
Numerical Methods in Linear Algebra

Dénes Sexty

University of Graz

2020-2021, winter term

Overview

1 Examples: Bridge, multidim Newton’s method, QM, vibrational
eigenmodes

2 Linear equations

3 Gauss elimination, Pivoting

4 Numerical errors, condition number

5 LU decomposition, iterative improvement

6 Householder reduction

7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR),
Conjugate gradient (CG) and others

8 Eigenvalues Subspace methods, power iteration, Lánczos method, Krylov
Schur

9 Eigenvalues transformation method: Jacobi, QR

10 Diagonalization with Fourier transformation

Eigenvalues by the transformation method

For the moment, take real symmetric (or complex Hermitian) matrices.
Any such matrix A can be diagonalized orthogonally (unitarily)

D = U+AU, U+ = U−1 =⇒ U+U = 1, (1)

where D = diag(λ1, λ2, . . . , λn) is a diagonal matrix.
Also, we have AU = UD which means that columns of U are the eigenvectors
of A.

U = (u1, u2, . . . , un), A(u1, u2, . . . , un) = (λ1u1, λ2u2, . . . , λnun) (2)

The transformation methods find the eigenvalues by succesively applying
orthogonal transformations:

A(1) = U+
0 AU0 (3)

A(2) = U+
1 A

(1)U1 = U+
1 U

+
0 AU0U1

A(k+1) = U+
k A

(k)Uk = U+
k . . .U

+
1 U

+
0 AU0U1 . . .Uk

The orthogonal transformations are choosen such that the non-diagonal
elements in A(k) converge to zero.
In contrast to subspace methods, we get all eigenvalues and eigenvectors of the
matrix

Givens rotation matrix

Let’s define the following transformation matrix:

U(i , j , ϕ) =



1 0 0 0

. . .
...

...
0 . . . cosϕ . . . − sinϕ . . . 0

...
. . .

...
0 . . . sinϕ . . . cosϕ . . . 0

...
...

. . .
0 0 0 1


, (4)

U(i , j , ϕ)mn =


1 if m = n, m 6= i and m 6= j
cosϕ if m = n = i or m = n = j
− sinϕ if m = i and n = j
sinϕ if m = j and n = i
0 otherwise

(5)

So the

[
cosϕ − sinϕ
sinϕ cosϕ

]
is “embedded” into the i and j-th row and column of

an n × n unit matrix

transformation with Givens

Using cos2 ϕ+ sin2 ϕ = 1 we can easily show: U(i , j , ϕ)TU(i , j , ϕ) = 1.
Now we have for A = AT :

B = U(i , j , ϕ)TAU(i , j , ϕ) (6)

BT = U(i , j , ϕ)TATU(i , j , ϕ) = U(i , j , ϕ)TAU(i , j , ϕ) = B

So the matrix stays symmetric.
Let’s look at the transformed matrix when transforming with U(i , j , ϕ):

A
(n+1)
kl = UT

kmA
(n)
mnUnl = UmkUnlA

(n)
mn (7)

If k and l are neither i nor j , the transformation matrices are unit matrices:

A
(n+1)
kl = δmkδnlA

(n)
mn = A

(n)
kl for k, l 6= i , j (8)

this means only i-th and j-th row and column are changed.

Jacobi method

Using A
(n+1)
kl = UmkUnlA

(n)
mn we calculate the changed entries of the matrix

A
(n+1)
ki = A

(n)
ki cosϕ+ A

(n)
kj sinϕ for k 6= i , j (9)

A
(n+1)
kj = A

(n)
kj cosϕ− A

(n)
ki sinϕ for k 6= i , j

A
(n+1)
ii = A

(n)
ii cos2 ϕ+ 2A

(n)
ij cosϕ sinϕ+ A

(n)
jj sin2 ϕ

A
(n+1)
jj = A

(n)
jj cos2 ϕ− 2A

(n)
ij cosϕ sinϕ+ A

(n)
ii sin2 ϕ

A
(n+1)
ij = A

(n)
ij (cos2 ϕ− sin2 ϕ) +

(
A

(n)
jj − A

(n)
ii

)
cosϕ sinϕ

How should we choose i , j and ϕ?
Jacobi method: We should choose e.g. the largest absolute value off diagonal
element A

(n)
ij and make it vanish:

A
(n+1)
ij = A

(n)
ij (cos2 ϕ− sin2 ϕ) +

(
A

(n)
jj − A

(n)
ii

)
cosϕ sinϕ = 0 (10)

The angle ϕ is calculated from

A
(n)
ii − A

(n)
jj

A
(n)
ij

=
cos2 ϕ− sin2 ϕ

sinϕ cosϕ
= 2β (11)

where we defined the shorthand β > 0 (otherwise we swap i and j)

Calculating the angle

We actually only need sinϕ = s, cosϕ = c

c2 − s2 = 1− 2s2 = 2βsc (12)

One more square to get rid of c:

1− 4s2 + 4s4 = 4β2s2 c2︸︷︷︸
=1−s2

= 4β2s2 − 4β2s4 (13)

Solving the quadratic eq: s4 − s2 + 1/(4 + 4β2) = 0

s2 =
1

2

(
1±

√
1− 4

4 + 4β2

)
=

1

2

(
1±

√
4β2

4 + 4β2

)
=

1

2

(
1± β√

1 + β2

)
(14)

We choose the negative sign, than we get s2 < 1/2 and 0 ≤ ϕ ≤ π/4 We also
get

sc =
√
s2c2 =

1

2

√
−
√

+ =
1

2

√
1− β2

1 + β2
=

1

2

1√
1 + β2

(15)

Jacobi method summary

For nonzero Aij we calculate

β =
1

2

Aii − Ajj

Aij
, c2, s2 =

1

2

(
1± β√

1 + β2

)
, sc =

1

2

1√
1 + β2

(16)

if β < 0 we swap i and j first.

We than update the matrix (B is the shorthand for A(n+1)):

Bki = Akic + Akj s for k 6= i , j (17)

Bkj = Akjc − Aki s for k 6= i , j

Bii = Aiic
2 + 2Aij sc + Ajj s

2

Bjj = Ajjc
2 − 2Aij sc + Aii s

2

Bij = 0

Jacobi method analysis

We made one offdiagonal element zero, but influenced other ones. Do we get
closer to diagonal?
Let’s use the Frobenius norm:

‖A‖F =
∑
i,j

A2
ij =

∑
i,j

Aij(A
T)ji = Tr(AAT) (18)

Now we calculate the Frobenius norm of the transformed matrix B = A′

‖B‖F = Tr(BTB) = Tr(BB) = Tr(UTAUUT︸ ︷︷ ︸
=1

AU) = Tr(AA) = ‖A‖F (19)

So the total Frobenius norm is unchanged. We can also prove that the sum
squared of the diagonal part increases in each transformation:
First note that:(

Bii Bij

Bji Bjj

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
Aii Aij

Aji Ajj

)(
cosϕ − sinϕ
sinϕ cosϕ

)
(20)

We can also use the conservation of the Frobenius norm for these 2×2 matrices

Jacobi convergence

We choose the angle such that we zero the non-diagonal element in B:

B2
ii + B2

jj = A2
ii + A2

jj + 2A2
ij (21)

Since the other diagonal elements are unchanged in the transformed matrix, we
have: ∑

k

B2
kk =

∑
k

A2
kk + 2A2

ij (22)

Which means that the magnitude of the diagonal elemnts grow, the magnitude
of offdiagonals decrease in every step.

Usually one does not always look for the largest offdiagonal element, but e.g.
performs zeroing them in order and do many “sweeps”.

Convergence criterium:
∑

i 6=j a
2
ij < ε

∑
i a

2
ii

Eigenvectors

During the transformations we keep track of the transformations:

A(0) = A, V (0) = 1 (23)

A(n+1) = UTA(n)U

V (n+1) = V (n)U

Thus we get the eigenvalues in V
Updating the eigenvectors can be done cheaply: only i-th and j-th column
changes in a step zeroing Aij

(VU(i , j , ϕ))ki = Vki cosϕ+ Vkj sinϕ (24)

(VU(i , j , ϕ))kj = −Vki sinϕ+ Vkj cosϕ

Complex Hermitian matrices

Take H Hermitian N × N matrix. H has real eigenvalues

H = A + iB, H+ = AT − iBT = A + iB (25)

=⇒ A is real symmetric, B is real and antisymmetric.
Eigenvalues are given by:

Hv = rv , v = u + iw (26)

with real vectors u and w

(A + iB)(u + iw) = r(u + iw) (27)

This implies

Au − Bw = ru
Bu + Aw = rw

which is

[
A −B
B A

] [
u
w

]
= r

[
u
w

]
(28)

An eigenvalue problem of a 2N × 2N real, symmetric matrix

Complex matrices

Thus we can use e.g. Jacobi method for[
A −B
B A

]
(29)

2N × 2N =⇒ there are 2N eigenvalues instead of N

[
A −B
B A

] [
u
w

]
= r

[
u
w

]
=⇒

[
A −B
B A

] [
−w
u

]
= r

[
−w
u

]
(30)

So we have two eigenvectors for every eigenvalue =⇒ The eigenvalues are
degenerate.
The two vectors differ by a phase factor: v2 = −w + iu = i(u + iw) = iv1
We choose either vector for each eigenvalue, than we have all eigenvalues and
eigenvectors of H

QR method

We define the following iterative procedure starting from a matrix A

Ak = QkRk , Ak+1 = RkQk , (31)

We do the decomposition to a Q orthogonal matrix and an R upper triangular
matrix (using the Householder reduction)
Ak+1 is similar to Ak and thus to A1 = A

Ak+1 = RkQk = QT
k QkRkQk = QT

k AkQk = QT
k Q

T
k−1 . . .Q

T
1 AQ1Q2 . . .Qk (32)

Ak+1 has the same eigenvalues as A

Using the notation Q(k) = Q1Q2 . . .Qk we have

Q(k)Rk = Q1 . . .Qk−1Ak = Q1 . . .Qk−1Rk−1Qk−1 = (33)

Q1 . . .Qk−2Ak−1Qk−1 = . . . = AQ1 . . .Qk−1 = AQ(k−1)

So we have proven

AQ(k−1) = Q(k)Rk (34)

QR iteration and power iteration

We also define R(k) = Rk . . .R1. Then we write

Q(k)R(k) = Q(k)RkR
(k−1) = AQ(k−1)R(k−1) (35)

Doing this k − 1 more times we have a decomposition for the k-th power of
AKAk

Ak = Q(k)R(k) (36)

Let’s denote the columns of Q(k) as u
(k)
i

Now let’s look at the first column of AQ(k) = Q(k+1)Rk+1:

Au
(k)
1 = u

(k+1)
1 (Rk+1)11 (37)

The orthogonality condition of Q(k) means that the u
(k)
i vectors are

orthonormal, so this equation is just the definition of the power iteration.

=⇒ (Rk)11 converges to the largest eigenvalue and u
(k)
1 to its eigenvector.

QR and inverse power iteration

We start again from: AQ(k) = Q(k+1)Rk+1, which implies
A = Q(k+1)Rk+1Q

(k)T , which we invert and transpose

A−1 = Q(k)R−1
k+1Q

(k+1)T (38)

(A−1)T = Q(k+1)(R−1
k+1)TQ(k)T

(A−1)TQ(k) = Q(k+1)(R−1
k+1)T

The inverse of an upper (lower) triangular matrix is again upper (lower
triangular), so (R−1

k+1)T is lower triangular.
We look at the last column of the above equation:

(A−1)Tu(k)
n = u(k+1)

n (R−1
k+1)Tnn (39)

Since columnvectors in Q(k) are normalized, This is just the inverse iteration for
the transpose of the matrix (or equivalently, inverse iteration for left
eigenvectors)
=⇒ The last column of Q(k) converges to an eigenvector and (R−1

k+1)nn to an
eigenvalue

So first and last column of Q(k) converges to eigenvectors, what about the rest?

QR method and simultaneous power iteration

QR decomposition can be understood as orthonormalization procedure:

M = QR (40)

M is a collection of column vectors mi

Q is a collection of orthonormal column vectors qi (as QTQ = 1).
q1 is the same as m1 normalized: m1 = q1r11
m2 is calculated from the first 2 vectors of Q: m2 = q1r12 + q2r22
looking at it “backwards”:

q2 =
1

r22
(m2 − q1r12) =

1

r22
(m2 − q1(q+

1 m2)) (41)

Which means q2 is just the (normalized) part of m2 which is orthogonal to q1.
and so on with q3, q4, . . .

One can actually use this orthogonalization procedure (Gram-Schmidt
ortogonalization) to calculate the QR reduction, however the Householder
reduction we looked at earlier is more stable numerically

QR iteration and simultaneous power iteration

Let’s look at the iteration eq. again:

AQ(k) = Q(k+1)Rk+1 (42)

:
As Q(k+1) is orthogonal and Rk+1 is upper triagonal, this is a QR reduction or
an orthonormalization of AQ(k).
Thus we can understand the QR iteration like this:

1 Start with n column vectors spanning n dimension space: Q(0) = 1

2 Loop: Apply the matrix A to each column vector

3 Make the column vectors orthogonal to each other

4 goto 2

This is what we call a simultaneous power iteration. The ortogonalization step
is essential, otherwise all vectors will converge to the eigenvector of the largest
eigenvalue.
Thus QR iteration is equivalent to simultaneous power iteration → it will find
eigenvalues and eigenvectors.

QR method

Theorem: Assume A is a nonsingular real matrix with nondegenerate
eigenvalues. Let P denote the matrix of eigenvectors:
A = Pdiag(λ1, . . . , λn)P−1, we assume that P−1 can be LU decomposed.
Then the sequence Ak generated by the QR algorithm converges to an upper
triangular matrix with the eigenvalues on the diagonal.

If A is symmetric than Ak is also symmetric and thus converges to a diagonal
matrix and Q(k) converges to the eigenvectors.

Costs: naively it costs O(n3) operations to calculate the QR reduction in each
step of the algorithm.
It makes sense to first transform the matrix to upper Hessenberg form (where
everything below the first subdiagonal is zero). For a symmetric matrix this
means transforming to a tridiagonal form (nonzero elements only on the
diagonal, first sub and superdiagonal)
Upper Hessenberg matrices remain upper Hessenberg after a QR iteration

QR convergence

For any n × n matrix A there exists a unitary matrix P which is a product of
n − 2 Householder matrices such that P+AP is upper Hessenberg.

When we calculate the QR algorithm on the upper Hessenberg form, we check
whether (Ak)n,n−1 is small, as it signals the convergence of the eigenvalue in
(Ak)n,n. (If it converges we can leave out the last row and last line of the
matrix and continue with the rest = deflation algorithm)

It can be shown that the convergence of the smallest eigenvalue goes with

(Ak)n,n−1 = O

(∣∣∣∣λ1

λ2

∣∣∣∣k
)

(43)

where λ1 is the smallest eigenvalue λ2 is the second smallest.

QR shift

If we can arrange it such that the smallest eigenvalue is very small, convergence
will be faster =⇒ shifted QR
If we know σ to be a good approximation to one of the eigenvalues, A− σ will
have a small eigenvalue
We proceed with

Ak − σ = QkRk (44)

Ak+1 = RkQk + σ = QT
k (QkRk + σ)Qk = QT

k AkQk

This is called QR algorithm with an explicit shift.

We can also change the shift at every step:
Let σk be a good approximation of the smallest eigenvalue (e.g. (Ak)nn) after
step k

Ak − σk = QkRk , Ak+1 = RkQk + σk (45)

Shifted inverse power iteraton

Shifted QR is related to the inverse power iteration:
If we know there is an eigenvalue close to µ:

|λi − µ| < |λj − µ| for j 6= i (46)

We can use power iteration of (A− µ1)−1:

v0 = v/ ‖v‖ (47)

solve (A− µ1)yk = vk−1 for yk

vk+1 = yk/ ‖yk‖

=⇒ This converges to xi =⇒ λi is found

Power iteration with linear functional

This is the formalization of the idea “let’s read off the eigenvalue from the first
component”
Let’s take a linear functional on the vector space, which can be represented by
a row vector using the scalar product:

l(v) = lTv (48)

(e.g. take the i-th component with l = ei)
We can use this to keep our vector “normalized”:

v0 = u (49)

wk+1 = Avk , nk+1 = l(wk+1)

vk+1 = wk+1/nk+1

Similarly to the reasoning to before, One can show that nk+1 converges to an
eigenvalue and vk to an eigenvector, if neither the initial guess nor l is not
orthogonal to the eigenvector
(e.g. with e1 one keeps the first component of vk equal to 1, than one reads off
the eigenvalue after the application of the matrix)

variable shift and Newton iteration

In shifted inverse iteration, we should update the shift after every iteration,
that should improved convergence.

yk+1 = (A− σk1)−1vk (50)

nk+1 = l(yk+1), vk+1 = yk+1/nk+1

σk+1 = σk +
1

nk+1

σ update comes from:

1

λ− σk
= nk+1 =⇒ λ = σk +

1

nk+1
(51)

This is equivalent to the Newton iteration on the system

F

([
u
λ

])
=

[
Au− λu
l+u− 1

]
=

[
0
0

]
(52)

=⇒ Algorithm is quadratically convergent

Rayleigh Quotient

We define the Rayleigh quotient for vectors u and v which are not orthogonal
as R = v+Au/v+u
if u is an eigenvector of A than R gives the eigenvalue.

We can use the Rayleigh quotient as an approximation to the eigenvalue for the
next shift:

yk+1 = (A− σk1)−1vk (53)

vk+1 = yk+1/ ‖yk+1‖
σk+1 = v+k+1Avk+1

If A is symmetric than this algorithm is cubically convergent. (quadratic for
non-symmetric matrices)
In the QR iteration we chose (Ak)nn as the next shift value:

(Ak)nn = eTn Aken = eTn Q
(k)TAQ(k)en = (Q(k)en)TA(Q(k)en) = uT

n Aun (54)

which is the Rayleigh quotient based on the last column vector of Q(k).
=⇒ Shifted QR converges fast.

QR algorithm with explicit shifts

Summary: QR with explicit shifts for an n × n matrix A

1 Transform the matrix to upper-Hessenberg form

2 m = n eigenvalues still missing

3 if ‖Am,m−1‖ < ε:
eigenvalue found: Am,m

delete last row and last column of A
m = m − 1
stop if all e.v. are found

4 Take as shift the bottom left corner: σ = Ann

A− σ = QR, A = RQ + σ

5 goto 3

QR algorithm is the most often used algorithm for dense eigenvalue problems.
In practice one uses a slightly more complicated algorithm. (with keywords:
implicit (double-) shifts, bulge chasing, agressive early deflation, blocked
versions, ...)

