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Overview

1 Examples: Bridge, multidim Newton’s method, QM, vibrational
eigenmodes

2 Linear equations

3 Gauss elimination, Pivoting

4 Numerical errors, condition number

5 LU decomposition, iterative improvement

6 Householder reduction

7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR),
Conjugate gradient (CG) and others

8 Eigenvalues Subspace methods, power iteration, Lánczos method, Krylov
Schur

9 Eigenvalues transformation method: Jacobi, QR

10 Diagonalization with Fourier transformation

11 Partial Differential Equations: Boundary value problems, Finite elements

12 Partial Differential Equations: initial value problems. Courant
condition, Crank-Nicholson scheme, Split-Step method

13 Outlook: Advanced techniques



PDE classifications

B2 − AC < 0: elliptic PDEs.
The solutions are smooth if the coefficients are smooth. e.g.: Laplace
equation 4f = 0 has analytic solutions in a region even if the values on
the border are not smooth.
prototypical example: Poisson equation for u electrostatic potential,
ρ(x , y) charge distribution

uxx + uyy = −ρ(x , y) (1)

B2 − AC = 0: parabolic PDEs.
Can be transformed to the heat equation. Solutions smooth out as time
is increased. heat eq. for u temperature and κ diffusion coefficient:

ut = κuxx (2)

B2 − AC > 0: hyperbolic PDEs:
Wave equations. Discontinuities in the initial conditions are retained for
later times. Wave eq. with speed of light (or sound, etc.) v is:

utt = c2uxx (3)



PDE classification

Boundary value problems (aka. static problem) e.g.: Poisson equation
a quantity u(x , y) (or its derivative or some other property) is given on the
boundary of some region, u(x , y) inside the region is to be calculated.

Usually some kind of iterative procedure is employed, one looks for
efficient solutions.
After discretisation of linear PDEs one gets a system of linear equations,
typically with a sparse matrix.

initial value problems (aka. time evolution problem) e.g: Heat equation,
wave equation
u(x , t) is known at initial times and its time evolution is to be calculated.
u(x , t > 0) must also be given on the boundary of the region of interest
(periodical boundary conditions are also possible)

Main concern here is to devise algorithms which give a stable solution.



Initial value problems

Diffusion equation (D(x) is the diffusion constant)

∂u(x , t)

∂t
=

∂

∂x

(
D(x)

∂u(x , t)

∂x

)
(4)

Schrödinger equation

i~∂Ψ(x , t)

∂t
= ĤΨ(x , t), Ĥ = − ~2

2m
4+V (x) (5)

Klein-Gordon equation

∂2Φ(x , t)

c2∂t2
= 4Φ(x , t)−m2Φ(x , t)− λΦ(x , t)3 (6)

When m = 0 and λ = 0, it’s also called the wave-equation.
Flux-Conservative problems in 1 Dimension are goverend by the equation

∂u(x , t)

∂t
= −∂F (u)

∂x
(7)

where u and F (u) are vectors



Flux-Conservative

Wave equation can be cast as Flux-Conservative problem:

∂2Φ(x , t)

c2∂t2
=
∂2Φ(x , t)

∂x2
(8)

We define

r(x , t) = c
∂Φ(x , t)

∂x
, s(x , t) =

∂Φ(x , t)

∂t
(9)

This implies (using Young Theorem and the wave equation):

∂r

∂t
= c

∂s

∂x
,

∂s

∂t
= c

∂r

∂x
(10)

We can put these two equations in a vector equation:

u =

(
r
s

)
, F(u) =

(
0 −c
−c 0

)
u (11)



Discretistion of Flux-conservative problems

We look at naive discretisation of the simplest flux-conservative PDE:

∂u(x , t)

c∂t
= −∂u(x , t)

∂x
(12)

Discretise coordinates:

xj = j∆x , tn = n∆t, j , n = 0, 1, 2, . . . (13)

Using un
j = u(xj , tn), we discretise the derivatives:

∂u

∂t

∣∣∣∣
j,n

=
un+1
j − un

j

∆t
+ O(∆t) Forward discretisation (14)

∂u

∂x

∣∣∣∣
j,n

=
un
j+1 − un

j−1

2∆x
+ O(∆x2) Centered discretisation

The equation of motion (EoM) becomes:

un+1
j − un

j

c∆t
= −

un
j+1 − un

j−1

2∆x
(15)

un+1
j = un

j −
1

2

c∆t

∆x

(
un
j+1 − un

j−1

)



Stability analysis

This discretisation scheme is called FTCS (Forward time centered space)
It’s an explicit scheme: un+1

j can be calculated explicitly from older fields.
Stability can be a problem
von Neumann Stability analysis
General tool to investigate stability of discretisations of initial value problems.
Ansatz for u(x , t)

un
j = ξ(k)ne ikj∆x (16)

with the amplification factor ξ(k)
Inserted into the eom:(

ξ(k)n+1 − ξ(k)n
)
e ikj∆x =

c∆t

∆x
ξ(k)n

e−ik∆x − e−ik∆x

2
e ikj∆x (17)

Solve for ξ(k)

ξ(k) = 1− i
c∆t

∆x
sin(k∆x) =⇒ |ξ(k)| =

√
1 +

c2∆t2

∆x2
sin2(k∆x) (18)

|ξ(k)| > 1 divergent modes
FTCS is not stable



Lax-scheme

Idea: replace un
j in the time derivative with 1

2
(un

j−1 + un
j+1) (close to the

continuum limit this should be OK.)

un+1
j =

1

2
(un

j+1 + un
j−1)− 1

2

c∆t

∆x

(
un
j+1 − un

j−1

)
(19)

We can repeat the stability analysis:

ξ(k)n+1e ikj∆x = ξ(k)ne ikj∆x

[
e ik∆x + e−ik∆x

2
− c∆t

x

e ik∆x − e−ik∆x

2

]
(20)

ξ(k) = cos(k∆x)− i
c∆t

∆x
sin(k∆x)

|ξ(k)|2 = cos2(k∆x) +

(
c∆t

∆x

)2

sin2(k∆x)

The discretisation is stable if we have |ξ(k)| < 1 =⇒ c∆t
∆x

< 1.
Thus we need to choose ∆t accourding to

Courant condition: ∆t < ∆x/c (21)



Leap-frog discretisation

Alternatively, we can also improve on the time discretisation:

∂u

∂t

∣∣∣∣
j,n

=
un+1
j − un

j

∆t
+ O(∆t) Forward discretisation (22)

∂u

∂t

∣∣∣∣
j,n

=
un+1
j − un−1

j

2∆t
+ O(∆t2) Leap-frog discretisation

This leads to the EoM:

un+1
j = un−1

j − c∆t

∆x

(
un
j+1 − un

j−1

)
(23)

Stability analysis leads again to ∆t < ∆x/c
To start the solution we need u0

j and u1
j one can calculate u1

j from u0
j with

several small steps using the Lax discretisation.



Klein-Gordon eq.

Here the R.H.S. is not a divergence because of the m2 and Φ3 terms

∂2Φ(x , t)

c2∂t2
= 4Φ(x , t)−m2Φ(x , t)− λΦ(x , t)3 (24)

Using momenta we can break up this into two equations:

∂tΦ(x , t) = π(x , t) (25)

∂tπ(x , t) = 4Φ(x , t)−m2Φ(x , t)− λΦ3(x , t)

This suggests the Leap-Frog discretisation (using centered derivatives, the
order is improved)

Eliminating π we get the EoM:

Φ(x, t + ∆t) = 2Φ(x, t)− Φ(x, t −∆t)

+4 Φ(x, t) + m2Φ(x, t) + λΦ(x, t)

For the Laplace operator we can use the usual dis-
cretisation or an improved one:

4impΦ(x, t) =
∑
i,±

AΦ(x ± 2ai , t) + BΦ(x ± ai , t) + CΦ(x, t)

with A = − 1
12
, B = 4

3
, C = − 5

2



Courant condition

  

Courant condition

asymmetric lattice ai=a s a0=at

Energy conservation fulfilled in limit

at
a s

<0.1 Otherwise the solution is linearly instable

at→0

Speed of light should “fit into lattice”



Diffusion equation

or heat equation

∂u

∂t
= D

∂2u

∂x2
(26)

We use the following discretisation for the second derivative

∂2u

∂x2

∣∣∣∣
j,n

=
un
j+1 − 2un

j + un
j−1

∆x2
+ O(∆x2) Centered discretisation (27)

So the FTCS discretisation reads

un+1
j = un

j +
D∆t

∆x2
(un

j+1 − 2un
j + un

j−1) (28)

Stability analysis using 2 sin2(φ/2) = 1− cosφ:

ξ(k) = 1 +
D∆t

∆x2
(e ik∆x + e−ik∆x − 2) = 1− 4D∆t

∆x2
sin2(k∆x/2) (29)

|ξ| < 1 if we have D∆t
∆x2 ≤ 1

2



Nomenclature

un+1
j = un

j +
D∆t

∆x2
(un

j+1 − 2un
j + un

j−1) (30)

Now inserting the Taylor expansion of the field centered on un
j we get

ut∆t +
1

2
utt∆t2 + . . . =

D∆t

∆x2
(uxx∆x2 +

1

12
uxxxx∆x4 + . . .) (31)

For ∆t → 0 and ∆x → 0 we get back the original PDE, so the discretisation is
consistent
Nonzero corrections come with ∆t so the scheme is first order in time, and
∆x2 corrections show its second order in space.
A scheme is stable if we have |ξ(k)| < 1 for all k
A scheme is convergent if the solution approaches the exact solution of the
PDE for ∆t,∆x → 0.
One can prove that for a linear initial value problem, the stability and
consistency of a finite difference scheme is necessary and sufficient for its
convergence (Lax equivalence theorem)
No theorem for non linear PDEs, but they generally converge if they are stable
and consistent.



Solving the diffusion eq.

|ξ| < 1 if we have D∆t
∆x2 ≤ 1

2

∆t ≤ 1

2

∆x2

D
(32)

Diffusion time over length λ given by:

τ ∼ λ2

D
(33)

If we want to describe distances of scale λ we need to calculate Nt time steps

Nt =
τ

∆t
∼ λ2

∆x2
(34)

Since we have λ� ∆x , Nt can be quite large.
Can we come up with a better discretisation scheme?



Implicit scheme for Diffusion eq.

We can change the discretisation of the time derivtive:

∂u

∂t

∣∣∣∣
j,n

=
un+1
j − un

j

∆t
+ O(∆t) Forward discretisation (35)

∂u

∂t

∣∣∣∣
j,n

=
un
j − un−1

j

∆t
+ O(∆t) Backward discretisation

This gives the EoM:

un
j = un−1

j +
D∆t

∆x2
(un

j+1 − 2un
j + un

j−1) (36)

To get un
j from un−1

j , we need to solve a system of linear equations. fully
implicit scheme
Stability:

1 =
1

ξ(k)
− 4D∆t

∆x2
sin2(k∆x/2) (37)

ξ(k) =
1

1 + 4D∆t
∆x2 sin2(k∆x/2)

Stable for any ∆t



Crank-Nicholson

We can improve accuracy if we combine backward an forward in time schemes:

un+1
j = un

j +
D∆t

2∆x2
(un

j+1 − 2un
j + un

j−1 + un+1
j+1 − 2un+1

j + un+1
j−1 ) (38)

Both sides are now centered on (N + 1/2)∆t, so the equation is valid with
O(∆t2) corrections, better than both the fully explicit and the fully implicit
schemes. Space accuracy is also second order.
Defining Hjk = D∆t

∆x2 (δj+1,k − 2δjk + δj−1,k), we can write the EoM as∑
k

(1− H)jku
n+1
k =

∑
l

(1 + H)jlu
n
l (39)

un+1 = (1− H)−1(1 + H)un

Stability analysis:

ξ(k) =
1− 2D∆t

∆x2 sin2(k∆x/2)

1 + 2D∆t
∆x2 sin2(k∆x/2)

(40)

Stable for any ∆t



Time dependent Schrödinger eq.

using units such that ~ = 1,m = 1/2

i
∂Ψ(x , t)

∂t
= −∂

2Ψ(x , t)

∂x2
+ V (x)Ψ(x , t) (41)

fully implicit discretisation:

i
Ψn+1

j −Ψn
j

∆t
= −

Ψn+1
j+1 − 2Ψn+1

j + Ψn+1
j−1

∆x2
+ VjΨ

n+1
j (42)

using i∂tΨ = ĤΨ with H = −∂2
x + V (x)

(1 + iH∆t)Ψn+1
j = Ψn

j (43)

Problem: The norm of the wave function is not conserved.∫ ∞
−∞
|Ψ(x , t)|2dx = 1 (44)

This is becouse the evolution operator is not unitary

(1 + iH∆t)† = 1− iH∆t 6= (1 + iH∆t)−1 (45)



Crank-Nicholson for Schrödinger eq.

The explicit scheme has the same problem:

Ψn+1
j = (1− iH∆t)Ψn

j (46)

Formal solution using i∂tΨ = ĤΨ with H = −∂2
x + V (x)

Ψ(x , t + ∆t) = e−i Ĥ∆tΨ(x , t) (47)

Both explicit and implicit schemes are approximations of the evolution operator

e−i Ĥ∆t ≈ 1− iH∆t ≈ (1 + iH∆t)−1 (48)

We need to find unitary approximation to e−iH∆t , which is given by:

e−i Ĥt ≈
1− 1

2
i Ĥ∆t

1 + 1
2
i Ĥ∆t

(49)

The EoM is than given by:(
1 +

1

2
i Ĥ∆t

)
Ψn+1

j =

(
1− 1

2
i Ĥ∆t

)
Ψn

j (50)

this is the same as the Crank-Nicholson scheme that we had for diffusion eq.



Crank-Nicholson solution

(
1 +

1

2
i Ĥ∆t

)
Ψn+1

j =

(
1− 1

2
i Ĥ∆t

)
Ψn

j (51)

The inverse of 1 + 1
2
i Ĥ∆t can be calculated e.g. by LU decomposition.

Decomposing needs to be calculted once, then reused in every time step.
Alternatively, in 1D, using Dirichelet boundary conditions, 1 + 1

2
i Ĥ∆t is

tridiagonal: 

b1 c1

. . .
. . .

. . .

aj bj cj

. . .
. . .

. . .

aN bN


(52)

The LU decomposition (without pivoting) for such tridiagonal matrices, solving Mx = r , starting
with u1 = b1, y1 = r1

lj = aj/uj−1, uj = bj − ljcj−1︸ ︷︷ ︸
decomposition

, yj = rj − ljyj−1︸ ︷︷ ︸
forward substitution

(53)

back-substitution:

xn = yn/un, xj = (yj − cjxj+1)/un for j = n − 1, . . . , 1 (54)



ADI

Consider diffusion equation in two dimensions

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y 2

)
(55)

The Crank-Nicholson scheme

un+1
j,l = un

j,l +
1

2

D∆t

∆x2

(
δ2
xu

n+1
j,l + δ2

yu
n+1
j,l + δ2

xu
n
j,l + δ2

yu
n
j,l

)
(56)

δ2
xu

n
j,l = un

j+1,l − 2un
j,l + un

j−1,l

For the solution of un+1
j,l we have to decompose the a large matrix. The matrix

is sparse but no longer tridiagonal
Alternating-direction implicit (ADI) method. Still second order in time and
space and unconditionally stable.

u
n+1/2
j,l = un

j,l +
1

2

D∆t

∆x2

(
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

)
(57)

un+1
j,l = u

n+1/2
j,l +

1

2

D∆t

∆x2

(
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

)
A tridiagonal solution is needed in both steps.



Operator splitting

Generally, considder an initial value problem

∂u

∂t
= Lu (58)

where L is some operator:

Lu = L1u + L2u + . . .+ Lmu (59)

Suppose you know a differencing scheme for each of the Li valid if that was the
only term on the RHS:

un+1 = Ui (u
n,∆t) (60)

Now we use the following scheme:

un+1/m = U1(un,∆t)

un+2/m = U2(un+1/m,∆t)

...

un+1 = Um(un+(m−1)/m,∆t)



Operator splitting 2

Splitting could be advantegous for and eq like

∂u

∂t
= −v ∂u

∂x
+ D

∂2u

∂x2
(61)

The ADI method is an other variation of this idea:
suppose Ui is the differencing scheme that involves all terms on the RHS, but is
only stable with respect to the term Li

Than the updateing is written as:

un+1/m = U1(un,∆t/m)

un+2/m = U2(un+1/m,∆t/m)

...

un+1 = Um(un+(m−1)/m,∆t/m)

In practice it is often enough to have a stable scheme for some of the terms on
the RHS, most notably the one with the highest number of spatial derivatives.



Nonlinear Schrödinger equation

aka. Gross-Pitaevskii equation. Governs the time evolution of Bose-Einstein
condensates (Dilute bose gas, where interaction of the atoms are dominted
with s-channel interaction)

i~∂Ψ(x , t)

∂t
= − 1

2m
4Ψ(x , t) + V (x)Ψ(x , t) + U|Ψ(x , t)|2|Ψ(x , t) (62)

We often consider the case where V (x) = 0
Particle number conserved:

ntot =

∫
ddx |Ψ(x , t)|2 (63)

Here we also need a unitary time evolution



Crank-Nicholson for Nonlinear Schrödinger

The Crank-Nicholson scheme is given by:

i
Ψn+1

j − Ψn
j

∆t
=

1

2

(
−

Ψn+1
j+1 − 2Ψn+1

j + Ψn+1
j−1

∆x2
+ U|Ψn+1

j |
2Ψn+1

j −
Ψn

j+1 − 2Ψn
j + Ψn

j−1

∆x2
+ U|Ψn

j |
2Ψn

j

)
Stability analysis shows that it is an unconditionally stable scheme.

It’s also non-linear, how do we solve it? Iteratively
Using H = −4, we write(

1 +
1

2
i Ĥ∆t

)
Ψn+1

j =

(
1− 1

2
i Ĥ∆t

)
Ψn

j +
1

2

(
U|Ψn+1

j |
2Ψn+1

j + U|Ψn
j |2Ψn

j

)
(64)

The right hand side we take as given, using Ψn+1
j = Ψn

j , and solve for Ψn+1
j by

inverting 1 + 1
2
iH∆t (with e.g. LU decomposition).

Now use the new Ψn+1
j in the RHS, and solve again for Ψn+1

j

Repeat until convergence



Split-step

We want to calculate e−iH∆tΨ(x , t)
With a hermitian operator H, however there are two terms in H, which do not
commute

H = − 1

2m
4︸ ︷︷ ︸

=H1

+U|Ψ(x , t)|2︸ ︷︷ ︸
=H2

(65)

Baker-Campbell-Hausdorf:

e(A+B)∆t = eA∆teB∆te−
1
2

[A,B]∆t2

+ O(∆t3) =⇒ e(A+B)∆t = eA∆teB∆t + O(∆t2)

Higher order discretisation: e i(A+B)∆t = e iA∆t/2e iB∆te iA∆t/2 + O(∆t3)
One can show that

e−iH1∆t/2 . . . e−iHL∆t/2e−iHL∆t/2 . . . e−iH1∆t/2 = e−i
∑

Hi∆t + O(∆t3)

Doing many steps with the higher order formula:∏
e iA∆t/2e iB∆te iA∆t/2 = e iA∆t/2

(∏
e iB∆te iA∆t

)
e iB∆te iA∆t/2 (66)

Half step only at the very beginning and at the very end =⇒ more accuracy
almost free



Split Step 2

H = − 1

2m
4︸ ︷︷ ︸

=H1

+U|Ψ(x , t)|2︸ ︷︷ ︸
=H2

(67)

So we approximate:

Ψ(x , t + ∆t) ≈ e−iH2∆te−iH1∆tΨ(x , t) (68)

(for higher order approximation, do half steps at the beginning and end, see
above)
The second operator to use:

e−iH2∆t = e−iU|Ψ(x,t)|2 (69)

is diagonal in space coordinates =⇒ trivially implemented.
The first operator is diagonal in k-space: 4→ −k2 in Fourier space

Ψ(x , t + ∆t) ≈ e−iH2∆tF−1
[
e−ik2

LAT ∆t/2mF [Ψ(x , t)]
]

(70)

with F the Fourier transformation



Split-step 3

Using FFT, a Fourier transformation takes O(NlogN) operations

when multiplying with k2, the lattice version for the used discretisation has to
be used

Ψ(x + a)− 2Ψ(x) + Ψ(x − a) =⇒ k2
LAT = (2 sin(πk/N))2, k = 0, . . . ,N − 1

In d dimensions, similarly:

k2
LAT =

∑
i

(2 sin(πki/N))2, ki = 0, . . . ,N − 1 (71)

This can also be used for the linear Schrödinger equation. The potential term
is than in H2 = V (x)
The space coordinates must remain periodic in order to use the Fourier
Transformation. If the potential is large at the boundaryes, this could be OK.



Finite volume method

Alternative discretisation scheme for PDEs.
Based on writeing the PDE
as a conservation of some charge:

∂tA(x , t) +∇F (x , t) = S(x , t)

with A charge density, F flux and S source terms
Defines an irregular mesh of control volumes,
each cell is called a control volume
The conservation law is integrated over the control volumes:

∂tQ + Flux on boundary =

∫
S (72)

The A, F and S depends on some fields u, and by construction the Flux is
built such that there is no loss in the boundaries (i.e. Fa = −Fb where Fa and
Fb are the flux through a face connecting two control volumes a and b ) The
conservation law is then turned into an equation for the u fields

Used often in CFD (Computational Fluid Dynamics)



Meshfree methods

A regular mesh can become broken if the material being simulated moves
around (e.g. hydrodinamic flow around a complex object)

Smoothed-particle Hydrodynamics (one of the oldest meshfree methods) the
path of particles in a hydrodinamical flow.
The physical properties of the flow are calculated using a kernel function:

A(r) =
∑
j

VjAjW ((r − rj), h) (73)

where the sum is over particles, Vj is the volume of the particle, Aj is the
quantity A carried by particle, W is the kernel function which has a
characteristic length h.
This allows converting e.g. the Euler equation into an EoM for the particles.



Multigrid

Imagine solving the Poisson equation on a fine lattice =⇒ slow momentum
modes take long to equilibrate → approximate them on a rough grid.
Typical elements of the algorithm:
Residual computation on the fine lattice
Restriction the residual is downsampled to the coarse grid
Solution on the coarse grid
Interpolation of the correction to the fine grid and adding it to the solution


