5.5

Suppose the utility function for goods x and y is given by utility = U(x, y) = xy + y.

- a. Calculate the uncompensated (Marshallian) demand functions for x and y, and describe how the demand curves for x and y are shifted by changes in I or the price of the other good.
- b. Calculate the expenditure function for x and y.
- c. Use the expenditure function calculated in part (b) to compute the compensated demand functions for goods x and y. Describe how the compensated demand curves for x and y are shifted by changes in income or by changes in the price of the other good.

5.7

Show that the share of income spent on a good x is $s_x = \frac{d \ln E}{d \ln p_x}$, where E is total expenditure.

5.11 Quasi-linear utility (revisited)

Consider a simple quasi-linear utility function of the form $U(x, y) = x + \ln y$.

- a. Calculate the income effect for each good. Also calculate the income elasticity of demand for each good.
- b. Calculate the substitution effect for each good. Also calculate the compensated own-price elasticity of demand for each good.
- c. Show that the Slutsky equation applies to this function.
- d. Show that the elasticity form of the Slutsky equation also applies to this function. Describe any special features you observe.

5.13 Price indifference curves

Price indifference curves are iso-utility curves with the prices of two goods on the X- and Y-axes, respectively. Thus, they have the following general form: $(p_1, p_2)|v(p_1, p_2, I) = v_0$.

- a. Derive the formula for the price indifference curves for the Cobb-Douglas case with $\alpha = \beta = 0.5$. Sketch one of them.
- b. What does the slope of the curve show?
- c. What is the direction of increasing utility in your graph?