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1. Introduction to the sign problem and CLE
2. Review of results so far 
3. full QCD
     challenges of a full QCD simulation with CLE 
     pressure
     Improved actions



⟨X ⟩=
1
Z

Tr X e−β(H−μ N )=
1
NW
∑C

W [C ]X [C ]=
1
N∑i

X [C i ]

If the Weight is positive, build a Markov chain with the Metropolis alg.

Typically exponentially many configurations, 
  no direct summation possible.

We are interested in a system
Described with the partition sum: 

...→C i−1→C i→C i+1→...

Probability of visiting C p(C )=
1
NW

W [C ]

Z=Tr e−β(H−μ N )=∑C
W [C ]

This works if we have W [C ]≥0

Otherwise we have a Sign problem

Importance  sampling



Sign problems in high energy physics

Z=Tr e−β(H−μN)=∫DUe−S [U ]det (M [U ])

Theta therm

 Real-time evolution in QFT

Non-zero density  (and fermionic systems)

ei SM
“strongest” sign problem

Many systems:  Bose gas
XY model
SU(3) spin model
Random matrix theory
QCD

S=F μν F
μ ν
+iΘϵμ νθρF μν F θρ

And everything else with complex action

w [C ]=e−S [C ]        w [C ] is positive←→S [C ]  is real



How to solve the sign problem?

Probably no general solution   –  There are sign problems which are NP hard

[Troyer Wiese (2004)]

Z=Tr e−β(H−μ N )=∫dEρμ(E)e−βE

Transforming the problem to one with positive weights

Dual variables
Worldlines

Z=Tr e−β(H−μ N )=∑n
Zne

βμ n

Density of states

Z=Tr e−β(H−μ N )=∑C
W [C ]=∑S (∑C∈S

W [C ])

Z=Tr e−β(H−μ N )=∑C
W [C ]=∑D

W ' [D ]

Canonical ensemble

Subsets

Many solutions for particular models with sign problem exist



How to solve the sign problem?

Extrapolation from a positive ensemble

Taylor expansion

Reweighting

Analytic continuation from imaginary sources 
                                              (chemical potentials, theta angle,..)

⟨X ⟩W=
∑c

W c X c

∑c
W c

=
∑c

W 'c (W c/W ' c)X c

∑c
W ' c(W c /W ' c)

=
⟨(W /W ')X ⟩W '

⟨W /W ' ⟩W '

Z (μ)=Z (μ=0)+
1
2
μ2∂μ

2 Z (μ=0)+...

Using analyticity (for complexified variables)

Complex Langevin

Lefschetz thimble

Integration path shifted onto complex plane 

Complexified variables  – enlarged manifolds 



Stochastic process for  x:

d x
d

=−
∂S
∂ x

 

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T
∫
0

T

O(x (τ))d τ=
∫e−S (x)O(x)dx

∫e−S (x)dx

Complex Langevin Equation

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U +≠ U−1

d x
d

=−
∂S
∂ x

 

Analytically continued observables

1
Z∫ P comp( x )O ( x )dx=

1
Z∫ P real ( x , y )O ( x+iy )dx dy

〈 x2〉real  →  〈 x2− y2〉complexified



Theoretically

     Good understanding of the failure modes (boundary terms, poles)
     Monitoring prescriptions allow for independent detection of failure
                unitarity norm, eigenspectrum, histograms, boundary terms

     Is a cutoff allowed? (Dynamical stabilization) 
     How to cure problems? – No general answer, hit and miss
      

In practice 
     Many lattice models solved, crosschecked with alternative methods
         (Bose gas, SU(3) Spin model, HDQCD, kappa exp., cond. mat. systems...)     
     Some remain unsolved (xy model, Thirring,... )

Full QCD
     High temperatures seem to be unproblematic
         checks with reweighting, Taylor expansion 
     Status of low T and near T_c is unclear  – more work needed     
     
     See below for ongoing work 
                      concerning phase diag, EOS and improved actions 

Status of Complex Langevin



Proof of convergence for CLE results

       
If there is fast decay 

and a holomorphic action 

[Aarts, Seiler, Stamatescu (2009)
 Aarts, James, Seiler, Stamatescu (2011)]

then CLE converges to the correct result

P (x , y )→0  as x , y→∞

S (x)

S=SW [U μ]+ln DetM (μ) measure has zeros
complex logarithm has a branch cut
                    meromorphic drift 

Loophole 1: Non-holomorphic action for nonzero density
(Det M=0)

[Mollgaard, Splittorff (2013), Greensite(2014)]

Drift around a pole:

ρ(x )=(x−z p)
nf e−S (x)

K (z)=
∂zρ(z)

ρ(z)
=

nf
x−z p

+K S(z)



Langevin time evolved observables get singularities around pole
Zero of the distribution counteracts that
Proof goes through
correct results

For HDQCD and full QCD at high temperatures this is satisfied 
[Aarts, Seiler, Sexty, Stamatescu ‘17]

Poles can be
     inside the distribution

 
    
    outside of the distribution 

Pole pinches distribution
Acts as a bottleneck
might cause “separation phenomenon”
(potentially) wrong results

ρ(x)=(1+κ cos(x−iμ))nf e−β cos(x)



Loophole 2: decay not fast enough

∫ dxρ(x )O(x)       =      ∫ dx dy P(x , y )O(x+iy)

What we want What we get with CLE

Using analyticity 
and partial integrations

boundary terms can be nonzero
explicit calculation of boundary terms 

[Scherzer, Seiler, Sexty, Stamatescu (2018)]

See talk by Stamatescu



S [x ]=σ x2+i λ x

Gaussian Example

σ=1+i λ=20

d
d τ

(x+i y )=−2σ(x+iy)−iλ+η

CLE

P (x , y )=e−a(x−x0)
2
−b( y− y0)

2
−c (x−x0)( y− y0)

Gaussian distribution 
around critical point

∂ S (z)
∂ z ]

z0

=0

Measure 
on real axis



Non-zero chemical potential

Euclidean SU(3) gauge theory with fermions:

For  nonzero chemical potential, the fermion determinant is complex

Sign problem             Naive Monte-Carlo
                                       breaks down

QCD sign problem

Z=∫DUexp(−SE [U ])det (M(U))

Importance sampling is possiblefor  det (M (U ))>0

det (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗

Hadron masses,
EOS, ...



In QCD direct simulation only possible at

μTaylor extrapolation, Reweighting, continuation from imaginary    , canonical ens.
    all break down around  

μ=0

μq

T
≈1−1.5

μB

T
≈3−4.5

Around the transition temperature
            Breakdown at μq≈150−200 MeV          μB≈450−600 MeV 

Results on

NT=4,N F=4,ma=0.05

Agreement only at μ/T<1

using 
  Imaginary mu,
  Reweighting,
  Canonical ensemble



Bose Gas at zero temperature

Silver Blaze problem:

[Aarts '08]

At zero temperature, nothing happens 
   until first excited state (=1particle) contributes

Some results of CLE so far 

First spectacular success of complex Langevin

[Seiler, Sexty, Stamatescu ‘13]
Gaugecooling and study of HDQCD

            Full QCD with light quarks 
[Sexty ‘14]



Gauge cooling

complexified distribution with slow decay            convergence to wrong results

Minimize unitarity norm
∑i
Tr (U iU i

+−1)Distance from SU(N)

Keep the system from trying to explore the 
    complexified gauge degrees of freedom

[Seiler, Sexty, Stamatescu (2012)]

Dynamical steps are interspersed 
 with several gauge cooling steps

Empirical observation:
   Cooling is effective for 

β>βmin

but remember,β→∞
in cont. limit

a<amax≈0.1−0.2 fm

Can we do more?  
                             Dynamical Stabilization      soft cutoff in imaginary directions

[Attanasio, Jäger (2018)]



Chiral random matrix theory
[Mollgaard, Splittorff '13+’14] Poles can be problematic

Hopping parameter expansion
[Aarts, Seiler, Sexty, Stamatescu ‘15]

Study of the pole problem
[Nishimura, Shimasaki ‘15]
[Aarts, Seiler,Sexty, Stamatescu ‘17]

Investigating Silver Blaze for QCD
[Kogut, Sinclair ‘16]
[Ito, Nishimura ‘16]
[Tsutsui, Ito, Matsufuru, Nishimura, Shimasaki, Tsuchiya ‘18] 

Gauge cooling for eigenvalues 
[Nagata, Nishimura, Shimasaki ‘16]

Gauge cooling for Random Matrix models
[Bloch, Glessaaen, Verbaarschot, Zafeiropoulos ‘18] 

0+1 dim Thirring model
[Fujii, Kamata, Kikukawa ‘17]

Distribution at poles (spectrum)
     should be monitored

Very high orders easily calculated

Reweighting or deformation
makes CLE ok

Shifts e.v.s away from origin
  in RMT

1 hit 1 miss

Jury still out



Exact drift terms with selected inverse
[Bloch, Schenk ‘17]

Reweighting complex Langevin trajectories
[Bloch ‘17]

Reweighting from one non-positive ensemble to another 

Use sparse LU decomposition to calculate inverse

Fermionic drift term: Tr (M−1Daμ xM )

with sparse Dirac Matrix M

No additional noise from stochastic estimator 

Unitarity norm is better controlled



Equation of state for 1D non-relativistic fermions
[Loheac, Drut ‘18]

Z=∫d σ det M up(σ)det M down (σ)

σ= Hubbard-Stratonovich field

Modify action to add an attractive force 

S (σ)=Sold(σ)+ξσ
2

Local interactions

2 parameters: coupling λ ,  chemical pot.μ

Attractive – pos. det Repulsive – non pos. det



Mapping the phase diagram of HDQCD

fixed β=5.8  →  a≈0.15 fm

κ=0.04   
onset transition atμ=−ln (2κ)

N t∗(6
3 ,83 ,103) lattice 
N t=2..28

Temperature scanning

[Aarts, Attanasio, Jäger, Sexty (2016)]

Unitarity norm is mostly under control

T=48  − 671 MeV

DetM (μ)=∏x
det (1+C P x)

2 det (1+C ' P x
−1)2

Hopping parameter expansion of the fermion determinant
Spatial fermionic hoppings are dropped
Full gauge action

Strategy to map           planeT−μ



Onset in fermionic density
    Silver blaze phenomenon

Polyakov loop
  Transition to deconfined state

Mapping the phase diagram of HDQCD



Fits of the phase transition line

Deconfinement transition and onset transition meet in the middle
Errors from discretisation scheme
Volume dependence under control

much simpler phase diagram than full QCD



〈F 〉μ=
∫DU e−S E det M (μ)F

∫DU e−S E det M (μ)
=
∫DU e−S E R

det M (μ)

R
F

∫DU e−S E R
det M (μ)

R

=
〈F det M (μ)/R 〉R
〈det M (μ)/R 〉R

Reweighting

〈 det M (μ)

R 〉
R

=
Z (μ)
Z R

=exp (−VT Δ f (μ , T ))
Δ f (μ , T )  =free energy difference

Exponentially small as the volume increases

Reweighting works for large temperatures and small volumes  

〈F 〉μ  →  0 /0

μ/T≈1Sign problem gets hard at

R=det M (μ=0), ∣det M (μ)∣, etc. 



Comparison with reweighting
   for full QCD 

[Fodor, Katz, Sexty, Török 2015]

R=DetM (μ=0)

 

Reweighting from ensemble at 



Comparisons as a function of beta

at N T=4  breakdown at β=5.1  −  5.2

Similarly to HDQCD
   Cooling breaks down at small beta

At larger NT ?



Comparisons as a function of beta

NT=8NT=6

Breakdown prevents simulations in the confined phase

for staggered fermions with N T=4,6,8

mπ≈2.3T c

Two ensembles: mπ≈4.8T c



Ongoing efforts concerning the QCD phase diag 
     with Manuel Scherzer and Nucu Stamatescu

1. Following phase transition line
          Do we meet a critical point?

2. Onset transition at small temperatures

3. Calculating the pressure at high temperatures
           compare with know results 

4. Implementing improved actions
          also for fermions

 

mπ

2
 vs. 

mN

3



Mapping out the phase transition line

See talk by Scherzer

Follow the phase transition line
   starting from μ=0

Using Wilson fermions

Can follow the line to 
       quite high μ/T

Compatible with expected behavior
    at small chemical pot.



Onset transition in QCD 

Low temperature, chemicial potential is increased

Nuclear matter onset at μc=mN /3

“benchmark:”   Phasequenched theory (equvalent to isospin chem. pot.)

det M (μ)→|det M (μ)|

Pion condensation onset at μc , PQ=mπ /2

Can we see the difference?

Simulation with ordinary importance sampling

Hard problem:
      For large quark masses
      Low quark masses are expensive

      Temperature effects might shift
       Low temperature is expensive

      Huge finite size effects

      Thermalization potentially slow

mπ /2≈mN /3

μc



Long runs with CLE

Unitarity norm has a tendency to grow slowly (even with gauge cooling)

Runs are cut if it reaches

Thermalization usually fast  
       – might be problematic close to critical point or at low T
 

∼0.1



Getting closer to continuum limit

Test with Wilson fermions
Increase     by 0.1      – reduces lattice spacing by 30% 
  change everything else to stay on LCP  

β

behavior of Unitarity norm improves



Pressure of the QCD Plasma at non-zero density

p

T 4=
ln Z

V T 3 Derivatives of  the pressure are  directly measureable
                 Integrate from T=0

Other strategies:

Measure the Stress-momentum tensor using gradient flow

Shifted boundary conditions
             

Non-equilibrium quench

First integrate along the temperature axis, then explore μ>0

[Suzuki, Makino (2013-)]

[Giusti, Pepe, Meyer (2011-)]

[Caselle, Nada, Panero (2018)]

Taylor expansion [Allton et. al. (2002-), … ]

Simulating at imaginary      to calculate susceptibilities
          [Bud.-Wupp. Group (2018)]

μ



Pressure of the QCD Plasma at non-zero density

Δ ( pT 4 )=∑n>0,even
cn(T ) (

μ

T )
n

If we want to stay at  μ=0

Δ ( pT 4 )= p

T 4 (μ=μq)−
p

T 4 (μ=0)

c4=
1

24
1

N s
3N T

∂4 ln Z

∂μ
4

c2=
1
2

NT

N s
3

∂2 ln Z

∂μ2

∂2 ln Z

∂μ
2 =N F

2
⟨T 1

2
⟩+N F ⟨T 2⟩

∂4 ln Z

∂μ
4 =−3 (⟨T 2⟩+⟨T 1

2
⟩ )

2
+3 ⟨T 2

2
⟩+⟨T 4⟩

+⟨T 1
4⟩+4 ⟨T 3T 1⟩+6 ⟨T 1

2T 2⟩

T 1/N F=Tr (M−1
∂μM )

T i+1=∂μT i

T 2/N F=Tr (M−1
∂μ

2 M )−Tr ((M−1
∂μM )

2 )
T 3/N F=Tr (M−1∂μ

3 M )−3 Tr(M−1∂μM M−1∂μ
2 M )

+2 Tr ((M−1∂μM )3 )
T 4 /N F=Tr (M−1

∂μ
2 M )−4 Tr (M−1

∂μM M−1
∂μ

3 M )

−3 Tr (M−1∂μ
2 M M−1∂μ

2 M )−6 Tr ((M−1∂μM )4 )
+12 Tr ((M−1

∂μM )
2M−1

∂μ
2 M )

Measuring the coefficients of the Taylor expansion



Δ ( pT 4 )= p

T 4 (μ=μq)−
p

T 4 (μ=0)=
1

V T 3 ( lnZ (μ)−ln Z (0))

If we can simulate at μ>0

ln Z (μ)−ln Z (0)=∫0

μ

dμ
∂ ln Z (μ)
∂μ

=∫0

μ

dμΩn(μ)

Using CLE it’s enough to measure the density  – much cheaper

Pressure of the QCD Plasma using CLE
[Sexty (in prep.)]

n(μ)=⟨Tr(M−1(μ)∂μM (μ))⟩



Taylor expansion

Observables very noisy

state of the art calculations 
barely see a signal at 8th order 

Disconnected terms

contribute most of the nosie 

e.g. ⟨T 1
2T 2⟩

Using naiv staggered action with N F=4



Integration performed numerically
Jackknife error estimates

T=250 MeV ,    T c≈190 MeV T=475 MeV

Pressure calculated with CLE



Improved actions for lattice QCD

Carrying out continuum extrapolation a→0

Fitting some observable

Simulate at multiple lattice spacings

O(a)=O0+O1a+O2a
2+...

Change action such that        is eliminatedO1

Gauge improvement

Include larger loops in action

Symanzik action: S=−β ( 53∑ ReTr −
1

12∑ Re Tr )

Analyticity must be preserved: 2ReTrU=TrU+TrU + → TrU+TrU−1

Straightforwardly implemented in CLE



Improved fermion actions

Wilson fermions: clover improvement       adds a clover term

Staggered fermions: naik or p4            take into account 3-link terms

Changeing the Dirac operator

Fat links

Smear the gauge fields inside the Dirac operator

V μ=(1−α)Uμ+α∑ staples
APE, HYP

Stout

U 'μ=ProjSU(3)V μ

U 'μ=e
iQμUμ      Qμ=ρ∑ staples

essentially one step of gradient flow
       with stepsize ρ



Stout smearing

U 'μ=e
iQμUμ      Qμ=ρ∑ staples

Usually multiple steps: U→U (1)
→U (2)

→ ...→U (n)

For the Langevin eq. we need drift terms:

∂ Seff

∂U
=
∂ Seff
∂U (n)

∂U (n)

∂U (n−1) ...
∂U (1)

∂U

Replace gauge fields in Dirac matrix det M (U )→det M (U (n)
)

Calculated by “going backwards”

∂ Seff

∂U
  with  Seff=Sg+ ln det M (U (n))

One iteration: ∂U '
∂U

=
∂ eiQ

∂U
U+eiQ local terms 

+ nonlocal terms from staples



Stout smearing and complex Langevin

Adjungate is replaced with inverse for links 

U 'μ=e
iQμUμ      Qμ=ρ∑ staples

Q + is not replaced with Q−1
(because its a sum)

Q  is no longer hermitian 
∂ eiQ

∂U
Calculation of           becomes trickier 

Benchmarking with HMC at μ=0

[Sexty (in prep.)]

a(β=3.6)=0.12 fm      a(β=3.9)=0.064 fm



What happens with the configurations?

Real part of gauge fields decay

Unitarity norm slightly rises



∂ Seff

∂U
=
∂ Seff
∂U (n)

∂U (n)

∂U (n−1) ...
∂U (1)

∂U

∂ Seff

∂U (n)=F0 ,   
∂ Seff
∂U (n)

∂U (n)

∂U (n−1)=F1 , ...   
∂ Seff

∂U
=Fn

What happens with the drift terms?

Average drift term is smaller

Long tail

More prone to runaways

Smaller stepsize needed



Pressure with improved action

is measurable with this action 
  at high T (with O(500) configs.) 

C4

naiv action



Pressure with improved action

T=260 MeV T=385 MeV

Symanzik gauge action 
stout smeared staggered fermions

Good agreement
CLE calculation is much cheaper



Summary

CLE is a versatile tool to solve sign problems

Potential problems with boundary terms and poles
Monitoring of the process is required

Promising results for many systems: 
      phase diagram of HDQCD mapped out

Ongoing effort for full QCD to get physical results
      Mapping out phase transition line 
      Onset transition at small temperatures
      Calculating the pressure
      Using improved actions
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