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1. Lattice QCD  – nonzero density in lattice QCD – sign problem
2. Reweighting – Taylor expansion – imaginary mu 
3. Complex Langevin and Lefschetz thimbles 
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From the action to the phenomenology of QCD

Confinement mechanism?
Mass of hadrons?
Scattering cross sections?
Phases transition to Quark-gluon plasma?
  Critical point at nonzero density?
  Equation of state?
Compressibility of quark matter? (in neutron stars)
Exotic phases:
  Color superconducting phases?
  Quarkyonic phase?
QCD in magnetic fields?
 …. and so on

 1 gauge coupling
 6 quark masses

  How?
Perturbation theory – asymptotic freedom
Kinetic theory
Effective models (NJL, Polyakov-NJL, SU(3) spin model, … )
Functional methods (FRG, 2PI,3PI, Dyson-Schwinger eq.)
Lattice

Action of QCD, the theory of strong interactions



Phase diagram of QCD

For these lectures we focus on thermodynamics at nonzero density
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compare with: Phase diagram of water

much better known....



Phase diagram of QCD

Zero density axis well known

transition temperature

zero temperature:
hadron masses
scattering amplitudes, etc.

At nonzero density  much less solid knowledge

What phases are present?
Is there a critical point?
compressibility of nuclear matter?

Why is non-zero density so hard?



How does the Glasma equilibrate?
   Non-equilibrium Quantum Field theory

For hydrodynamics one needs equilibrium values of:    
                      Equation of State  
      Transport coefficients: e.g. viscosity

“easy” to calculate 

Hard problem
Real-time correlator

|Ψ(t=0)⟩  →  |Ψ(t )⟩

η=
1
T V
∫0

∞

dt ⟨σ xy(0)σ xy(t )⟩

Why is real-time QFT so hard?

Heavy-Ion collisions



Path integral formulation of Quantum Mechanics

 Quantum Mechanics with Ĥ=
p̂2

2m
+V (q̂)

Transition amplitude:

Path integral:                        normalized sum for all functions
                                                          with correct bound. cond. 

∫q1

q2

Dq= q(t 1⩽t⩽t 2)
q (t1)=q1 q (t 2)=q2

i ∂tΨ( x , t)=Ĥ Ψ(x ,t )
Time evolution given by 
Schrödinger eq.

⟨q2|e
−i t Ĥ

|q1⟩=∫q1

q2

Dqei S [q (t )]
Equivalent formulation

Numerically advantegous

q (t )  instead of  Ψ(x ,t )

|Ψ(x , t )⟩=e−i t Ĥ|Ψ(x ,0)⟩



Thermodynamics with Path integral

⟨q1|e
−β Ĥ
|q2⟩=∫q1

q2

Dqe−SE[q(t )] SE [q (t )]=∫t=0

t=β
dt ( 12m q̇ (t )

2+V (q (t)))

Imaginary time: t→−i τ     0<τ<−iβ

e−i t Ĥ  →  e−β Ĥ
Thermodynamics

Imaginary time – Wick rotation

Z=Tr(e−βH )    ⟨X ⟩=Tr (X e−βH)We want

Periodical boundary conditions in temporal directions

System of size Ls
3,Lt    →   Temperature = 1 /Lt

Temperature only appears as the inverse temporal size.

Temporal size infinite (or “large” compared to spatial)              
                                                              zero temperature



Lattice QCD Discretise action on a cubic-space time lattice

Gluon fields 

Aμ
a (x)  →  Uμ(x )=exp (i∫dx Aμa(x )λa )

Link variables Uμ(x )∈SU(3)

Fμ ν
a =∂μ Aν

a−∂ν Aμ
a+g f abc Aμ

b A ν
c

Discretised action:

−
1
4
Fμ νF

μ ν  →  ∑plaquettes
Re Tr (Uμ ν)

gluons:

fermions: ψ̄(i γμDμ+m)ψ   →   ψ̄(i γμDμ
L ,F+m)ψ

Fermion fields

ψ(x )  →  ψ(x)

Site variables

Dν
L ,F
ψ(x )=

1
a
(U ν(x )ψ(x+ν̂)−ψ( x))



Lattice QCD Discretise action on a cubic-space time lattice

Gluon fields Link variables Uμ(x )∈SU(3)

Fermion fields ψ(x )

We want continuum and thermodynamical limit a→0,  V→∞

Lattice = one of the alternatives to regularize QFT

Path integral:

∫D Aμ   →   ∫∏x ,μ
dU μ(x )

finite number of integrals with respect 
   to the Haar measure of the SU(3) group 

∫DψD ψ̄   →   ∫∏x
dψ(x )d ψ̄(x)

finite number of Grassman integrals



Gauge transformations on the lattice

Uμ(x )→Ω( x)Uμ(x)Ω
−1(x+aμ)

on the lattice

Aμ (x)  →  −
i
g
(∂μΩ(x ))Ω

−1
(x)+Ω(x)Aμ(x )Ω(x )

−1

Gauge transformations

ψ(x )  →  Ω(x)ψ(x)

ψ(x )  →  Ω(x)ψ(x)

Symmetry group:   SU(3)N s
3N t

Finite volume of gauge orbits                           
No need for gauge fixing
No ghosts

Observables have to be gauge invariant:

Tr (U (x , x ))      or         ψ+ (x)U ( x , y)ψ( y )

where U (x , y ) is a chain of link variables between x  and y



Lattice observables

Plaquette Uμ ν=Uμ (x)U ν(x+μ)Uμ
−1(x+ν)U ν

−1(x)

Wilson loops W m,n ,μ ν     W 1,1,μ ν=Uμ ν

Polyakov loop  P=∏i=0

N t−1
U i

Related to Field strength tensor Fμ ν

L=⟨Tr P ⟩≃e−Fq(T )/T     energy of a static quark

T=0  confinement  →   F (q)=∞   →   L=0

T= Large  deconfinement  →   L≠0

log ⟨W R ,T ⟩= energy of static quark pair at dist. R  → String tension



Monte Carlo calculations with importance sampling

We have a (discretised) theory with some action

Z=∫Dϕe−β S(ϕ)  →  ∫∏ d ϕi e
−βS [ϕ]

Interested in observables: ⟨X ⟩=
1
Z∫∏ d ϕi X [ϕ]e

−βS [ϕ] still too many 
integrals

Importance sampling:

⟨X ⟩=
1
Z

Tr X̂ e−β(Ĥ )=
1
Z∫dC e

−βS [C ]X [C ]=
1
N∑i

X [C i ]

build a Markov chain on field configurations with the Metropolis algorithm 

...→C i−1→C i→C i+1→...

Probability of visiting C p(C )∼e−βS [C ]

C={ϕi }     (or  {U ν} for QCD)

From       we propose a random 
Accept with some probability

C i C i+1

observable averaged
on configurations



Scale setting in lattice QCD

SG=
1

g2∑plaquettes
Re Tr (Uμν)

We can set the inverse coupling in the action:

−
1
4
Fμ νF

μ ν  →  ∑plaquettes
Re Tr (Uμ ν)

In practice we use β=
2N c
g2 This sets the gauge coupling 

  on the scale of the lattice spacing

How do we set the lattice spacing in QCD?
        we actually don’t prescribe it, but measure it

the running coupling grows in the infrared      
        at some length scale confinement appears

Fix lattice spacing such that confinement scale
is same as in our world 

Historically the string tension is calculated in lattice units 
      and made equal to its experimental value                
           this yields lattice spacing in MeV



Scale setting in lattice QCD

This process of scale setting is also used in theories not corresponding to our world
   (e.g. for different masses or even number of fermion flavours) 

In practice: fitting asymptotic behavior of “Wilson loop” observable

(Nowadays  e.g. “Gradient Flow” is used for scale setting.)  

Historically the string tension is calculated in lattice units 

Typical behavior

So in lattice QCD

β  increases  →

 lattice spacing a  decreases  →

 Temporal size of lattice decreases →

Temperature increases

W RT≃e
−αRT



Lattice QCD – fermions

ψ̄(i γμDμ+m)ψ   →   ln det (1+κ∑±μ
(1+γμ)Uμ( x)δ y , x+μ̂)quarks: 

large matrix N=105−107

source of most of the problems with lattice QCD...

In continuum: Fermions described with 
                       Grassmann variables

Z=∫ d ψd ψ̄e ψ̄(i γ
μ
∂μ+m)ψ

∫d ηd ν eηM ν=detM

M=Dirac matrix

In gauge theories:  ∂ν  →  ∂ν+i g Aν=Dν  covariant derivative



Fermion doubling

The dispersion relation for a particle should be:

Dψ(x)=(i γν pν+m)ψ( x)   →   E p
2=m2+ p2

Is this satisfied for fermions on the lattice?    Let’s use free fermions:

Δ ei k x=eik (x+ν̂)−2eikx+eik (x−ν̂)=4 sin2 ( k a2 )ei k x=k LAT2 eikx

symmetrized derivative
as antihermiticity is needed

U ν=1

momentum on the lattice ψ(x )≃ei k x        k=
2π
N
i

i∂νψ( x)  →  
i

2a
(ψ( x+ ν̂)−ψ(x−ν̂))

If we have bosons in the action with a second derivative term 

i
2a
(ei k (x+ν̂)−ei k (x−ν̂))=i sin(k a)ei k x=i k LAT e

ikx

∂=
1
2
(∂F+∂B)



4 dimensional lattice  →   24=16  fermion modes 

k=(0,0,0,0) ,  k=(0,0,0,π/a), ...



Fermion doubling  – Solutions

Wilson fermions

Introduce new term in fermion action to suppress unwanted doublers

S=ψ̄(x) γμ (ψ(x+μ)−ψ( x−μ))+m ψ̄(x )ψ(x )

Add a new term to lift energy of edge modes:

SW=
r
2
ψ̄Δψ Second derivative

Acts as “momentum dependent mass” M (p)=m+
2 r
a ∑ν

sin2
(k νa /2)

As the continuum limit is neared
   Edge modes (doublers) become very heavy
   Physical modes have          mass contribution

Price to pay:
  – Chiral symmetry explicitely broken
  – mass parameter needs tuning
  – O(a)discretisetion errors  (instead of O(a2) )

mdoubler≃O(1 /a)
O(a)

Δψ=ψ(x+μ̂)−2ψ(x )+ψ(x−μ̂)



Fermion doubling  – Solutions

Staggered fermions

One notes 4-fold symmetry of the naive fermion action

ψi ,a(x)   →   ψa(x) throw away 3 of them

16  fermion flavours ("tastes") → 4 fermion tastes 

Still needs some rooting:

If we had 2 degenerate fermion flavors in continuum

Z=∫ d ψ1d ψ̄1d ψ2d ψ̄2e
ψ̄1 (i γ

μ
∂μ+m)ψ1e ψ̄2 (i γ

μ
∂μ+m)ψ2=(detM )2

For staggered we could than use 
    (pretending that it’s four degenerate species):

detM   →   (detM )1/4

In reality taste breaking effects vanish only in the continuum limit



Improved actions for lattice QCD

Carrying out continuum extrapolation a→0

Fitting some observable

Simulate at multiple lattice spacings

O(a)=O0+O1a+O2a
2+...

Change action such that        is eliminatedO1

Gauge improvement

Include larger loops in action

Symanzik action: S=−β ( 53∑ ReTr −
1

12∑ Re Tr )

Symanzik sets the coefficient of O(a2) term in the action to zero at tree level

 loop effects →  O(g2a2)

Coefficient of quadratic term much smaller than with plaquette action

Symmetry of discretisation: plaquette action scales with O(a2)



Improved fermion actions

Wilson fermions: clover improvement       adds a clover term

Staggered fermions: naik or p4            take into account 3-link terms

Changeing the Dirac operator

Fat links

Smear the gauge fields inside the Dirac operator

V μ=(1−α)Uμ+α∑ staples
APE, HYP

Stout

U 'μ=ProjSU(3)V μ

U 'μ=e
iQμUμ      Qμ=ρ∑ staples

essentially one step of gradient flow
       with stepsize ρ



Chiral symmetry on the lattice 

SF=∫ ψ̄(x)D(x , y )ψ( y)Fermion action                                               is invariant if 

ψ→eiΘγ5ψ     ψ̄→ψ̄ eiΘγ5

{γ5 , D }=0

Nielsen-Ninomiya theorem:

On the lattice a local discretisation that satisfies                    will have doublers

{γ5 , D }=0

Staggered: Chiral symm exact, still 4 tastes, usually rooted

Wilson: Chiral symmetry broken (only restored in cont. limit.)
             Eliminates doublers 

Overlap fermions: reinvents lattice version of Chiral symmetry
                             Nielsen-Ninomiya does not apply

In continuum the kinetic term respects symmetry 
                            mass term gives an explicit breaking



{γ5 , D }=a D γ5D{γ5 , D }=0

Ginsparg Wilson relation and Overlap fermions 

In the continuum limit
Reduces to usual chiral symmetry

Corresponding lattice transformations:

ψ̄→ψ̄e
iΘγ5(1−

a
2
D )

ψ→e
iΘγ5 (1−

a
2
D)
ψ

A Dirac operator satisfying this can be constructed:

D=
1
a
(1+γ5 sign (γ5 A ))

A  is some hermitian, real kernel operator
e.g. Wilson fermion operator

sign function makes overlap fermions quite expensive.



Fermions in lattice QCD – local updates

Z=∫DU e−Sg

Determinant depends on all link variables          Nonlocal action

Cost of determinant: O(N3)=O(N s
9N t

3)

Z=∫DU e−SgdetM [U ν]

In pure gauge theory:

Update proposal: change one link variable with a random SU(3) rotation

Action change calculated cheaply 
   considering the 6 plaquettes which contain the link

Easily parallelisable

With fermions:

Action change very expensive, not parallelisable

Cost to update all links: O(N s
12N t

4)

Cost to update all links: O(N s
3N t)



Hybrid Monte Carlo with pseudofermions

HMC: introduce momenta for all fields with trivial kinetic terms

S [ϕi]   →   H HMC [ϕi , pi]=S [ϕi]+∑
pi

2

2

Gaussian distribution for all momentae−βSHMC

To generate a new configuration:
      -fill all momenta with gaussian random numbers
      -integrate Canonical equations of motion numerically  

   
      -forget momenta:  new configuration of  

 

ϕ̇i=
∂H
∂ pi

=pi ṗi=−
∂H
∂ϕ

=−
∂ S [ϕ]
∂ϕi from t=0  to  t=1

ϕ

Discretisation effects change distribution somewhat
An accept-reject step at the end gets rid of this stepsize dependence

with stepsize Δ t

Δ t  large  →  energy conservation imprecise, e−Δ S<1   →  acceptance small

Δ t  small  →  energy conserved, e−Δ S≈1   →   acceptance large



Hybrid Monte Carlo with pseudofermions

∫∏ d ϕR ,idϕI , ie
−ϕi

+ M ij
−1
ϕj=detM

∫d ηd νeηM ν=detMFermions give the determinant

We can do that with bosonic fields
 If we invert the matrix

For given M ,  ϕ  has Gaussian distribution

Further improvements:
     -Rational Hybrid Monte Carlo  for rooting the determinant
     -imprecise CG solution for HMC force calculation
     -different HMC stepsizes for different mass quarks
     -higher order discretisations of canonical eqs.
     Etc.

Strategy:
1. Generate pseudofermion fields for given link variables from random generator
2. Update links using HMC
3. goto 1.

Cost to update all links: ≈O((N s
3N t )

5/4mq
−α)

Force calculation needs M−1ϕ Calculated with 
Conjugate gradient



(N s
3N t)

5 /4

Costs of QCD lattice calculations

α≈4−6

as HMC stepsize needs to decrease as volume increases.

Cost to update all links: ≈O((N s
3N t )

5/4mq
−α)

Fermions are expensive at smaller quark masses

More CG iterations needed

Fermion force larger
  Calculate more often  

Autocorrelation time
 increases

[Fig: Borsanyi]



Fermions in lattice QCD

Z=∫DU e−SgdetM [U ν]

Determinant depends on all link variables          Nonlocal action

Local metropolis update very inefficient

Solution 2: Langevin equation



Stochastic process for  x:

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T
∫
0

T

O(x (τ))d τ=
∫e−S (x)O(x)dx

∫e−S (x)dx

Langevin Equation (aka. stochatic quantisation)

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')
d x
d

=−
∂S
∂ x

 

Random walk in configuration space

Numerically,
  results are extrapolated to Δ τ→0



Fermions in lattice QCD

Z=∫DU e−SgdetM [U ν]

Determinant depends on all link variables          Nonlocal action

Local metropolis update very inefficient

Solution 2: Langevin equation

SU(3) Group manifold: U (τ+Δ τ)=exp ( iλa (Δ τ K a+√Δ τ ηa ) )U (τ)

Drift term Ka=−DaS [U ]   noise: ⟨ηaηb⟩=2δab

Fermionic Drift from noise vectors:

Kax ν , F=Dax ν(ln det M N F)=N FTr ((Dax νM )M
−1
)=N F ⟨ψ

+
(Dax νM )M

−1
ψ⟩

⟨ψai
∗ (x )ψbj( x)⟩=δabδijδxy

Needs 1 Conjugate gradient inversion per update



Langevin vs HMC for lattice QCD

HMC: 
    – 1 CG per fermion per update

    – rooting requires rational Hybrid Monte Carlo

    – distance to previous configuration
       momenta refreshed after every trajectory
    
    – easy to decrease costs for heavy fermions 

    – no stepsize dependence

Langevin:
  – 1 CG per fermion per update

  – rooting is trivial

  – distance to previous configuration 

  – Stepsize needs to be extrapolated to zero

≃τ

≃√τ

Nowadays HMC is used
(almost?) exclusively
at zero chemical potential



Chemical potential in the continuum

Fermion action: 

S=∫0

1/T

∫ d3 x ψ̄(γν(∂ν+i Aμ)+μ γ4+m)ψ=∫ ψ̄M ψ

This action has the symmetry: ψ→eiαψ     ψ̄→e−iα ψ̄

Corresponding conserved charge:  N=∫ d3 x ψ̄γ4ψ=∫d
3 xψ +

ψ

We want  grand canonical potential Z=e−β(H−μ N )

μN
T
=∫0

β

d τ∫dd xμ ψ̄γ4ψ

So the action becomes:

S=∫0

1/T

∫ d3 x ψ̄(γν∂ν+m)ψ

At μ≠0     M + (μ)=γ5M (−μ
∗ ) γ5

(detM )∗=detM +=det (γ5M γ5)=detM   →    detM  is real

At μ=0     γ5 -Hermiticity:   (γ5M )
+=γ5M

Determinant is complexdet (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗



Chemical potential in the continuum

S=∫0

1/T

∫ d4 x ψ̄(γν(∂ν+i Aμ)+μ γ4+m)ψ=∫ ψ̄M ψthe action becomes:

Determinant is complexdet (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗

Chemical potential appears as imaginary Abelian gauge field 
                                                                       in temporal direction 

Imaginary chemical potential                   Determinant is real again

Fermions:

For staggered at zero mu, it can be shown that det is positive

For Wilson at zero mu 
   sometimes the determinant is negative (“exceptional configs.”)
   in the continuum limit exceptional configs don’t appear

At nonzero mu

At zero mu determinant is real



Chemical potential in the continuum

S=∫d4 x (|∂νϕ|
2
+m2

|ϕ|
2
)+λ|ϕ|

4
Symmetry: ϕ→eiαϕ

Conserved charge: N=∫d3 x i(ϕ∗ ∂4ϕ−(∂4ϕ
∗
)ϕ)

Leads to:Z=e−β(H−μ N )

S=∫d4 x [|∂νϕ2|+(m2
−μ

2
)|ϕ2|+μ (ϕ∗ ∂4ϕ−(∂4ϕ

∗
)ϕ)+λ|ϕ4|]

S=∫d4 x [(∂4+μ)ϕ
∗(∂4−μ)ϕ+∂iϕ

∗∂iϕ+m
2|ϕ2|+λ|ϕ4|]

Bosons also have a quadratic term in the chemical potential

Linear term is imaginary S (μ)=S (−μ)∗

U(1) symmetric bosons 

Imaginary μ   →  Action is real



Chemical potential on the lattice 

How does      appear in lattice QCD?

μ

adding μ ϕ̄γ4ψ  to the action  → ultraviolet divergences 

Instead we add it as an imaginary Abelian vectorfield

Backward hopping terms:  e−i A4=e−aμ
Forward hopping terms:  ei A4=eaμ

M + (μ)=γ5M (−μ
∗ )γ5   remains valid on the lattice

Couples to conserved charge          no divergences appear

μ

Closed loops don't change

Backward loops gain factor e−aμ Nt

Forward loops gain factor eaμNt

[Fig: Aarts] a N t=
1
T

  →   aμ N t=
μ

T

Complex determinant
at nonzero μ



⟨X ⟩=
1
Z

Tr X e−β(H−μ N )=
1
Z
∑C

W [C ] X [C ]=
1
N
∑i
X [C i]

If the Weight is positive, build a Markov chain with the Metropolis algorithm

Typically exponentially many configurations, 
  no direct summation possible.

We are interested in a system
Described with the partition sum: 

...→C i−1→C i→C i+1→...

Probability of visiting C p(C )∼W [C ]

Z=∫Dϕe−S=Tr e−β(H−μ N )=∑C
W [C ]

This works if we have W [C ]≥0

Otherwise we have a Sign problem

Importance Sampling



Z=∫−∞
∞

e−(σ x
2
+i λ x)dx ⟨ x2

⟩=
1
Z∫ x

2 e−(σ x
2+i λ x )dx=?

σ=√2 ,  λ=0
σ=1+i ,  λ=20

Z≈10−22

∼1046  samples to have 10% relative error

100 samples to have 10% relative error

Sampling method: draw uniform random 

∫−a
a
f (x)d (x)≈

1
N∑i

f (xi)

Δ∼
1

√N

Toy model with sign problem

−a⩽xi⩽a

e−σ x
2+iλ x

e−σ x
2+iλ x



Sign problems

Z=Tr e−β(H−μN)=∫DUe−S [U ]det (M [U ])

Inbalanced Fermi gas

 Real-time evolution in QFT

Non-zero density 

ei S
“strongest” sign problem

Many systems:  Bose gas
XY model
SU(3) spin model
Random matrix theory
QCD

S=F μν F
μν
+iΘϵμ νθρF μν F θρ

And everything else with complex action

w [C ]=e−S [C ]        w [C ] is positive←→S [C ]  is real

Theta therm



How to solve the sign problem?

Probably no general solution   –  There are sign problems which are NP hard

[Troyer Wiese (2004)]

Many solutions for particular models with sign problem exist

Sign problem is representation dependent!

if Z>0    probably a real representation exists

need to find the “right” degrees of freedom



How to solve the sign problem?

Probably no general solution   –  There are sign problems which are NP hard

[Troyer Wiese (2004)]

Z=Tr e−β(H−μ N )=∫dEρμ(E)e−βE

Transforming the problem to one with positive weights

Dual variables
Worldlines

Z=Tr e−β(H−μ N )=∑n
Zne

βμ n

Density of states

Z=Tr e−β(H−μ N )=∑C
W [C ]=∑S (∑C∈S

W [C ])

Z=Tr e−β(H−μ N )=∑C
W [C ]=∑D

W ' [D ]

Canonical ensemble

Subsets

Many solutions for particular models with sign problem exist

Sign problem is representation dependent!

if Z>0    probably a real representation exists

need to find the “right” degrees of freedom



How to solve the sign problem?

Extrapolation from a positive ensemble

Taylor expansion

Reweighting

Analytic continuation from imaginary sources 
                                           (chemical potentials, theta angle,imaginary time,..)

⟨X ⟩W=
∑c

W c X c

∑c
W c

=
∑c

W 'c (W c/W ' c)X c

∑c
W ' c(W c /W ' c)

=
⟨(W /W ')X ⟩W '
⟨W /W ' ⟩W '

Z (μ)=Z (μ=0)+
1
2
μ2∂μ

2 Z (μ=0)+...

Using analyticity (for complexified variables)

Complex Langevin

Lefschetz thimble

Integration path shifted onto complex plane 

Complexified variables  – enlarged manifolds 



In QCD direct simulation only possible at

μTaylor extrapolation, Reweighting, continuation from imaginary    , canonical ens.
    all break down around  

μ=0

μq
T
≈1−1.5

μB
T
≈3−4.5

Around the transition temperature
            Breakdown at μq≈150−200 MeV          μB≈450−600 MeV 

Results on

NT=4,N F=4,ma=0.05

Agreement only at μ/T<1

using 
  Imaginary mu,
  Reweighting,
  Canonical ensemble



〈F 〉μ=
∫DU e−S E det M (μ)F

∫DU e−S E det M (μ)
=
∫DU e−S E det M (μ=0)

det M (μ)

det M (μ=0)
F

∫DU e−S E det M (μ=0)
det M (μ)

det M (μ=0)

=
〈F det M (μ)/det M (μ=0) 〉μ=0

〈det M (μ)/det M (μ=0) 〉μ=0

Reweighting

〈 det M (μ)
det M (μ=0) 〉μ=0

=
Z (μ)

Z (μ=0)
=exp (−VT Δ f (μ ,T ))

Δ f (μ , T )  =free energy density difference

Exponentially small as the volume increases

Reweighting works for large temperatures and small volumes  

〈F 〉μ  →  0 /0

μ/T≈1Sign problem gets hard at



Reweighting

If the two ensembles are far, 
   most configurations are far from the peak of the  target distribution   

detM (μ)
detM (0)

Overlap problem

Reweighting factor                       has long tailed distribution

Most configs have small weight, averages are dominated by a few configs

even errorbars are untrustworthy

Explicit calculation of determinant
Is expensive

O(N s
9N t

3)

Volume is limited

Sign problem has exponential
   volume depence



Silver blaze

At low temperature, system is in the ground state

⟨X ⟩=Tr (X e−β(H−μ N ))≈¿⟨0|X e−β(H−μ N )|0⟩

No dependence on the chemical potential

If chemical potential reaches mass of the lightes excitation

onset transition

Reweighting from phase quanched theory ∫DU e−Sg|detM (μ)|

|detM (μ)|2=detM (μ)detM (−μ)¿we have u and d quarks:

 u and d has opposite chemical potentials

Phasequenched theory               nonzero isospin chemical potential

pions have nonzero isospin charge



Silver blaze in QCD

Lightest excitation in phasequenched theory:          pion

Lightest excitation in baryon chemical pot. theory: proton Onset: μc=mn/3

Onset: μc , PQ=mπ /2

mπ /2<μ<mn/3

PQ theory has pion condensate
Full theory in ground state

0<μ<mπ /2

PQ theory in ground state
Full theory in ground state

μ>mn/3

PQ theory has pion condensate
Full theory has nuclear matter

nontrivial cancellations
given by phase factors
hard sign problem

phase average close to 1
mild sign problem

theories different, 
hard sign problem

Silver blaze is a good test for methods claiming to solve the sign problem



Taylor Expansion

Δ ( pT 4 )=∑n>0,even
cn(T ) (

μ

T )
n

c4=
1

24
1

N s
3N T

∂4 ln Z

∂μ
4

density =
1
2

1

N s
3N t

∂ ln Z
∂μ

p

T 4=
ln Z

V T 3
Pressure:

Z (μ)=Z (−μ)   →  only even powers appear

ln Z (μ)=ln Z (0)+
μ2

2
∂

2 ln Z

∂μ
2 +

μ4

24
∂

4 ln Z

∂μ
4 +...

c2=
1
2

NT
N s

3

∂2 ln Z

∂μ2Charge fluctuations:

Nonvanishing only at nonzero μ

Higher order fluctuation
related to kurtosis

μ  dependence of observable: ∂μ ( 1Z∫DU e
−S X )≃⟨X n⟩

At higher order again correlators, fluctuations appear



∂2 ln Z

∂μ
2 =N F

2
⟨T 1

2
⟩+N F ⟨T 2⟩

∂4 ln Z

∂μ
4 =−3 (⟨T 2⟩+⟨T 1

2
⟩ )

2
+3 ⟨T 2

2
⟩+⟨T 4⟩

+⟨T 1
4⟩+4 ⟨T 3T 1⟩+6 ⟨T 1

2T 2⟩

T 1/N F=Tr(M−1
∂μM )

T i+1=∂μT i
T 2/N F=Tr (M−1

∂μ
2M )−Tr ((M−1

∂μM )
2 )

T 3/N F=Tr(M−1∂μ
3M )−3 Tr (M−1∂μM M

−1∂μ
2M )

+2 Tr ((M−1∂μM )
3 )

T 4/N F=Tr (M−1
∂μ

2M )−4 Tr (M−1
∂μMM

−1
∂μ

3M )

−3 Tr (M−1∂μ
2M M−1∂μ

2M )−6 Tr ((M−1∂μM )
4 )

+12 Tr ((M−1∂μM )
2M−1∂μ

2M )

Measuring the coefficients of the Taylor expansion

To compare to heavy ion experiments, 
chemical potentials are needed for conserved charges:

Baryon: μB     Strangeness: μS    Electric: μQ

χi , j ,k
B ,Q , S

=
∂i+ j+k( p /T 4)

(∂μ
B
)
i
(∂μ

Q
)
j
(∂μ

S
)
kHigher order fluctuations

Fluctuations are expected to diverge in the victinity of a critical point

Subject of intense experimental and theoretical work



Up to 8th order fluctuations calculated on the lattice

[Fig: BW collaboration]



Freezout temperature

To cancel out volume dependce, one looks at ratios, e.g.:

R12
B (T ,μB)=

M B

σB
2
=
χ1
B(T ,μB)

χ2(T ,μB)
R31
B (T ,μB)=

SBσB
3

M B

χ3
B(T ,μB)

χ1(T ,μB)

STAR data fits well 
with lattice data from
      pseudocritical line

Higher order fluctuations
noisy from both sides
possible tension 

R31(R12)   →  no need to measure T ,μ

Fig: HotQCD



Imaginary chemical potentials

No sign problem at imaginary chemical potentials

det (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗

Fit function unknown               systematic error

Loses predictivity around μB/T≃3      μq/T≃1

[Fig: BW collaboration]



Transition Temperature

At zero     transition is crossover
Ambigous definitions
nevertheless converge in cont.lim.

T c(μB)

T c (0)
=1−κ2 (

μB
T c )

2

−κ4 (
μB
T c )

4

+O(μB
6 )

Pseudocritical line:

BW-collab

μ

μB/T≈2



Critical endpoint?

What seems to be clear so far (for physical quark masses):

No critical point at  
       (in the reach of extrapolation methods: Taylor, reweighting, imaginary mu) 

μB /T<3     μq/T<1

Attempts to locate it:

[Fodor,Katz(2002)]

Small lattices 
Out of the range of expected validity

Convergence radius

Reweighting 

Various estimators for Taylor expansions r2n=√
χ2n
χ2n+2

r k=| 2

2 kc2k+k
2c k

2|
1

2k
Could also signal other singularities
 on complex plane:  Lee-Yang zeroes, Roberge-Weiss

No solid results so far



Columbia Plot

What would be the phase transition at zero mu be like
If we could change the quark masses

Useful tool to understand possible phase transitions

Pure gauge: Z3   symmetric

Spontaneously broken in 
   first order transition

U t→ zU t     z=e
i2π k /N c

change temporal links on a time slice

quarks give explicit breaking

                       center of SU(N)



Center symmetry and imaginary chemical potential

U t→ zU t     U t
−1
=z−1U t     z=e

i2π k /N c

Chemical potential dependence of Dirac matrix
Can be transformed to a single time-slice

U t→e
i N tμIU t       U t

−1
→e−i N tμ IU N t

−1

with      temporal links in the Dirac matrix get extra factor:μ I

equivalent to center transformation if  
μI
T
=

2π k
N c

Roberge-Weiss symmetry: Z (
μ

T )=Z ( μT +
i2π k
N c )

Configurations in the different sectors are center transformed 

At large temperatures where Polyakov loop is nonzero
phase boundaries thus must exist: Rogerge-Weiss transition

Polyakov loop is order parameter



Phase diagram in             planeμI−T

On Temperature axis, there is 
 also a transition

Is it connected with the RW-transition? 

Different scenarios 
    according to quark masses

[Figs: Aarts ]



3D Columbia plot

Columbia plot extended with      axisμ2

[Bonati et.al (2012)] 

First order region seems to shrink at real μ

Results for heavy quark effective theories for  N F=3
Tricritical scaling accurately reproduced 



  Nonzero density on the lattice

KFU Graz

    12-13.05.2022. DK-PI Retreat

1. Lattice QCD  – nonzero density in lattice QCD – sign problem
2. Reweighting – Taylor expansion – imaginary mu 
3. Complex Langevin and Lefschetz thimbles 

  

Dénes  Sexty



⟨X ⟩=
1
Z

Tr X e−β(H−μ N )=
1
Z
∑C

W [C ] X [C ]=
1
N
∑i
X [C i]

If the Weight is positive, build a Markov chain with the Metropolis algorithm

Typically exponentially many configurations, 
  no direct summation possible.

We are interested in a system
Described with the partition sum: 

...→C i−1→C i→C i+1→...

Probability of visiting C p(C )∼W [C ]

Z=∫Dϕe−S=Tr e−β(H−μ N )=∑C
W [C ]

This works if we have W [C ]≥0

Otherwise we have a Sign problem

Importance Sampling



Stochastic process for  x:

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T
∫
0

T

O(x (τ))d τ=
∫e−S (x)O(x)dx

∫e−S (x)dx

Langevin Equation (aka. stochatic quantisation)

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')
d x
d

=−
∂S
∂ x

 

Random walk in configuration space

Numerically,
  results are extrapolated to Δ τ→0



Stochastic process for  x:

d x
d

=−
∂S
∂ x

 

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T
∫
0

T

O(x (τ))d τ=
∫e−S (x)O(x)dx

∫e−S (x)dx

Complex Langevin Equation

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U +≠ U−1

d x
d

=−
∂S
∂ x

 

Analytically continued observables

1
Z∫ P comp( x )O ( x )dx=

1
Z∫ P real ( x , y )O ( x+iy )dx dy

〈 x2〉real  →  〈 x2− y2〉complexified



Lefschetz Thimble

Transform integral by shifting contour

∫−∞
∞

dx eS (x)F ( x)=∫C dz e
S ( z)F (z)=∫dt ( dzdt )e

S( z (t ))F (z(t))

Better than the original contour if eRe(S ( z(t )))     peak + fast decay

ei Im(S ( z (t ))) milder sign problem than original

Im (S (z(t )))= const                    steepest descent of Re(S (z(t )))

Thanks to Cauchy-Riemann equations

starts from saddle points ∂z S( z0)=0

∂ z
∂ t
=±∂zS (z)

Lefschetz thimble is a contour which

z→ z0  for t→∞

+: stable thimble                  steepest descent
 -: unstable thimble               steepest ascent



∑k
mkT k→T 0

Intersection number (Morse theory)

Residual sign problem
from curvature of thimble
    Is it mild?
    Is it exponential in the volume?

[Fig: Scorzato]

For large systems: 

Z=∑k
mk e

−Im S ( zk)∫T k dz e
Re S ( z)=∑k

mk e
−Im S( zk)∫T k dt

dz
dt
eRe Sk(t )

Choose thimble with the global minimum 
Regularisation of QFT
Resurgence 

Global sign problem
 Easy as long as few thimbles contribute 



Langevin and Lefschetz

Both use analiticity and complexifcation
  Direct simulation of complex actions is possible 

Complex Langevin Eq.

Allow complex drift in 
Langevin eq.

Complexify the field manifold
Dimensions are doubled

Check for convergence 

Lefschetz thimble

Shift integration contour into
  complex plane

Look for critical points, 
 Find contributing thimbles

Reweight the residual sign problem 

1
Z∫ P comp( x )O ( x )dx=

1
Z
∫T

Pcomp (z )O( z)dz

1
Z∫ Pcomp (x )O (x )dx=

1
Z
∫ P real( x , y )O (x+iy)dx dy



S [x ]=σ x2+i λ x

Gaussian Example

σ=1+i λ=20

d
d τ
(x+i y )=−2σ(x+iy)−iλ+η

CLE

P (x , y )=e−a(x−x0)
2
−b( y− y0)

2
−c (x−x0)( y− y0)

Gaussian distribution 
around critical point

∂ S (z)
∂ z ]

z0

=0

Measure 
on real axis



Thimbles in practice

Finding the thimbles is easy in toy models – hard on the lattice

  
Need to search critical points and zeroes of the measure

Thimble structure changes qualitatively as parameters of the action change 

Numerically it is costly to parametrize the thimble, calculate Jacobian

S=−β cos(z)−ln (1+κ cos (z−iμ))Example:

β=1,μ=1, κ=2β=1,μ=1, κ=1 /2



Sign optimized manifolds

Transform integral by shifting contour

∫−∞
∞

dx eS (x)F ( x)=∫C dz e
S ( z)F (z)=∫dt ( dzdt )e

S( z (t ))F (z(t))

In some cases it is advantegous to not go to the thimble.
      – hard to parametrize numerically
      – multiple contributing thimbles

If we have a map of   Real manifold              Complexified manifold such that
       – Easy to parametrize
       – Jacobian is cheap
       – Residual sign problem is mild 

Cost of simulations is better that both Real manifold and Thimbles 

Parametrize using  e.g. neural networks
                                     Finite flow time
                                     Ansatz 

∂ z
∂ t
=±∂zS (z)



S=∑x ,ν

N F
g2
(1−cos (A x ν))+∑x , y

ψ̄xD xy(A ,μ)ψy

Thirring model on sign-optimized manifold

[Alexandru et. al. (2018)]

Parametrize new manifold as:
~A0=A0+i(λ0+λ1 cos (A0)+λ2 cos (2 A0))
~A1=A1     ~A2=A2

Search for the minimum of 

Dxy (A ,μ)= staggered fermion matrix,    det (D)∈ℂ

⟨eiφ ⟩PQ  numerically,  fixing λ0,λ1,λ2



     Need to find contributing thimbles
       Or  define sign-improved manifold.

     How to cheaply parametrize the new manifolds?
     
     How to cheaply simulate on the new manifolds – Jacobian determinant
         has to be cheap

     Is the residual sign problem still exponential in the volume?

 If one wants lattice sizes e.g.        to work, 
                           simulation on         has to have
      

Models studied so far:

     Toy models, lattice models: fermionic models (Thirring), Bose gas.
     First attempts at tackling gauge symmetry

Lefschetz thimbles 

⟨eiφ ⟩≈0.999
164

44



Correct results obtained for                     in the region: ≤p

Using the action S p=i cos i p

p=1

〈expi〉

U(1) One  plaquette model with CLE

d
d 

=−i sini p Langevin equation:



shows fixedpoint (zero drift term) 
structure on the complex     plane

Flowchart:  normalized drift vectors 
on the complex plane

=0.5 , p=1 =1.5 , p=1

Attractive fixedpoint present

Fast decay 
correct results 

No attractive fixedpoint present
    (only indifferent)
slow decay 
incorrect results 



Gauge theories and CLE

Unitarity norm: ∑i
Tr (U iU i

+ )
Distance from SU(N)

Tr (U U + )+Tr (U−1(U−1) + )≥2N

∑ij
∣(U U +−1)ij∣

2

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U +≠ U−1

Gauge degrees of freedom also complexify

Infinite volume of irrelevant, unphysical configurations 

Process leaves the SU(N) manifold exponentially fast 
 already at μ≪1



Gauge transformation along 

Empirical observation:
   Cooling is effective for 

β>βmin but remember,β→∞
in cont. limit

a<amax

Minimize unitarity norm ∑i
Tr (U iU i

+−1)
Distance from SU(N)

Steepest descent

amax≈0.1−0.2 fm

[Seiler,Sexty,Stamatescu '13]
Gauge cooling

Gauge cooling 
    keeps 'skirts' from developing 

ensuring correct results



Argument for correctness of CLE results

       
If there is fast decay 

and a holomorphic action 

[Aarts, Seiler, Stamatescu (2009)
 Aarts, James, Seiler, Stamatescu (2011)]

then CLE converges to the correct result

P (x , y )→0  as x , y→∞

S (x)

S=SW [U μ]+ln Det M (μ) measure has zeros
complex logarithm has a branch cut
                    meromorphic drift 

Loophole 1: Non-holomorphic action for nonzero density
(Det M=0)

No problems if poles are not ‘touched’ by distribution

satisfied for: HDQCD, full QCD at high temperatures 

[Aarts, Seiler, Sexty, Stamatescu ‘17]



Loophole 2: decay not fast enough

boundary terms can be nonzero
explicit calculation of boundary terms possible 

Unambigous detection of boundary terms

Observable cheap also for lattice systems

given by plateau as 'cutoff' Y→∞

Measuring “corrected observable”
       in case boundary term nonzero

[Scherzer, Seiler, Sexty, Stamatescu (2018)+(2019)]



P (x , y , t ): probability density on the complex plane  at Langevin time t

ρ(x)=
1
Z
e−S (x): complex measure

CLE works, if 

∫ dxρ(x )O(x)      =      ∫dx dy P(x , y )O(x+iy )
What we want What we get with CLE

Interpolating function:

F (t , τ)=∫ P(x , y , t−τ)O(x+iy , τ)dx dy

F (t ,0)=⟨O(x+iy)⟩P(t ) F (t , t )=...=⟨O( x)⟩ρ(t )

∂τF (t , τ)=0     ⇒     CLE is correct



Boundary terms as a volume integral 
[Scherzer, Seiler, Sexty, Stamatescu (2018+2019)]

∂ τFO(Y ,t , τ=0)=BO(Y ,t , τ=0)=

∫
−Y

Y
P (x , y ,t )LcO(x+iy)−∫−Y

Y
(LT P)O(x+iy ,0)

Calculating an observable defined on a compact boundary in many dimensions
  can be inconvenient

Observable with a cutoff
easy to do in many dimensions Vanishes as process equilibrates

LcO(x+iy) consistency conditions            Schwinger-Dyson eqs.

Order of limits crucial

limt→∞ limY→∞∫−Y
Y
P (x , y , t )LcO(x+iy)  can be undefined

≈



Unambigous detection of boundary terms

Observable cheap also for lattice systems

last point with no cutoff
large fluctuations
consistent with zero?

One plaquette model
Full QCD

Boundary term for spatial plaquettes
S (x)=iβ cos(x )+

s
2
x2

q



Correcting CLE using boundary terms

Interpolation function

F (t , τ)=A0+A1 exp(−ω1 τ)

∂nF (t , τ)

∂ τ
n =Bn=⟨Lc

nO⟩

Higher order boundary terms

F (t , τ)=∑ Anexp(−ωn τ)

Ansatz

F (t ,0)−F (t , t )=B1
2/B2

Systematic error of CLE



Test in U(1) toy model

Test in 3d XY model

S (x)=iβ cos(x )+
s
2
x2 Measuring B1,B2  allows correction of results

when CLE fails

B2 is very noisy, hard to measure

Step in the right direction



S=−β∑x∑ν=1

3
cos (ϕx−ϕx+ν−iμδν0)

XY model in d=3

[plot from: Aarts and James (2010)]

CLE fails in one of the phases

⟨S ⟩CLE−⟨S ⟩exact

Can be solved exactly using dual variables (worldlines)



Test in U(1) toy model

Test in 3d XY model

S (x)=iβ cos(x )+
s
2
x2 Measuring B1,B2  allows correction of results

when CLE fails

B2 is very noisy, hard to measure

Step in the right direction



Bose Gas at zero temperature

No dependence on chemical potential for  m

Silver Blaze problem:

S=|∂νϕ|
2+(m2−μ2)|ϕ|2+μ(ϕ∗ ∂4ϕ−∂4ϕ

∗ ϕ)+λ|ϕ|4

Complex scalar field           Two real fields           Two complex fields 

Complexification with Langevin method:

[Aarts '08]

At zero temperature, nothing happens 
   until first excited state (=1particle) contributes



Silver Blaze:

Cancellations should destroy the apparent 
chemical potential dependence

〈n 〉=
1

∂ ln Z
∂

∣∣2=∑a=1,2
a

R2−a
I 22 ia

Ra
I 



Sign problem
Z=∫D e−S=∫D∣e−S∣eiComplex action:

Average phase factor

Sign problem is exponentially hard in thermodinamic limit

Phase quenched theory Z=∫D∣e−S∣

〈ei〉pq=
Z full
Z pq

=e− f0



Phase quenched action V ∣∣=
1
2
m2

−
2
∣∣

2
∣∣

4

Phase factor is crucial for cancellation

Also shows dependence on chemical potential



Heavy Quark QCD at nonzero chemical potential (HDQCD)

Det M (μ)=∏x
det (1+C P x)

2 det (1+C ' P x
−1)2

P x=∏τ
U 0( x+τa0) C=[2 κexp(μ)]N τ C '=[2κexp(−μ)]N τ

Hopping parameter expansion of the fermion determinant
Spatial hoppings are dropped              unmovable quarks

S=SW [U μ]+ln Det M (μ)

Studied with reweighting 
[De Pietri, Feo, Seiler, Stamatescu '07]

CLE study using gaugecooling

[Seiler, Sexty, Stamatescu (2012)]

R=e
∑

x
C Tr Px+C ' Tr P−1

[Aarts, Attanasio, Jaeger, Sexty (2016)]

Phase diagram mapped out



average phase:

〈exp(2 iϕ)〉= 〈det M (μ)

det M (−μ) 〉

Reweigthing is impossible at 1≤μ≤2 CLE works all the way to saturation

Fermion density:

n=
1
N τ

∂ ln Z
∂μ

det (1+C P )2=1+C 3+C Tr P+C 2 Tr P−1 Sign problem is absent at  
  small or large μ



Mapping the phase diagram of HDQCD

fixed β=5.8  →  a≈0.15 fm

κ=0.04   
onset transition atμ=−ln (2κ)

N t∗(6
3 ,83 ,103) lattice 
N t=2..28

Temperature scanning

[Aarts, Attanasio, Jäger, Sexty (2016)]

Unitarity norm is mostly under control

T=48  − 671 MeV

Det M (μ)=∏x
det (1+C P x)

2 det (1+C ' P x
−1)2

Hopping parameter expansion of the fermion determinant
Spatial fermionic hoppings are dropped
Full gauge action

Strategy to map           planeT−μ



  Exploring the phase diagram of HeavyDenseQCD 
                   [Aarts, Attanasio, Jäger, Sexty (2016)]

Similar to but
much simpler than full QCD

Polyakov loopbaryon density

Spatial fermionic hoppings are dropped  –  unmovable quarks
Full gauge action



Comparison with reweighting
   for full QCD 

[Fodor, Katz, Sexty, Török (2015)]

R=Det M (μ=0)

 

Reweighting from ensemble at 



Pressure of the QCD Plasma at non-zero density

p

T 4=
ln Z

V T 3 Derivatives of  the pressure are  directly measureable
                 Integrate from T=0

Other strategies:

Measure the Stress-momentum tensor using gradient flow

Shifted boundary conditions
             

Non-equilibrium quench

First integrate along the temperature axis, then explore μ>0

[Engels et. al. (1990)]

[Giusti, Pepe, Meyer (2011-)]

[Caselle, Nada, Panero (2018)]

Taylor expansion [Bielefeld-Swansea (2002-)]

Simulating at imaginary      to calculate susceptibilities
          [de Forcrand, Philipsen (2002-)]

μ

[Suzuki, Makino (2013-)]



Pressure of the QCD Plasma at non-zero density

Δ ( pT 4 )=∑n>0,even
cn(T ) (

μ

T )
n

If we want to stay at  μ=0

Δ ( pT 4 )= pT 4 (μ=μq)−
p

T 4 (μ=0)

c4=
1

24
1

N s
3N T

∂4 ln Z

∂μ
4

c2=
1
2

NT
N s

3

∂2 ln Z

∂μ2

∂2 ln Z

∂μ
2 =N F

2
⟨T 1

2
⟩+N F ⟨T 2⟩

∂4 ln Z

∂μ
4 =−3 (⟨T 2⟩+⟨T 1

2
⟩ )

2
+3 ⟨T 2

2
⟩+⟨T 4⟩

+⟨T 1
4⟩+4 ⟨T 3T 1⟩+6 ⟨T 1

2T 2⟩

T 1/N F=Tr (M−1
∂μM )

T i+1=∂μT i
T 2/N F=Tr (M−1

∂μ
2M )−Tr ((M−1

∂μM )
2 )

T 3/N F=Tr (M−1∂μ
3M )−3 Tr(M−1∂μM M

−1∂μ
2M )

+2 Tr ((M−1∂μM )
3 )

T 4 /N F=Tr (M−1
∂μ

2M )−4 Tr (M−1
∂μM M

−1
∂μ

3M )

−3 Tr (M−1∂μ
2M M−1∂μ

2M )−6 Tr ((M−1∂μM )4 )
+12 Tr ((M−1

∂μM )
2M−1

∂μ
2M )

Measuring the coefficients of the Taylor expansion



Δ ( pT 4 )= pT 4 (μ=μq)−
p

T 4 (μ=0)=
1

V T 3 ( lnZ (μ)−ln Z (0))

If we can simulate at μ>0

ln Z (μ)−ln Z (0)=∫0

μ

dμ
∂ ln Z (μ)
∂μ

=∫0

μ

dμn(μ)

Using CLE it’s enough to measure the density  – much cheaper

Pressure of the QCD Plasma using CLE
[Sexty (2019)]

n(μ)=⟨Tr(M−1(μ)∂μM (μ))⟩



Pressure with improved action
In deconfined phase 
Symanzik gauge action 
stout smeared staggered fermions

Good agreement at small 
CLE calculation is much cheaper

[Sexty (2019)]

μ

further interesting quantities:  Energy density, quark number susceptibility, ... 



Mapping out the phase transition line

Follow the phase transition line
   starting from μ=0

Using Wilson fermions

Fixed lattice spacing and spatial vol.  
      scanN t

[Scherzer, Sexty, Stamatescu (2020)]



Detection of the phase transition line

B3=
⟨O3⟩

⟨O2
⟩

3/2

O=P−⟨P ⟩   with P=√PbarePbare−1

no renormalization 
zero crossing defines transition

Binder cumulant

Shift method

Critial point at μ4?
Works well for small μ

Define T c (μ) as  ϕ(T c(μ),μ)=C
e.g. B3,  chiral condensate,

     baryon number susceptibility



Can follow the line to 
       quite high μ/T

Lattice spacing:

Pion mass:

Volumes:  83 ,123 ,163

Finite size effects large

Consistent results  

a=0.065  fm

mπ=1.3  GeV

κ2≈0.0012

κ2=0.015

In literature
  For physical pion mass 

T c(μ)

T c (0)
=1−κ2 (

μ

T c (0) )
2

Open questions
Possible for lighter quarks?
Finite size scaling?
Where is the upper right corner of Columbia plot?  
                                           Critical point nearby?



Theoretically

     Good understanding of the failure modes (boundary terms, poles)
     Monitoring prescriptions allow for independent detection of failure
                unitarity norm, eigenspectrum, histograms, boundary terms
     Is a cutoff allowed? (Dynamical stabilization) 
     How to cure problems? – No general answer, hit and miss
      

In practice 
     Many lattice models solved, crosschecked with alternative methods
         (Bose gas, SU(3) Spin model, HDQCD, kappa exp., cond. mat. systems...)     
     Some remain unsolved (xy model, Thirring,... )

Full QCD
     High temperatures seem to be unproblematic
         checks with reweighting, Taylor expansion 
     Status of low T and near T_c is unclear  – more work needed     
     
     Results for full QCD above transition (at large pion masses) 
                      phase diag, EoS and improved actions 

Complex Langevin



Summary

Nonzero density on the lattice is hampered by the sign problem

Extrapolation methods (reweighting, Taylor exp, imaginary mu)

Can reach to μB  up to μB<3T     (μq<T )

Lattice results for EoS, charge fluctuations
No sign of critical point in this region

Using analiticity: 
      Lefschetz thimbles, sign-improved manifolds
                Encouraging results for simple theories
 
      Complex Langevin: 
                Monitoring of process is required  (boundary terms, histograms…)
                Solid results for high Temperature QCD (at large pion masses)
                Low temperatures still present a problem
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