
Numerical Methods in Linear Algebra

Dénes Sexty

University of Graz

2020-2021, winter term



Overview

1 Examples: Bridge, multidim Newton’s method, QM, vibrational
eigenmodes

2 Linear equations

3 Gauss elimination, Pivoting

4 Numerical errors, condition number

5 LU decomposition, iterative improvement

6 Householder reduction

7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR),
Conjugate gradient (CG) and others

8 Eigenvalues Subspace methods, power iteration, Lánczos method, Krylov
Schur

9 Eigenvalues transformation method: Jacobi, QR

10 Diagonalization with Fourier transformation

11 Partial Differential Equations: Boundary value problems, Finite
elements

12 Partial Differential Equations: initial value problems. Courant condition,
Crank-Nicholson method



Some algebra

(1 + q + q2 + . . .+ qN−1)(1− q) = 1− qN =⇒
N−1∑
k=0

qk =
1− qN

1− q
(1)

Let’s use it for q = exp(i(2π/N)j) with j ∈ Z
if j 6= Nl with l ∈ Z =⇒ qN = 1, q 6= 1 =⇒ sum is zero
if j = Nl with l ∈ Z =⇒ q = 1

N−1∑
k=0

qk = N (2)

So in summary

1

N

N−1∑
k=0

e i
2π
N

kj = δj mod N,0 (3)

where j mod N is the remainder of the division of j with N



Fourier Transformation

Let’s define the N × N matrix U

Ukj =
1√
N
e−i 2π

N
kj , j , k = 0, 1, . . . ,N − 1 (4)

The matrix is unitary

(UU+)kl =
N−1∑
j=0

UkjU
+
jl =

N−1∑
j=0

1

N
e−i 2π

N
kje i

2π
N

jl =
1

N

N−1∑
j=0

e i
2π
N

j(l−k) = δlk (5)

Similarly we see U+U = 1

Fourier transformation of a vector:

ṽ = Uv, =⇒ U+ṽ = U+Uv = v (6)



Fourier Transformation of a matrix

Fourier Transformation of a matrix:

M̃ = UMU+, U+M̃U = M (7)

Unitary transformation =⇒ M and M̃ have the same eigenvalues.

M−1 = U+M̃−1U (8)

Proof:

MM−1 = MU+M̃−1U = U+M̃ UU+︸ ︷︷ ︸
=1

M̃−1U = (9)

= U+ M̃M̃−1︸ ︷︷ ︸
=1

U = U+U = 1

Can use Fourier transformation to

Diagonalization

Calculation of inverse

convolution, etc.

Data analysis, Data filtering, etc.



Diagonalization with Fourier Transformation

Consider the N × N matrix

Mjk = 3δjk − δj+1,k − δk−1,k (10)

0 ≤ j , k ≤ N − 1, using periodic boundary conditions: N → 0, −1→ N − 1

M =



3 −1 0 . . . −1
−1 3 −1 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . −1
−1 0 . . . −1 3


(11)

Next we calculate M̃ = UMU+



Diagonalization with Fourier Transformation2

Next we calculate M̃ = UMU+

(UMU+)kl =
1

N

∑
n,m

e−i 2π
N

kn(3δnm − δn+1,m − δn−1,m)e i
2π
N

lm = (12)

=
1

N

∑
n

e−i 2π
N

kn
(

3e i
2π
N

ln − e i
2π
N

l(n+1) − e i
2π
N

l(n−1)
)

=
1

N

∑
n

e−i 2π
N

kne i
2π
N

nl
(

3− e i
2π
N

l − e−i 2π
N

l
)

=
1

N

∑
n

e−i 2π
N

n(l−k) (3− 2 cos(2πl/N))

= δlk (3− 2 cos(2πl/N))

=⇒ M̃ is diagonal

λl = (3− 2 cos(2πl/N)) (13)



Diagonalization with Fourier Transformation3

We had M̃ = UMU+ = D diagonal

MU+ = U+D (14)

The columns of U+ are the eigenvectors of M

v0 =
1√
N


1
1
...
1

 , v1 =
1√
N


e i

2π
N

0

e i
2π
N

1

...

e i
2π
N

(N−1)

 , . . . , vN−1 =
1√
N


e i

2π
N

0

e i
2π
N

(N−1)

...

e i
2π
N

(N−1)(N−1)

 (15)

We can also calculate the inverse:

M−1
nm = U+M̃−1U =

1

N

∑
k

e i
2π
N

k(n−m)

λk
(16)



Lattice momenta

Discretisation of a first derivative:

f (x + a)− f (x)

a
=

1

a
(f (x) + af ′(x) + . . .− f (x)) ≈ f ′(a) (17)

Second derivative one could discretise e.g.:

f (x + a)− 2f (x) + f (x − a)

a2
=

1

a2
(f (x) + af ′(x) +

a2

2
f ′′(x) + . . .+ (18)

+f (x)− af ′(x) +
a2

2
f ′′(x) + . . .− 2f (x)) ≈ f ′′(a)

Let’s look at our matrix again: Mjk = 3δjk − δj+1,k − δk−1,k

Apply this to a “function” fx

(Mf )x = 3fx − fx−1 − fx+1 = fx − (fx−1 − 2fx + fx+1) (19)

=⇒ In the continuum, this corresponds to the operator: N = 1− ∂2
x



Lattice momenta2

=⇒ In the continuum, this corresponds to the operator: N = 1− ∂2
x After

Fouerier transformation, this goes into N(k) = 1 + k2

On the lattice (discretised version of the operator):
The eigenvalues were given:

λl = 3− 2 cos(2πl/N) = 1 + 2− 2 cos(2πl/N) (20)

Using cos(2x) = 1− 2 sin2(x)

λk = 1 + 2− 2 cos(2πk/N) = 1 + 2− 2(1− 2 sin2(πk/N)) = 1 + (2 sin(πk/N))2

This suggests to define lattice momentum squared

k2
LAT = (2 sin(πk/N))2, k = 0, . . . ,N − 1 (21)



Partial Differential equations

Many problems in physics: heat equation (or diffusion), wave equation in
elastic media, Maxwell equation, time dependent Schrödinger equation or Dirac
equation, Euler and Navier-Stokes equation, Klein-Gordon equation, etc.
Analytical solutions rarely exist. they are often linear. Numerical solution
needed.

Classification: consider a linear PDE of u(x , y) which is at most second order
The most general form is:

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu + G = 0 (22)

where uxx is the second partial derivative with respect to x , etc. The
coefficients A,B, . . . might depend on x and y
This is analogous to a second order form

Ax2 + 2Bxy + Cy 2 + . . . = 0 (23)

which we know for constant A,B,C describes conic sections (ellipsoid,
paraboloid, hyperboloid)



conic section classifications

Classification of conic sections: what curve is described by the following eq?

(x y)

(
A B
B C

)(
x
y

)
+ Dx + Ey = Ax2 + 2Bxy + Cy 2 + Dx + Ey = const

If the determinant of the matrix is nonzero, we can make D and E vanish by a
shift of the origin: x = x ′ − x0, y = y ′ − y0

Than we do an orthogonal rotation to make the matrix diagonal. Then our eq.
is: A′′x ′′2 + C ′′y ′′2 = const.

If the determinant of the matrix AC − B2 is positive than both eigenvalues A′′

and C ′′ have the same sign =⇒ ellipse

If the determinant of the matrix AC − B2 is negative than the eigenvalues A′′

and C ′′ have the opposite sign =⇒ hyperbola

If the determinant is zero AC − B2, we can’t do the shift, and after the
rotation we end up with A′x ′2 + D ′x ′ + Ey ′ = const.
Now doing the shift leads to A′x ′′2 + E ′y ′′ = 0 which describes a parabola

B2 − AC is usually called the discriminant



PDE classifications

B2 − AC < 0: elliptic PDEs.
The solutions are smooth if the coefficients are smooth. e.g.: Laplace
equation 4f = 0 has analytic solutions in a region even if the values on
the border are not smooth.
prototypical example: Poisson equation for u electrostatic potential,
ρ(x , y) charge distribution

uxx + uyy = −ρ(x , y) (24)

B2 − AC = 0: parabolic PDEs.
Can be transformed to the heat equation. Solutions smooth out as time
is increased. heat eq. for u temperature and κ diffusion coefficient:

ut = κuxx (25)

B2 − AC > 0: hyperbolic PDEs:
Wave equations. Discontinuities in the initial conditions are retained for
later times. Wave eq. with speed of light (or sound, etc.) v is:

utt = c2uxx (26)



PDE classification

Boundary value problems (aka. static problem) e.g.: Poisson equation
a quantity u(x , y) (or its derivative or some other property) is given on the
boundary of some region, u(x , y) inside the region is to be calculated.

Usually some kind of iterative procedure is employed, one looks for
efficient solutions.
After discretisation of linear PDEs one gets a system of linear equations,
typically with a sparse matrix.

initial value problems (aka. time evolution problem) e.g: Heat equation,
wave equation
u(x , t) is known at initial times and its time evolution is to be calculated.
u(x , t > 0) must also be given on the boundary of the region of interest
(periodic boundary conditions are also possible)

Main concern here is to devise algorithms which give a stable solution.



Boundary value problems

We start with the Poisson equation (or Laplace equation for ρ(x) = 0.

d∑
i=1

∂2

∂x2
i

Φ(x) = 4Φ(x) = −ρ(x) (27)

where we look for Φ(x) in some region Ω , with Φ(x)|x∈∂Ω given. (The
boundary can be the union of a not connected parts)
We discretise space using a cubic lattice:

xi = xi0 + ani (28)

Which means:

x = na (29)

where n is a vector of integers.
This also means:

Φ(x)→ Φ(n), ρ(x)→ ρ(n) (30)



Second derivative discretised

Let’s look at discretisation of derivatives again. Forward and backward
derivatives:

∂F f (x) =
f (x + a)− f (x)

a
= f ′(x) + f ′′(x)

a

2
+ . . . = f ′(x) + O(a) (31)

∂B f (x) =
f (x)− f (x − a)

a
= f ′(x)− f ′′(x)

a

2
+ . . . = f ′(x) + O(a)

Now we can combine the two:

∂F + ∂B
2

f (x) = f ′(x) + f ′′′(x)
a2

3
+ . . . = f ′(x) + O(a2) (32)

Choosing a symmetrised discretisation gives an extra order. (we also have
∂F f (x) = f ′(x + a/2) + O(a2) )

We can similarly show:

∂B∂F f (x) =
f (x − a)− 2f (x) + f (x + a)

a2
= f ′′(x) + O(a2) (33)

d∑
i=1

Φ(n + î)− 2Φ(n) + Φ(n− î)

a2
= 4Φ(x) + O(a2)



Discretised Poisson eq.

d∑
i=1

(
Φn+î − 2Φn + Φn−î

)
= −a2ρ(n) (34)

This a linear system of equations with ρ giving the right hand side.

matrix A in one dimension is:
−2 1 0 . . . 0
1 −2 1 . . . 0

0
. . .

. . .
. . .

...
0 . . . 1 −2 1
0 . . . 1 −2



In three dimensions:



Jacobi iteration

We can also written this as:

2dΦn =
d∑

i=1

(Φn+î + Φn−î ) + a2ρ(n) (35)

Φn =
1

2d

d∑
i=1

(Φn+î + Φn−î )︸ ︷︷ ︸
avr. of neighb.

+
a2

2d
ρ(n)︸ ︷︷ ︸

correction

This suggests using a relaxation method: we start from some initial
configuration and calculate averages until nothing changes

Jacobi method

Φ(t+1)
n =

1

2d

d∑
i=1

(Φ
(t)

n−î
+ Φ

(t)

n+î
) +

a2

2d
ρ(n) (36)

Corresponds to the Jacobi iteration we had earlier

xi+1 = D−1(Lxi + Uxi + b) (37)



Gauss-Seidel

We can use the values that we already have to make convergence faster:

Φ(t+1)
n =

1

2d

d∑
i=1

(Φ
(t+1)

n−î
+ Φ

(t)

n+î
) +

a2

2d
ρ(n) (38)

Corresponds to the Gauss-Seidel iteration we had earlier (if the ordering of the
elements xi of choosen right)

xi+1 = D−1(Lxi+1 + Uxi + b) (39)

No need to store Φ(t+1) separately. Also makes convergence faster.

Typically we need many steps in the same direction until the limiting value is
reached. We could make convergence faster if we increase the change of the
field artificially
→ Successive overrelaxation



Successive overrelaxation

Φ′n =
1

2d

d∑
i=1

(Φ
(t+1)

n−î
+ Φ

(t)

n+î
) +

a2

2d
ρ(n) (40)

Φ(t+1)
n = Φ(t)

n + ω(Φ′n − Φ(t)
n ) = (1− ω)Φ(t)

n + ωΦ′n

Corresponds to the successive overrelaxation we had before:

xi+1 = (1− ω)xi + ωD−1(Lxi+1 + Uxi + b) (41)

we again have:
ω = 1: Gauss-Seidel
ω > 1: overrelaxation
ω < 1: underrelaxation

One can show that: 1. the method is convergent for 0 < ω < 2, 2. only ω > 1
can be faster than Gauss-Seidel (These are true for the Poisson problem, not
generally for Gauss-Seidel with SOR)
The speed of convergence is quite sensitive to the value of ω. experimentation
is needed as the best ω value depends on the geometry of the problem



SOR



Other boundary conditions

So far we use Dirichelet boundary conditions: Φ(x) on the boundary is given.
We can also have: Neumann boundary conditions , where n∇Φ(x) is given
on the boundary, with n a normal vector of the boundary surface
We can also have: Robin boundary conditions , where an∇Φ(x) + bΦ(x) is
given on the boundary.

How do we implement Neumann numerically? In 1d:
We want to solve:

4Φ(x) = −ρ(x), for Φ(i), with i = 0, . . . ,N (42)

With the boundary condition ∂xΦ(0) = d
Let’s introduce Φ(−1) “ghost point”
We than have:

Φ(1)− Φ(−1)

2a
= d ,

Φ(1)− 2Φ(0) + Φ(−1)

a2
= −ρ(0) (43)



Neumann boundary

Φ(1)− Φ(−1)

2a
= d ,

Φ(1)− 2Φ(0) + Φ(−1)

a2
= −ρ(0) (44)

We don’t know what Φ(−1) is, but these two equations must be consistent:

Φ(1)− 2ad = −a2ρ(0)− Φ(1) + 2Φ(0) (45)

Which is equivalent to:

2Φ(1)− 2Φ(0) = −a2ρ(0)− 2ad (46)

So our matrix A and right hand side is modified to:

A =


−2 2 0 . . . 0
1 −2 1 . . . 0

0
. . .

. . .
. . .

...
0 . . . 1 −2 1
0 . . . 1 −2

 , b =


−a2ρ(0) − 2ad

−a2ρ(1)
...

−a2ρ(N − 1)
−a2ρ(N)


Robin boundary conditions can be dealt with similarly

Caveat: If there are Neumann boundary conditions everywhere in the system,
Φ(x)→ Φ(x) + const. is also a solution
=⇒ matrix A will be singular. Simplest solution: fix Φ(0) = 0



Finite Element Methods

What we have been doing so far is called “Finite difference method”
There is a related method called Finite element method

We start from the reformulation of the given differential equation as a
variational problem. This can be e.g. a minimization problem:

Find u ∈ V such that F (u) ≤ F (v) for all v ∈ V , (47)

where V is a set of admissible functions and F : V → R is a functional
v ∈ V can represent a continuously varying quantity such as temperature,
electric potential, displacement in an elastic body, etc., F (v) can be the total
energy associated to v .

Usually V is an infinite dimensional space. To be able to solve it, we restrict it
to Vh ⊂ V , which consits of simple functions depending on finitely many
parameters. The solution over Vh consists of a large system of equations (linear
on nonlinear).
E.g. Vh can be picewise polynomial, this corresponds to the Ritz-Garlekin
method.



Finite Element Methods 2

for a FEM solution we need the following steps:

1 variational formulation of the PDE

2 discretisation using FEM: construction of the finite dimensional space Vh

3 deriving the equations describing the solution in Vh

4 Calculation (and codeing) using a computer

Sometimes there are multiple formulations depending on the choice of
independent variables. The choice of Vh is is influenced by the variational
formulation, the accuracy requirement and the regularity properties of the
solution
Advantages: Deals easily with complicated geometry, general boundary
conditions and space dependent or non-linear material properties.



Dielectric constant in Poisson eq.

Can we formulate the Poisson equation using a variational principle?

4Φ(x) = −ρ(x) (48)

Let’s use:

F (Φ) =

∫
ddx

(
1

2

∑
i

(∂iΦ(x))2 − ρ(x)Φ(x)

)
(49)

We want to minimize this, we can write the Euler-Lagrange equations:∑
i

∂i
δF

δ∂iΦ(x)
=

δF

δΦ(x)
=⇒ 4Φ(x) = −ρ(x) (50)

We recognise F (Φ) as the energy of the electric field and the charge
distribtuion in the potential.
What happens if we have a dielectric material:

divD = ρ(x) =⇒ div(ε(x)∇φ) = −ρ(x) (51)

Easily incorporated in the variational principle:

F (Φ) =

∫
ddx

(
1

2
ε(x)

∑
i

(∂iΦ(x))2 − ρ(x)Φ(x)

)
(52)



Dielectric material in 1D Poisson eq

Consider this in 1D:

F (Φ) =

∫
dx

(
1

2
ε(x)(∂xΦ(x))2 − ρ(x)Φ(x)

)
(53)

Now considering piecewise linear Φ :

(and slowly varying ε(x) and ρ(x))

F (Φ) =
1

2h

∑
k

εk+1/2(Φk − Φk+1)2 − h
∑
k

ρkΦk (54)

∂F/∂Φk gives the minimum equations:

−εk+1/2Φk+1 + (εk+1/2 + εk−1/2)Φk − εk−1/2Φk−1 = h2ρk (55)

Linear system of equations for Φk



Triangulation in FEM

Solving Poisson eq. in some 2d region:

Writing test functions uh =
∑N

i=k ηkϕk as piecewise linear on the triangles
(therefore are fixed if we give the function on the vertices of the triangles)

F (uh) =

∫
ddx

(∑
i

(∂i

N∑
k=1

ηkϕk(x))2 − ρ(x)
N∑
i=k

ηkϕk(x)

)
(56)

The integrals can be calculated beforehand (amounts to integrating simple
polynomials over triangle-shaped regions) and we get:

F (uh) =
1

2
ηiAijηk − ηibi =⇒ Aikηk = bi (57)



Poisson eq: finite differences and FEM

Finite differences is a special case of FEM:

using cubic lattice with piecewise linear
functions is equivalent to finite differences



Poisson eq. and Fourier Transformation

In continuum we can solve the poisson equation using Fourier equation:

4Φ(x) = −ρ(x) =⇒︸ ︷︷ ︸
FT

−k2Φ(k) = −ρ(k) (58)

Now we get Φ(x) as the inverse Fourier transformation of ρ(k)/k2

We can do this on the lattice too:

41D =



−2 1 0 . . . 1
1 −2 1 . . . 0

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

0
. . .

. . . 1
1 0 . . . 1 −2


= −k2

LAT (59)

We must use periodic boundary conditions in all dimensions

total charge must be zero (ρ(k = 0) = 0), otherwise we have a problem
with Gauss law


