ..., x_I)$ is a core allocation:
 - $x_i \succeq_i \omega_i$ for all $i \in H$
 - \rightarrow give a proof
- if x' is any core allocation: x' is Pareto efficient \rightarrow give a proof

2 Competitive Equilibrium and the Core

- WE allocation is a core allocation
 - \rightarrow core nonempty once WE exists
 - Walras law (monotonicity)
 - continuity of z(p): cont, strict conv of \succeq_i

 \rightarrow WE allocations \subseteq core allocations

• large economy: core allocations are WE allocations

Definition 2 Consider $p \in \mathbb{R}^L_+$ and $x_i \in \mathbb{R}^L_+$, i = 1, ..., I. (p, x) is a Walrasian equilibrium if:

(i)
$$p \cdot x_i \leq p \cdot \omega_i, i \in H$$

(ii) $x_i \succeq_i x'_i$ for all $x'_i \in \mathbb{R}^L_+$: $p \cdot x'_i \leq p \cdot \omega_i$
(iii) $\sum_i x_{li} \leq \sum_i \omega_{li}, l = 1, ..., L$
(with $p'_l = 0$ for any $l' = 1, ..., L$ so that strict inequality holds.)

Theorem 1 Suppose \succeq_i satisfy weak monotonicity and continuity. If (p, x) is a WE then x is a core allocation.

Proof (contradiction).
Suppose not:
$$\exists (x', S)$$
 that blocks x :
 $\sum_{i \in S} x'_{li} \leq \sum_{i \in S} \omega_{li}, l = 1, ..., L$
 $x'_i \gtrsim_i x_i$ for all $i \in S$
 $x'_i \succ_i x_i$ for some $i \in S$
 x is a WE: for all $i \in S$
 $x'_i \gtrsim_i x_i \Rightarrow p \cdot x'_i \geq p \cdot x_i$ for all $i \in S$
 $x'_i \succ_i x_i \Rightarrow p \cdot x'_i \geq p \cdot x_i$ for some $i \in S$
thus: $\sum_{i \in S} p \cdot x'_i > \sum_{i \in S} p \cdot \omega_i$ (*)

coalitional feasibility: $\sum_{i \in S} x'_i \leq \sum_{i \in S} \omega_i$

thus, for $p \ge 0$:

$$\sum_{i \in S} p \cdot x'_i \leq \sum_{i \in S} p \cdot \omega_i \; (**)$$

- \bullet (*) and (**) is a contradiction
- $\nexists(x', S)$ that blocks x
- \Rightarrow WE allocation is a core allocation.

Example. Consider I = L = 2. For both consumers: $u = (1 + x_1)^{1/2} (1 + x_2)^{1/2}$. Suppose $\omega_1 = (99, 0)$, and $\omega_2 = (0, 99)$. Define the core of the exchange economy.