Numerical Methods in Linear Algebra

Dénes Sexty

University of Graz

2020-2021, winter term

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

UNI

1 Examples: Bridge, multidim Newton's method, QM, vibrational eigenmodes
2 Linear equations
3 Gauss elimination, Pivoting
4 Numerical errors, condition number
5 LU decomposition, iterative improvement
6 Householder reduction
7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR), Conjugate gradient (CG) and others
8 Eigenvalues Subspace methods, power iteration, Lánczos method, Krylov Schur
9 Eigenvalues transformation method: Jacobi, QR
II Diagonalization with Fourier transformation

Eigenvalues by the transformation method

For the moment, take real symmetric (or complex Hermitian) matrices. Any such matrix A can be diagonalized orthogonally (unitarily)

$$
\begin{equation*}
D=U^{+} A U, \quad U^{+}=U^{-1} \Longrightarrow U^{+} U=1 \tag{1}
\end{equation*}
$$

where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is a diagonal matrix.
Also, we have $A U=U D$ which means that columns of U are the eigenvectors of A.

$$
\begin{equation*}
U=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \quad A\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(\lambda_{1} u_{1}, \lambda_{2} u_{2}, \ldots, \lambda_{n} u_{n}\right) \tag{2}
\end{equation*}
$$

The transformation methods find the eigenvalues by succesively applying orthogonal transformations:

$$
\begin{align*}
A^{(1)} & =U_{0}^{+} A U_{0} \tag{3}\\
A^{(2)} & =U_{1}^{+} A^{(1)} U_{1}=U_{1}^{+} U_{0}^{+} A U_{0} U_{1} \\
A^{(k+1)} & =U_{k}^{+} A^{(k)} U_{k}=U_{k}^{+} \ldots U_{1}^{+} U_{0}^{+} A U_{0} U_{1} \ldots U_{k}
\end{align*}
$$

The orthogonal transformations are choosen such that the non-diagonal elements in $A^{(k)}$ converge to zero.
In contrast to subspace methods, we get all eigenvalues and eigenvectors of the matrix

Givens rotation matrix

Let's define the following transformation matrix:

$$
U(i, j, \varphi)=\left[\begin{array}{ccccccc}
1 & & 0 & & 0 & & 0 \tag{4}\\
& \ddots & \vdots & & \vdots & & \\
0 & \ldots & \cos \varphi & \ldots & -\sin \varphi & \ldots & 0 \\
& & \vdots & \ddots & \vdots & & \\
0 & \ldots & \sin \varphi & \ldots & \cos \varphi & \ldots & 0 \\
& & \vdots & & \vdots & \ddots & \\
0 & & 0 & & 0 & & 1
\end{array}\right]
$$

$$
U(i, j, \varphi)_{m n}= \begin{cases}1 & \text { if } m=n, m \neq i \text { and } m \neq j \tag{5}\\ \cos \varphi & \text { if } m=n=i \text { or } m=n=j \\ -\sin \varphi & \text { if } m=i \text { and } n=j \\ \sin \varphi & \text { if } m=j \text { and } n=i \\ 0 & \text { otherwise }\end{cases}
$$

So the $\left[\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right]$ is "embedded" into the i and j-th row and column of an $n \times n$ unit matrix

Using $\cos ^{2} \varphi+\sin ^{2} \varphi=1$ we can easily show: $U(i, j, \varphi)^{T} U(i, j, \varphi)=1$. Now we have for $A=A^{T}$:

$$
\begin{align*}
B & =U(i, j, \varphi)^{T} A U(i, j, \varphi) \tag{6}\\
B^{T} & =U(i, j, \varphi)^{T} A^{T} U(i, j, \varphi)=U(i, j, \varphi)^{T} A U(i, j, \varphi)=B
\end{align*}
$$

So the matrix stays symmetric.
Let's look at the transformed matrix when transforming with $U(i, j, \varphi)$:

$$
\begin{equation*}
A_{k l}^{(n+1)}=U_{k m}^{T} A_{m n}^{(n)} U_{n l}=U_{m k} U_{n l} A_{m n}^{(n)} \tag{7}
\end{equation*}
$$

If k and l are neither i nor j, the transformation matrices are unit matrices:

$$
\begin{equation*}
A_{k l}^{(n+1)}=\delta_{m k} \delta_{n l} A_{m n}^{(n)}=A_{k l}^{(n)} \text { for } k, l \neq i, j \tag{8}
\end{equation*}
$$

this means only i-th and j-th row and column are changed.

Jacobi method

Using $A_{k l}^{(n+1)}=U_{m k} U_{n l} A_{m n}^{(n)}$ we calculate the changed entries of the matrix

$$
\begin{align*}
A_{k i}^{(n+1)} & =A_{k i}^{(n)} \cos \varphi+A_{k j}^{(n)} \sin \varphi \text { for } k \neq i, j \tag{9}\\
A_{k j}^{(n+1)} & =A_{k j}^{(n)} \cos \varphi-A_{k i}^{(n)} \sin \varphi \text { for } k \neq i, j \\
A_{i j}^{(n+1)} & =A_{i j}^{(n)} \cos ^{2} \varphi+2 A_{i j}^{(n)} \cos \varphi \sin \varphi+A_{j j}^{(n)} \sin ^{2} \varphi \\
A_{j j}^{(n+1)} & =A_{j j}^{(n)} \cos ^{2} \varphi-2 A_{i j}^{(n)} \cos \varphi \sin \varphi+A_{i i}^{(n)} \sin ^{2} \varphi \\
A_{i j}^{(n+1)} & =A_{i j}^{(n)}\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right)+\left(A_{j j}^{(n)}-A_{i i}^{(n)}\right) \cos \varphi \sin \varphi
\end{align*}
$$

How should we choose i, j and φ ?
Jacobi method: We should choose e.g. the largest absolute value off diagonal element $A_{i j}^{(n)}$ and make it vanish:

$$
\begin{equation*}
A_{i j}^{(n+1)}=A_{i j}^{(n)}\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right)+\left(A_{j j}^{(n)}-A_{i i}^{(n)}\right) \cos \varphi \sin \varphi=0 \tag{10}
\end{equation*}
$$

The angle φ is calculated from

$$
\begin{equation*}
\frac{A_{i i}^{(n)}-A_{j j}^{(n)}}{A_{i j}^{(n)}}=\frac{\cos ^{2} \varphi-\sin ^{2} \varphi}{\sin \varphi \cos \varphi}=2 \beta \tag{11}
\end{equation*}
$$

where we defined the shorthand $\beta>0$ (otherwise we swap j and j)

Calculating the angle

We actually only need $\sin \varphi=s, \quad \cos \varphi=c$

$$
\begin{equation*}
c^{2}-s^{2}=1-2 s^{2}=2 \beta s c \tag{12}
\end{equation*}
$$

One more square to get rid of c :

$$
\begin{equation*}
1-4 s^{2}+4 s^{4}=4 \beta^{2} s^{2} \underbrace{c^{2}}_{=1-s^{2}}=4 \beta^{2} s^{2}-4 \beta^{2} s^{4} \tag{13}
\end{equation*}
$$

Solving the quadratic eq: $s^{4}-s^{2}+1 /\left(4+4 \beta^{2}\right)=0$

$$
\begin{equation*}
s^{2}=\frac{1}{2}\left(1 \pm \sqrt{1-\frac{4}{4+4 \beta^{2}}}\right)=\frac{1}{2}\left(1 \pm \sqrt{\frac{4 \beta^{2}}{4+4 \beta^{2}}}\right)=\frac{1}{2}\left(1 \pm \frac{\beta}{\sqrt{1+\beta^{2}}}\right) \tag{14}
\end{equation*}
$$

We choose the negative sign, than we get $s^{2}<1 / 2$ and $0 \leq \varphi \leq \pi / 4$ We also get

$$
\begin{equation*}
s c=\sqrt{s^{2} c^{2}}=\frac{1}{2} \sqrt{-} \sqrt{+}=\frac{1}{2} \sqrt{1-\frac{\beta^{2}}{1+\beta^{2}}}=\frac{1}{2} \frac{1}{\sqrt{1+\beta^{2}}} \tag{15}
\end{equation*}
$$

For nonzero $A_{i j}$ we calculate

$$
\begin{equation*}
\beta=\frac{1}{2} \frac{A_{i i}-A_{j j}}{A_{i j}}, \quad c^{2}, s^{2}=\frac{1}{2}\left(1 \pm \frac{\beta}{\sqrt{1+\beta^{2}}}\right), \quad s c=\frac{1}{2} \frac{1}{\sqrt{1+\beta^{2}}} \tag{16}
\end{equation*}
$$

if $\beta<0$ we swap i and j first.

We than update the matrix (B is the shorthand for $A^{(n+1)}$):

$$
\begin{align*}
B_{k i} & =A_{k i} c+A_{k j} s \text { for } k \neq i, j \tag{17}\\
B_{k j} & =A_{k j} c-A_{k i} s \text { for } k \neq i, j \\
B_{i i} & =A_{i i} c^{2}+2 A_{i j} s c+A_{j j} s^{2} \\
B_{j j} & =A_{j j} c^{2}-2 A_{i j} s c+A_{i j} s^{2} \\
B_{i j} & =0
\end{align*}
$$

We made one offdiagonal element zero, but influenced other ones. Do we get closer to diagonal?
Let's use the Frobenius norm:

$$
\begin{equation*}
\|A\|_{F}=\sum_{i, j} A_{i j}^{2}=\sum_{i, j} A_{i j}\left(A^{T}\right)_{j i}=\operatorname{Tr}\left(A A^{T}\right) \tag{18}
\end{equation*}
$$

Now we calculate the Frobenius norm of the transformed matrix $B=A^{\prime}$

$$
\begin{equation*}
\|B\|_{F}=\operatorname{Tr}\left(B^{T} B\right)=\operatorname{Tr}(B B)=\operatorname{Tr}(U^{T} A \underbrace{U U^{T}}_{=1} A U)=\operatorname{Tr}(A A)=\|A\|_{F} \tag{19}
\end{equation*}
$$

So the total Frobenius norm is unchanged. We can also prove that the sum squared of the diagonal part increases in each transformation:
First note that:

$$
\left(\begin{array}{ll}
B_{i i} & B_{i j} \tag{20}\\
B_{j i} & B_{j j}
\end{array}\right)=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{ll}
A_{i i} & A_{i j} \\
A_{j i} & A_{j j}
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)
$$

We can also use the conservation of the Frobenius norm for these 2×2 matrices

Jacobi convergence

We choose the angle such that we zero the non-diagonal element in B :

$$
\begin{equation*}
B_{i j}^{2}+B_{j j}^{2}=A_{i i}^{2}+A_{j j}^{2}+2 A_{i j}^{2} \tag{21}
\end{equation*}
$$

Since the other diagonal elements are unchanged in the transformed matrix, we have:

$$
\begin{equation*}
\sum_{k} B_{k k}^{2}=\sum_{k} A_{k k}^{2}+2 A_{i j}^{2} \tag{22}
\end{equation*}
$$

Which means that the magnitude of the diagonal elemnts grow, the magnitude of offdiagonals decrease in every step.

Usually one does not always look for the largest offdiagonal element, but e.g. performs zeroing them in order and do many "sweeps".

Convergence criterium: $\sum_{i \neq j} a_{i j}^{2}<\epsilon \sum_{i} a_{i i}^{2}$

During the transformations we keep track of the transformations:

$$
\begin{array}{r}
A^{(0)}=A, \quad V^{(0)}=1 \tag{23}\\
A^{(n+1)}=U^{\top} A^{(n)} U \\
V^{(n+1)}=V^{(n)} U
\end{array}
$$

Thus we get the eigenvalues in V
Updating the eigenvectors can be done cheaply: only i-th and j-th column changes in a step zeroing $A_{i j}$

$$
\begin{gather*}
(V U(i, j, \varphi))_{k i}=V_{k i} \cos \varphi+V_{k j} \sin \varphi \tag{24}\\
(V U(i, j, \varphi))_{k j}=-V_{k i} \sin \varphi+V_{k j} \cos \varphi
\end{gather*}
$$

Complex Hermitian matrices

Take H Hermitian $N \times N$ matrix. H has real eigenvalues

$$
\begin{equation*}
H=A+i B, \quad H^{+}=A^{T}-i B^{T}=A+i B \tag{25}
\end{equation*}
$$

$\Longrightarrow A$ is real symmetric, B is real and antisymmetric.
Eigenvalues are given by:

$$
\begin{equation*}
H v=r v, \quad v=u+i w \tag{26}
\end{equation*}
$$

with real vectors u and w

$$
\begin{equation*}
(A+i B)(u+i w)=r(u+i w) \tag{27}
\end{equation*}
$$

This implies

$$
\begin{align*}
& A u-B w=r u \tag{28}\\
& B u+A w=r w
\end{align*} \quad \text { which is } \quad\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right]\left[\begin{array}{c}
u \\
w
\end{array}\right]=r\left[\begin{array}{c}
u \\
w
\end{array}\right]
$$

An eigenvalue problem of a $2 N \times 2 N$ real, symmetric matrix

Complex matrices

Thus we can use e.g. Jacobi method for

$$
\left[\begin{array}{cc}
A & -B \tag{29}\\
B & A
\end{array}\right]
$$

$2 N \times 2 N \Longrightarrow$ there are $2 N$ eigenvalues instead of N

$$
\left[\begin{array}{cc}
A & -B \tag{30}\\
B & A
\end{array}\right]\left[\begin{array}{l}
u \\
w
\end{array}\right]=r\left[\begin{array}{l}
u \\
w
\end{array}\right] \quad \Longrightarrow \quad\left[\begin{array}{cc}
A & -B \\
B & A
\end{array}\right]\left[\begin{array}{c}
-w \\
u
\end{array}\right]=r\left[\begin{array}{c}
-w \\
u
\end{array}\right]
$$

So we have two eigenvectors for every eigenvalue \Longrightarrow The eigenvalues are degenerate.
The two vectors differ by a phase factor: $v_{2}=-w+i u=i(u+i w)=i v_{1}$ We choose either vector for each eigenvalue, than we have all eigenvalues and eigenvectors of H

We define the following iterative procedure starting from a matrix A

$$
\begin{equation*}
A_{k}=Q_{k} R_{k}, \quad A_{k+1}=R_{k} Q_{k} \tag{31}
\end{equation*}
$$

We do the decomposition to a Q orthogonal matrix and an R upper triangular matrix (using the Householder reduction)
A_{k+1} is similar to A_{k} and thus to $A_{1}=A$

$$
\begin{equation*}
A_{k+1}=R_{k} Q_{k}=Q_{k}^{T} Q_{k} R_{k} Q_{k}=Q_{k}^{T} A_{k} Q_{k}=Q_{k}^{T} Q_{k-1}^{T} \ldots Q_{1}^{T} A Q_{1} Q_{2} \ldots Q_{k} \tag{32}
\end{equation*}
$$

A_{k+1} has the same eigenvalues as A
Using the notation $Q^{(k)}=Q_{1} Q_{2} \ldots Q_{k}$ we have

$$
\begin{gather*}
Q^{(k)} R_{k}=Q_{1} \ldots Q_{k-1} A_{k}=Q_{1} \ldots Q_{k-1} R_{k-1} Q_{k-1}= \tag{33}\\
Q_{1} \ldots Q_{k-2} A_{k-1} Q_{k-1}=\ldots=A Q_{1} \ldots Q_{k-1}=A Q^{(k-1)}
\end{gather*}
$$

So we have proven

$$
\begin{equation*}
A Q^{(k-1)}=Q^{(k)} R_{k} \tag{34}
\end{equation*}
$$

QR iteration and power iteration

We also define $R^{(k)}=R_{k} \ldots R_{1}$. Then we write

$$
\begin{equation*}
Q^{(k)} R^{(k)}=Q^{(k)} R_{k} R^{(k-1)}=A Q^{(k-1)} R^{(k-1)} \tag{35}
\end{equation*}
$$

Doing this $k-1$ more times we have a decomposition for the k-th power of AK A^{k}

$$
\begin{equation*}
A^{k}=Q^{(k)} R^{(k)} \tag{36}
\end{equation*}
$$

Let's denote the columns of $Q^{(k)}$ as $u_{i}^{(k)}$ Now let's look at the first column of $A Q^{(k)}=Q^{(k+1)} R_{k+1}$:

$$
\begin{equation*}
A u_{1}^{(k)}=u_{1}^{(k+1)}\left(R_{k+1}\right)_{11} \tag{37}
\end{equation*}
$$

The orthogonality condition of $Q^{(k)}$ means that the $u_{i}^{(k)}$ vectors are orthonormal, so this equation is just the definition of the power iteration.
$\Longrightarrow\left(R_{k}\right)_{11}$ converges to the largest eigenvalue and $u_{1}^{(k)}$ to its eigenvector.

QR and inverse power iteration

We start again from: $A Q^{(k)}=Q^{(k+1)} R_{k+1}$, which implies $A=Q^{(k+1)} R_{k+1} Q^{(k) T}$, which we invert and transpose

$$
\begin{array}{r}
A^{-1}=Q^{(k)} R_{k+1}^{-1} Q^{(k+1) T} \tag{38}\\
\left(A^{-1}\right)^{T}=Q^{(k+1)}\left(R_{k+1}^{-1}\right)^{T} Q^{(k) T} \\
\left(A^{-1}\right)^{T} Q^{(k)}=Q^{(k+1)}\left(R_{k+1}^{-1}\right)^{T}
\end{array}
$$

The inverse of an upper (lower) triangular matrix is again upper (lower triangular), so $\left(R_{k+1}^{-1}\right)^{T}$ is lower triangular.
We look at the last column of the above equation:

$$
\begin{equation*}
\left(A^{-1}\right)^{T} u_{n}^{(k)}=u_{n}^{(k+1)}\left(R_{k+1}^{-1}\right)_{n n}^{T} \tag{39}
\end{equation*}
$$

Since columnvectors in $Q^{(k)}$ are normalized, This is just the inverse iteration for the transpose of the matrix (or equivalently, inverse iteration for left eigenvectors)
\Longrightarrow The last column of $Q^{(k)}$ converges to an eigenvector and $\left(R_{k+1}^{-1}\right)_{n n}$ to an eigenvalue

So first and last column of $Q^{(k)}$ converges to eigenvectors, what about the rest?

QR decomposition can be understood as orthonormalization procedure:

$$
\begin{equation*}
M=Q R \tag{40}
\end{equation*}
$$

M is a collection of column vectors m_{i}
Q is a collection of orthonormal column vectors q_{i} (as $Q^{T} Q=1$).
q_{1} is the same as m_{1} normalized: $m_{1}=q_{1} r_{11}$
m_{2} is calculated from the first 2 vectors of $Q: m_{2}=q_{1} r_{12}+q_{2} r_{22}$
looking at it "backwards":

$$
\begin{equation*}
q_{2}=\frac{1}{r_{22}}\left(m_{2}-q_{1} r_{12}\right)=\frac{1}{r_{22}}\left(m_{2}-q_{1}\left(q_{1}^{+} m_{2}\right)\right) \tag{41}
\end{equation*}
$$

Which means q_{2} is just the (normalized) part of m_{2} which is orthogonal to q_{1}. and so on with q_{3}, q_{4}, \ldots

One can actually use this orthogonalization procedure (Gram-Schmidt ortogonalization) to calculate the $Q R$ reduction, however the Householder reduction we looked at earlier is more stable numerically

QR iteration and simultaneous power iteration

Let's look at the iteration eq. again:

$$
\begin{equation*}
A Q^{(k)}=Q^{(k+1)} R_{k+1} \tag{42}
\end{equation*}
$$

As $Q^{(k+1)}$ is orthogonal and R_{k+1} is upper triagonal, this is a QR reduction or an orthonormalization of $A Q^{(k)}$.
Thus we can understand the QR iteration like this:
1 Start with n column vectors spanning n dimension space: $Q^{(0)}=1$
2 Loop: Apply the matrix A to each column vector
3 Make the column vectors orthogonal to each other
4 goto 2
This is what we call a simultaneous power iteration. The ortogonalization step is essential, otherwise all vectors will converge to the eigenvector of the largest eigenvalue.
Thus QR iteration is equivalent to simultaneous power iteration \rightarrow it will find eigenvalues and eigenvectors.

QR method

Theorem: Assume A is a nonsingular real matrix with nondegenerate eigenvalues. Let P denote the matrix of eigenvectors:
$A=P \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) P^{-1}$, we assume that P^{-1} can be $L U$ decomposed. Then the sequence A_{k} generated by the QR algorithm converges to an upper triangular matrix with the eigenvalues on the diagonal.

If A is symmetric than A_{k} is also symmetric and thus converges to a diagonal matrix and $Q^{(k)}$ converges to the eigenvectors.

Costs: naively it costs $O\left(n^{3}\right)$ operations to calculate the QR reduction in each step of the algorithm.
It makes sense to first transform the matrix to upper Hessenberg form (where everything below the first subdiagonal is zero). For a symmetric matrix this means transforming to a tridiagonal form (nonzero elements only on the diagonal, first sub and superdiagonal)
Upper Hessenberg matrices remain upper Hessenberg after a QR iteration

QR convergence

For any $n \times n$ matrix A there exists a unitary matrix P which is a product of $n-2$ Householder matrices such that $P^{+} A P$ is upper Hessenberg.

When we calculate the QR algorithm on the upper Hessenberg form, we check whether $\left(A_{k}\right)_{n, n-1}$ is small, as it signals the convergence of the eigenvalue in $\left(A_{k}\right)_{n, n}$. (If it converges we can leave out the last row and last line of the matrix and continue with the rest $=$ deflation algorithm)

It can be shown that the convergence of the smallest eigenvalue goes with

$$
\begin{equation*}
\left(A_{k}\right)_{n, n-1}=O\left(\left|\frac{\lambda_{1}}{\lambda_{2}}\right|^{k}\right) \tag{43}
\end{equation*}
$$

where λ_{1} is the smallest eigenvalue λ_{2} is the second smallest.

If we can arrange it such that the smallest eigenvalue is very small, convergence will be faster \Longrightarrow shifted QR
If we know σ to be a good approximation to one of the eigenvalues, $A-\sigma$ will have a small eigenvalue
We proceed with

$$
\begin{align*}
A_{k}-\sigma & =Q_{k} R_{k} \tag{44}\\
A_{k+1} & =R_{k} Q_{k}+\sigma=Q_{k}^{T}\left(Q_{k} R_{k}+\sigma\right) Q_{k}=Q_{k}^{T} A_{k} Q_{k}
\end{align*}
$$

This is called QR algorithm with an explicit shift.

We can also change the shift at every step:
Let σ_{k} be a good approximation of the smallest eigenvalue (e.g. $\left.\left(A_{k}\right)_{n n}\right)$ after step k

$$
\begin{equation*}
A_{k}-\sigma_{k}=Q_{k} R_{k}, \quad A_{k+1}=R_{k} Q_{k}+\sigma_{k} \tag{45}
\end{equation*}
$$

Shifted inverse power iteraton

Shifted QR is related to the inverse power iteration:
If we know there is an eigenvalue close to μ :

$$
\begin{equation*}
\left|\lambda_{i}-\mu\right|<\left|\lambda_{j}-\mu\right| \text { for } j \neq i \tag{46}
\end{equation*}
$$

We can use power iteration of $(A-\mu \mathbf{1})^{-1}$:

$$
\begin{equation*}
\mathbf{v}_{0}=\mathbf{v} /\|\mathbf{v}\| \tag{47}
\end{equation*}
$$

solve $\quad(A-\mu \mathbf{1}) \mathbf{y}_{\mathbf{k}}=\mathbf{v}_{k-1}$ for \mathbf{y}_{k}

$$
\mathbf{v}_{k+1}=\mathbf{y}_{k} /\left\|\mathbf{y}_{k}\right\|
$$

\Longrightarrow This converges to $\mathbf{x}_{i} \Longrightarrow \lambda_{i}$ is found

Power iteration with linear functional

This is the formalization of the idea "let's read off the eigenvalue from the first component"
Let's take a linear functional on the vector space, which can be represented by a row vector using the scalar product:

$$
\begin{equation*}
I(v)=\mathbf{I}^{T} \mathbf{v} \tag{48}
\end{equation*}
$$

(e.g. take the i-th component with $\mathbf{I}=e_{i}$)

We can use this to keep our vector "normalized":

$$
\begin{array}{r}
\mathbf{v}_{0}=\mathbf{u} \tag{49}\\
\mathbf{w}_{k+1}=A \mathbf{v}_{k}, \quad n_{k+1}=I\left(\mathbf{w}_{k+1}\right) \\
\mathbf{v}_{k+1}=\mathbf{w}_{k+1} / n_{k+1}
\end{array}
$$

Similarly to the reasoning to before, One can show that n_{k+1} converges to an eigenvalue and \mathbf{v}_{k} to an eigenvector, if neither the initial guess nor \mathbf{I} is not orthogonal to the eigenvector
(e.g. with e_{1} one keeps the first component of \mathbf{v}_{k} equal to 1 , than one reads off the eigenvalue after the application of the matrix)

In shifted inverse iteration, we should update the shift after every iteration, that should improved convergence.

$$
\begin{array}{r}
\mathbf{y}_{k+1}=\left(A-\sigma_{k} \mathbf{1}\right)^{-1} \mathbf{v}_{k} \tag{50}\\
n_{k+1}=I\left(\mathbf{y}_{k+1}\right), \quad \mathbf{v}_{k+1}=\mathbf{y}_{k+1} / n_{k+1} \\
\sigma_{k+1}=\sigma_{k}+\frac{1}{n_{k+1}}
\end{array}
$$

σ update comes from:

$$
\begin{equation*}
\frac{1}{\lambda-\sigma_{k}}=n_{k+1} \quad \Longrightarrow \quad \lambda=\sigma_{k}+\frac{1}{n_{k+1}} \tag{51}
\end{equation*}
$$

This is equivalent to the Newton iteration on the system

$$
F\left(\left[\begin{array}{l}
\mathbf{u} \tag{52}\\
\lambda
\end{array}\right]\right)=\left[\begin{array}{c}
A \mathbf{u}-\lambda \mathbf{u} \\
\mathbf{I}^{+} \mathbf{u}-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

\Longrightarrow Algorithm is quadratically convergent

Rayleigh Quotient

We define the Rayleigh quotient for vectors \mathbf{u} and \mathbf{v} which are not orthogonal as $R=\mathbf{v}^{+} A \mathbf{u} / \mathbf{v}^{+} \mathbf{u}$ if \mathbf{u} is an eigenvector of A than R gives the eigenvalue.

We can use the Rayleigh quotient as an approximation to the eigenvalue for the next shift:

$$
\begin{array}{r}
\mathbf{y}_{k+1}=\left(A-\sigma_{k} \mathbf{1}\right)^{-1} \mathbf{v}_{k} \tag{53}\\
\mathbf{v}_{k+1}=\mathbf{y}_{k+1} /\left\|\mathbf{y}_{k+1}\right\| \\
\sigma_{k+1}=\mathbf{v}_{k+1}^{+} A \mathbf{v}_{k+1}
\end{array}
$$

If A is symmetric than this algorithm is cubically convergent. (quadratic for non-symmetric matrices)
In the QR iteration we chose $\left(A_{k}\right)_{n n}$ as the next shift value:

$$
\begin{equation*}
\left(A_{k}\right)_{n n}=e_{n}^{T} A_{k} e_{n}=e_{n}^{T} Q^{(k) T} A Q^{(k)} e_{n}=\left(Q^{(k)} e_{n}\right)^{T} A\left(Q^{(k)} e_{n}\right)=u_{n}^{T} A u_{n} \tag{54}
\end{equation*}
$$

which is the Rayleigh quotient based on the last column vector of $Q^{(k)}$.
\Longrightarrow Shifted QR converges fast.

QR algorithm with explicit shifts

Summary: QR with explicit shifts for an $n \times n$ matrix A
1 Transform the matrix to upper-Hessenberg form
2 $m=n$ eigenvalues still missing
3 if $\left\|A_{m, m-1}\right\|<\epsilon$:
eigenvalue found: $A_{m, m}$
delete last row and last column of A
$m=m-1$
stop if all e.v. are found
4 Take as shift the bottom left corner: $\sigma=A_{n n}$

$$
A-\sigma=Q R, \quad A=R Q+\sigma
$$

5 goto 3

QR algorithm is the most often used algorithm for dense eigenvalue problems. In practice one uses a slightly more complicated algorithm. (with keywords: implicit (double-) shifts, bulge chasing, agressive early deflation, blocked versions, ...)

