Numerical Methods in Linear Algebra

Dénes Sexty

University of Graz

2020-2021, winter term

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

UNI

1 Examples: Bridge, multidim Newton's method, QM, vibrational eigenmodes
2 Linear equations
3 Gauss elimination, Pivoting
4 Numerical errors, condition number
5 LU decomposition, iterative improvement
6 Householder reduction
7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR), Conjugate gradient (CG) and others
8 Eigenvalues Subspace methods, power iteration, Lánczos method, Krylov Schur
9 Diagonalization with Fourier transformation
${ }_{10}$ Eigenvalues transformation method

Gradient method

We want to get to the conjugate gradient method, let's first discuss the Gradient method (a.k.a Steepest descent, Richardson's method) Take

$$
\begin{equation*}
N=\frac{1}{\alpha}, \quad P=\frac{1}{\alpha}-A \tag{1}
\end{equation*}
$$

with $\alpha>0$. This leads to

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha\left(\mathbf{b}-\boldsymbol{A} \mathbf{x}_{k}\right) \tag{2}
\end{equation*}
$$

This converges for $0<\alpha<2 / \lambda_{\max }(A)$ for a positive definite A and might not converge for a non positive definite A

Geometric interpretation of gradient method

Suppose A is symmetric (hermitic) and positive definit ($\left.\forall \mathbf{x}: \mathbf{x}^{T} A \mathbf{x}>0\right)$ define

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{x}^{T} \mathbf{b} \tag{3}
\end{equation*}
$$

Since A is positive definit, this has a minimum. There we have $\nabla f(\mathbf{x})=0$

$$
\begin{equation*}
\nabla f(\mathbf{x})=A \mathbf{x}-\mathbf{b}=0 \tag{4}
\end{equation*}
$$

Minumum of $f(\mathbf{x})$ solves the eq. $A \mathbf{x}=\mathbf{b}$

The iteration

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha\left(\mathbf{b}-\boldsymbol{A} \mathbf{x}_{k}\right) \tag{5}
\end{equation*}
$$

steps along the negative gradient of $f(\mathbf{x})$.
If α is small enough $(0<\alpha<2 / \rho(A))$ than $f(\mathbf{x})$ decreases \rightarrow we might get to the minimum

Gradient method with variable stepsize

if we take small steps it's going to take long to get to the minimum. Idea: choose α such that $f(\mathbf{x}+\alpha(\mathbf{b}-\boldsymbol{A} \mathbf{x}))$ is minimized \rightarrow optimal stepsize

$$
\begin{equation*}
f(\mathbf{x}+\alpha \mathbf{r})=\frac{1}{2}(\mathbf{x}+\alpha \mathbf{r})^{T} A(\mathbf{x}+\alpha \mathbf{r})-b^{T}(x+\alpha \mathbf{r}) \tag{6}
\end{equation*}
$$

We get minimum from $\partial_{\alpha} f(\mathbf{x}+\alpha \mathbf{r})=0$

$$
\begin{equation*}
\Longrightarrow \alpha=\frac{r^{T} r}{r^{T} A r} \tag{7}
\end{equation*}
$$

Gradient method

Green: Gradient method with optimal stepsize

Can still take many steps to converge

Teaser: Red corresponds to Conjugate Gradient, which converges in two steps (in 2d)

Some definitions first:
The vector space spanned by $\left\{\mathbf{r}, A \mathbf{r}, \ldots, A^{k} \mathbf{r}\right\}$ is the Krylov subspace
corresponding to A and \mathbf{r}, denoted by K_{k}
k_{0} is the Krylov critical dimension if $K_{k_{0}}=K_{k_{0}+1}$
two vectors u and v are conjugate with respect to A if we have $u^{T} A v=0$.

Consider a gradient method with whatever stepsize

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k}\left(\mathbf{b}-\boldsymbol{A} \mathbf{x}_{k}\right)=\mathbf{x}_{k}+\alpha_{k} \mathbf{r}_{k} \tag{8}
\end{equation*}
$$

Then $\mathbf{r}_{k} \in K_{k}$ and $\mathbf{x}_{k+1}-\mathbf{x}_{0} \in K_{k}$
Shown by $\mathbf{b}-A \mathbf{x}_{k+1}=\mathbf{b}-A \mathbf{x}_{k}-\alpha A \mathbf{r}_{k} \Longrightarrow \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha A \mathbf{r}_{k}$

Conjugate Gradient

The conjugate gradient method (CG) searches for the minumum of $f\left(\mathbf{x}_{k+1}\right)$ in the affine subspace $\left[\mathrm{x}_{0}+K_{k}\right]$ (this means $\mathbf{x}_{k+1}-\mathrm{x}_{0} \in K_{k}$), where K_{k} is the krylov subspace of \mathbf{r}_{0}

The Conjugate Gradient satisfies:
$1 \mathbf{x}_{k+1}$ is choosen such that $r_{k+1} \perp K_{k}$
2 \mathbf{x}_{k+1} is choosen such that it minimizes $f(\mathbf{x})$ in $\left[\mathbf{x}_{0}+K_{k}\right.$]

This means that CG converges in at most n iterations. (But usually one needs less for a good solution)

Conjugate Gradient alg.

The Algorithm for finding that minimum is:

$$
\text { Initialization: } \quad \mathbf{p}_{0}=\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}
$$

Loop: $\quad \alpha_{i}=\mathbf{r}_{i}^{T} \mathbf{r}_{i} /\left(\mathbf{p}_{\mathbf{i}}{ }^{T} A \mathbf{p}_{\mathbf{i}}\right)$

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\alpha_{i} \mathbf{p}_{i}
$$

$$
\mathbf{r}_{i+1}=\mathbf{r}_{i}-\alpha_{i} \boldsymbol{A} \mathbf{p}_{i}
$$

$$
\beta_{i}=\mathbf{r}_{i+1}^{T} \mathbf{r}_{i+1} /\left(\mathbf{r}_{i}^{T} \mathbf{r}_{i}\right)
$$

$$
\mathbf{p}_{i+1}=\mathbf{r}_{i+1}+\beta_{i} \mathbf{p}_{i}
$$

one can show by induction:

$$
\begin{equation*}
\forall i \neq j: \mathbf{r}_{i}^{T} \mathbf{r}_{j}=0, \quad \mathbf{p}_{i}^{T} A \mathbf{p}_{j}=0, \quad \mathbf{r}_{i} \mathbf{p}_{j}=0 \tag{9}
\end{equation*}
$$

Also, α_{i} is choosen such that $f\left(\mathbf{x}_{i}+\alpha_{i} \mathbf{p}_{i}\right)$ is minimized in α_{i}. \mathbf{p} is sometimes called the "search direction"
since $\forall i \neq j: \mathbf{r}_{i}^{T} \mathbf{r}_{j}=0$, the CG converges in at most n iterations in an n dimensional vectors space (less
However, rounding errors lead to $\mathbf{r}_{n+1} \neq 0$, so we should use a small ϵ and stop when

$$
\begin{equation*}
\frac{\left\|\mathbf{r}_{k}\right\|}{\left\|\mathbf{r}_{0}\right\|}<\epsilon \tag{10}
\end{equation*}
$$

for large systems, n and $k_{0} \sim 10^{4}$ or larger, typically one needs much less than n iterations.

Costs: n iterations maximally.
One iteration: matrix-vector product: $O\left(n^{2}\right)$, linear combinations of vectors $O(n)$
Total: $\approx n^{3}$ slightly worse than Gauss or LU decomp.
But: usually needs less than n iterations.
Sparse matrices: multiplication costs only $O(n)$ operations

CG convergence

One can show: The norm of $\mathbf{e}_{i}=\mathbf{x}_{i}-\mathbf{x}$ is reduced in each iteration by the factor at least

$$
\begin{equation*}
\frac{\sqrt{\operatorname{cond}_{2} A}-1}{\sqrt{\operatorname{cond}_{2} A}+1} \tag{11}
\end{equation*}
$$

Preconditioning

given a matrix M such that:
$M^{-1} \mathbf{v}$ is easy to calculate
$\operatorname{cond}_{2}\left(M^{-1} A\right)<\operatorname{cond}_{2}(A)$
We can solve the preconditioned system $M^{-1} A \mathbf{x}=M^{-1} \mathbf{b}$ instead of $A \mathbf{x}=\mathbf{b}$, converges faster.

$$
\begin{aligned}
& \text { Initialization: } \quad \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}, \mathbf{z}_{0}=M^{-1} \mathbf{r}_{0}, \mathbf{p}_{0}=\mathbf{z}_{0} \\
& \text { Loop: } \alpha_{i}=\mathbf{z}_{i}^{T} \mathbf{r}_{i} /\left(\mathbf{p}_{\mathbf{i}}^{T} A \mathbf{p}_{\mathbf{i}}\right) \\
& \mathbf{x}_{i+1}=\mathbf{x}_{i}+\alpha_{i} \mathbf{p}_{i} \\
& \mathbf{r}_{i+1}=\mathbf{r}_{i}-\alpha_{i} A \mathbf{p}_{i} \\
& \mathbf{z}_{i+1}=M^{-1} \mathbf{r}_{i+1} \\
& \beta_{i}=\mathbf{z}_{i+1}^{T} \mathbf{r}_{i+1} /\left(\mathbf{z}_{i}^{T} \mathbf{r}_{i}\right) \\
& \mathbf{p}_{i+1}=\mathbf{z}_{i+1}+\beta_{i} \mathbf{p}_{i}
\end{aligned}
$$

What happens if we have A non-symmetric positive definite?

Use $B=A A^{+}: \quad \mathbf{v}^{+} B \mathbf{v}=\mathbf{v}^{+} A A^{+} \mathbf{v}=\left\|A^{+} \mathbf{v}\right\|>0$ if A is non-singular solve $B \mathbf{y}=\mathbf{b}$ using CG, this means $A A^{+} \mathbf{y}=\mathbf{b}$
$\Longrightarrow \mathrm{x}=A^{+} \mathrm{y}$ solves $A \mathrm{x}=\mathrm{b}$

Further iterative methods:
BiConjugate Gradient (BiCG, BiCGStab), Generalized minimal residual (GMRES): A does not need to be positive def, not guaranteed to converge, but often does.
Block-CG: we want to solve $A \mathbf{x}_{k}=\mathbf{b}_{k}$ for several right hand side \mathbf{b} vectors. We do the iterations the same time where the search directions for different k "communicate", such that the we look for a minimum on a larger Krylov space, ensuring faster convergence
Multishift-CG: we want to solve $\left(A+m_{i} \mathbf{1}\right) \mathbf{x}_{i}=\mathbf{b}_{i}$. These ahve all the same Krylov space. One can solve all of them in the same iteration with just one matrix-vector multiplication and many linear combinations of vectors.

So far we had $A \mathbf{x}=\mathbf{b}$, now we look at $A \mathbf{x}=0$ General eigenvalue problem:

$$
\begin{equation*}
A(\lambda) \mathbf{x}=0 \tag{12}
\end{equation*}
$$

solutions at $\operatorname{det}(A(\lambda))=0$, giving eigen values λ_{i} and eigenvectors \mathbf{x}_{i}.
Regular eigenvalue problem: $A(\lambda)=A-\lambda \mathbf{1}$, this gives the usual form:

$$
\begin{equation*}
A \mathbf{x}=\lambda \mathbf{x} \tag{13}
\end{equation*}
$$

$\operatorname{det}(A-\lambda \mathbf{1})=$ polynomial of degree $n \quad \Longrightarrow \lambda \in\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$
Eigenvectors are determined up to a factor \Longrightarrow choose x_{1} at will and solve for $x_{j}, j>1$ using methods detailed before.

In practice looking for the roots of a large polynomial is hard (no direct method for $n>4$, even calculating the coefficients of the polynomial is hard for large n)

1 Subspace methods
Aim at finding a few eigenvalues with high precision by keeping track of a subspace using a few vectors, and iteratively improving the precision.
2 Transformation methods
If we find Q such that

$$
\begin{equation*}
Q^{-1} A Q=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \tag{14}
\end{equation*}
$$

than λ_{i} are the eigenvectors, $A Q=Q \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \quad \Longrightarrow$ columns of Q are the eigenvectors Usually Q is built iteratively $Q=Q_{1} Q_{2} \ldots Q_{n} \ldots$, such that the non diagonal elements of the transformed A decrease
3 Fourier transformation Works in some cases: for a certain class of matrices: $M_{j, k}=\sum_{i} \alpha_{i} \delta_{j, k+n_{i}}$, using periodic boundary conditions These types of matrices are often come up in physics, discretization of PDEs, etc.

Condition numbers for eigenvalues

Consider the matrix

$$
A=\left(\begin{array}{ccccc}
0 & \ldots & \ldots & 0 & \epsilon \tag{15}\\
1 & 0 & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & 0
\end{array}\right)
$$

Let's choose $\epsilon=10^{-n}$, with n even. The characteristic polinomial for this is:

$$
\begin{equation*}
p_{A}(\lambda)=\operatorname{det}(A-\lambda \mathbf{1})=\left(\lambda^{n}-\epsilon\right) \tag{16}
\end{equation*}
$$

$\Longrightarrow \lambda_{i}=10^{-1}$ All eigenvalues are the same.
However, if we take $\epsilon=0$ we have $\lambda_{i}=0$
\Longrightarrow in some cases small variations of the matrix give a large change in the eigenvalues.

Condition numbers for eigenvalues

We define the eigenvalue condition number

$$
\begin{equation*}
\Gamma(A)=\inf _{P-1 A P=\operatorname{diag}} \operatorname{cond}(P), \quad \text { with } \operatorname{cond}(P)=\|P\|\left\|P^{-1}\right\| \tag{17}
\end{equation*}
$$

This means $\Gamma(A) \geq 1$
For symmetric (hermitian) matrices we have $\Gamma_{2}(A)=1$, as we $\|P\|_{2}=1$ for orthogonal (unitary) P matrices

Bauer-Fike Theorem:

If we perturbe the matrix $A \rightarrow A+\delta A$, the eigenvalues change $\lambda_{i} \rightarrow \lambda_{i}^{\prime}$ We have an upper estimate of their change:

$$
\begin{equation*}
\left|\lambda_{i}-\lambda_{i}^{\prime}\right| \leq \Gamma(A)\|\delta A\| \tag{18}
\end{equation*}
$$

For a norm which satisfies $\left\|\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)\right\|=\max \left|d_{i}\right|$
aka. von Mises Method - simplest subspace method
Suppose we have a symmetric (Hermitian) matrix, such that the eigenvalues are non degenerate (we really need the largest absolute value is non-degenerate)

$$
\begin{equation*}
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n}\right| \tag{19}
\end{equation*}
$$

\Longrightarrow any vector can be written as a linear combination of the eigenvectors \mathbf{x}_{i}

$$
\begin{equation*}
\mathbf{v}=\sum \alpha_{i} \mathbf{x}_{i} \tag{20}
\end{equation*}
$$

We can start applying $A: \mathbf{v}_{0}=v, \mathbf{v}_{1}=A \mathbf{v}_{0}$, and so on: $\mathbf{v}_{k}=A \mathbf{v}_{k-1}=A^{k} \mathbf{v}_{0}$. We can see:

$$
\begin{align*}
\mathbf{v}_{1} & =\sum \alpha_{i} \lambda_{i} \mathbf{x}_{i} \tag{21}\\
\mathbf{v}_{k} & =\sum \alpha_{i} \lambda_{i}^{k} \mathbf{x}_{i}
\end{align*}
$$

Our assumption means that at large k the first eigenvector will dominate

Use the following iteration:

$$
\begin{array}{r}
\mathbf{v}_{0}=\mathbf{v} /\|\mathbf{v}\| \tag{22}\\
\mathbf{v}_{k+1}=A \mathbf{v}_{k} /\left\|A \mathbf{v}_{k}\right\|
\end{array}
$$

We can write $\mathbf{v}_{k}=\alpha_{i}^{(k)} \mathbf{x}_{i}$
We can also write

$$
\begin{equation*}
\mathbf{v}_{k}=A^{k} \mathbf{v}_{0} /\left\|A^{k} \mathbf{v}_{0}\right\|=\frac{\frac{1}{\lambda_{1}^{k}} A^{k} \mathbf{v}_{0}}{\left\|\frac{1}{\lambda_{1}^{k}} A^{k} \mathbf{v}_{0}\right\|}=\frac{\alpha_{1} \mathbf{x}_{1}+\sum_{i=2}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{x}_{i}}{\left\|\alpha_{1} \mathbf{x}_{1}+\sum_{i=2}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{x}_{i}\right\|} \tag{23}
\end{equation*}
$$

\Longrightarrow convergence rate given by $\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$
\mathbf{v}_{k} converges to the eigenvector x_{1}
Using $\mathbf{d}_{k}=\mathbf{x}_{k}-\mathbf{x}_{k-1}$

$$
\begin{equation*}
A \mathbf{d}_{k}=A \mathbf{x}_{k}-A \mathbf{x}_{k-1}=A \mathbf{x}_{k}-\lambda \mathbf{x}_{k} \tag{24}
\end{equation*}
$$

for some λ (as we calculate \mathbf{x}_{k} by normalizing $A \mathbf{x}_{k-1}$
$\Longrightarrow\left\|A \mathbf{d}_{k}\right\|$ helps judge how close we are to an eigenvalue.
We can get the eigenvalue by: $\mathbf{e}_{k}^{T} A \mathbf{v} /\left(\mathbf{e}_{k}^{T} \mathbf{v}\right)$ (e.g. picking a component of a vector, preferably a large one)

Sometimes we need the smallest eigenvale:

$$
\begin{array}{r}
\mathbf{v}_{0}=\mathbf{v} /\|\mathbf{v}\| \tag{25}\\
\text { solve } \quad A \mathbf{y}_{\mathbf{k}}=\mathbf{v}_{k-1} \text { for } \mathbf{y}_{k} \\
\mathbf{v}_{k+1}=\mathbf{y}_{k} /\left\|\mathbf{y}_{k}\right\|
\end{array}
$$

Is equivalent to power iteration with A^{-1}, which has eigenvalues $\left\{1 / \lambda_{1}, \ldots, 1 / \lambda_{n}\right\}$

$$
\begin{equation*}
\left|\frac{1}{\lambda_{1}}\right|<\left|\frac{1}{\lambda_{2}}\right|<\ldots<\left|\frac{1}{\lambda_{n}}\right| \tag{26}
\end{equation*}
$$

\Longrightarrow power iteration will give the smallest eigenvalue, $1 / \lambda_{n}$
Can be efficiently carried out by calculating the LU decomposition of A

If we know the largest eigenvalue λ_{1} and eigenvector \mathbf{x}_{1} make our vector orthogonal to that:

$$
\begin{array}{r}
\mathbf{v}_{0}=\mathbf{v} /\|\mathbf{v}\| \\
\mathbf{y}_{\mathbf{k}}=A \mathbf{v}_{k-1} \\
\mathbf{v}_{k+1}=\mathbf{y}_{k}-\mathbf{x}_{1}\left(\mathbf{x}_{1}^{T} \mathbf{y}_{k}\right) \tag{28}
\end{array}
$$

\Longrightarrow This converges to the eigenvector of the second largest eigenvalue.
If we know there is an eigenvalue close to μ :

$$
\begin{equation*}
\left|\lambda_{i}-\mu\right|<\left|\lambda_{j}-\mu\right| \text { for } j \neq i \tag{29}
\end{equation*}
$$

We can use power iteration of $(A-\mu \mathbf{1})^{-1}$:

$$
\begin{align*}
& \mathbf{v}_{0}=\mathbf{v} /\|\mathbf{v}\| \tag{30}\\
& \text { solve }(A-\mu \mathbf{1}) \mathbf{y}_{\mathbf{k}}=\mathbf{v}_{k-1} \text { for } \mathbf{y}_{k} \\
& \mathbf{v}_{k+1}=\mathbf{y}_{k} /\left\|\mathbf{y}_{k}\right\|
\end{align*}
$$

\Longrightarrow This converges to $\mathbf{x}_{i} \Longrightarrow \lambda_{i}$ is found

What if we need more than a few eigenvectors? We should not throw away all but the last vector in the krylov space

$$
\begin{equation*}
K_{k}=\left\{\mathbf{v}, A \mathbf{v}, A^{2} \mathbf{v}, \ldots, A^{k} \mathbf{v}\right\} \tag{31}
\end{equation*}
$$

Build the following base of the Krylov space (with A symmetric (hermitian) matrix):

$$
\begin{array}{r}
\mathbf{v}_{1}=\frac{\mathbf{v}}{\|\mathbf{v}\|} \tag{32}\\
\mathbf{v}_{k}=\frac{\mathbf{y}_{\mathbf{k}}}{\left\|\mathbf{y}_{\mathrm{k}}\right\|}, \quad \text { with } \quad \mathbf{y}_{k}=A \mathbf{v}_{k-1}-\sum_{i=1}^{k-1}\left(\left(A \mathbf{v}_{k-1}\right)^{+} \mathbf{v}_{i}\right) \mathbf{v}_{i}
\end{array}
$$

In words: take the new vector $A \mathbf{v}_{k-1}$, make it orthogonal to previous vectors and normalize it.
This is equivalent to using the Gram-Schmidt procedure on the Krylov space if \mathbf{v}_{k} is zero for some k, than we have exhausted the Krylov space of the vector \mathbf{v} and the the iteration is stopped.

$$
\begin{equation*}
\mathbf{y}_{k}=A \mathbf{v}_{k-1}-\sum_{i=1}^{k-1}\left(\left(A \mathbf{v}_{k-1}\right)^{+} \mathbf{v}_{i}\right) \mathbf{v}_{i} \tag{33}
\end{equation*}
$$

if A is symmetric we can write

$$
\begin{equation*}
\left(\left(A \mathbf{v}_{k-1}\right)^{+} \mathbf{v}_{j}\right)=\left(\mathbf{v}_{k-1}^{+} A \mathbf{v}_{j}\right)=\underbrace{\left(\mathbf{v}_{k-1}^{+} \mathbf{y}_{j+1}\right)}_{=0 \text { if } j<k-2}+\sum_{i=1}^{j}\left(\left(A \mathbf{v}_{j}\right)^{+} \mathbf{v}_{i}\right) \underbrace{\left(\mathbf{v}_{k-1}^{+} \mathbf{v}_{i}\right)}_{=0 \text { for } j<k-1} \tag{34}
\end{equation*}
$$

So we only need to make the new vector orthogonal for the last two vectors

$$
\begin{equation*}
\mathbf{y}_{k}=A \mathbf{v}_{k-1}-\sum_{i=k-2}^{k-1}\left(\left(A \mathbf{v}_{k-1}\right)^{+} \mathbf{v}_{i}\right) \mathbf{v}_{i} \tag{35}
\end{equation*}
$$

Rewriting the last equation we have:

$$
\begin{equation*}
A \mathbf{v}_{k-1}=\mathbf{v}_{k}\left\|\mathbf{y}_{k}\right\|+\left(\left(A \mathbf{v}_{k-1}\right)^{+} \mathbf{v}_{k-1}\right) \mathbf{v}_{k-1}+\left\|\mathbf{y}_{k-1}\right\| \mathbf{v}_{k-2} \tag{36}
\end{equation*}
$$

We collect k column vectors into a matrix V_{k}, than this equation says:

$$
\begin{equation*}
A V_{k}=V_{k} T_{k}+\mathbf{y}_{k+1} e_{k}^{T} \tag{37}
\end{equation*}
$$

with $e_{k}^{T}=(0, \ldots, 0,1)$ the row vector of length k
i.e. If we apply A to our column vectors we get a linear combination of our column vectors (the coefficients are in the T_{k}, which is a $k \times k$ matrix), except for the last vector, which has an extra contribution that goes into the last column
This also means if we multiply with V_{k}^{\top} from the left:

$$
\begin{equation*}
V_{k}^{T} A V_{k}=T_{k} \tag{38}
\end{equation*}
$$

and $V_{k}^{T} V_{k}=\mathbf{1}_{k \times k}$ since V_{k} is built from orthonormal vectors Looking at the coefficients above, we also see that T_{k} is tridiagonal (and symmetric)

Why is this useful?
T_{k} is a $k \times k$ matrix: $V_{k}^{T} A V_{k}=T_{k}$: can think of it as A restricted to the vector space given by the basis V_{k}
Eigenvalues of T_{k} are related to eigenvalues of A
One can show: For any eigenvalue λ_{T} of T_{k} there exists an eigenvalue λ_{A} of A such that

$$
\begin{equation*}
\left|\lambda_{T}-\lambda_{A}\right| \leq\left\|\mathbf{y}_{k+1}\right\| \tag{39}
\end{equation*}
$$

One can show even more: if y is the eigenvector of T_{k} corresponding to λ_{T} than

$$
\begin{equation*}
\left|\lambda_{T}-\lambda_{A}\right| \leq\left\|\mathbf{y}_{k+1}\right\| \frac{e_{k}^{T} y}{\|y\|} \tag{40}
\end{equation*}
$$

Which means we have a particularly good approximation if the last element of the eigenvector y is small

Generalization for non-hermitian: Arnoldi method. T_{k} is upper Hessenberg in this case.

Lanczos is very useful, but we have no way to control which eigenvalues we get. With large k the method becomes intractable. restarting can improve one eigenvalue, but what if we need more?

Krylov-Schur

We start with an Arnoldi iteration

$$
\begin{equation*}
A V_{k}=V_{k} T_{k}+\mathbf{y}_{k+1} e_{k}^{T} \tag{41}
\end{equation*}
$$

With unitary transformations on the \mathbf{v}_{k} and T_{k} we can achive a partition:

$$
A\left(V_{1} V_{2}\right)=\left(V_{1} V_{2}\right)\left(\begin{array}{cc}
B_{11} & B_{12} \tag{42}\\
0 & B_{21}
\end{array}\right)+\mathbf{u}_{k+1}\left(b_{1}^{+} b_{2}^{+}\right)
$$

Such that V_{1} contains the eigenvectors corresponding to eigenvalues we want to calculate, V_{2} contains uninteresting eigenvalues. We can now simply drop V_{2} and start iterating again from

$$
\begin{equation*}
A V_{1}=V_{1} B_{11}+\mathbf{u}_{k+1} b_{1}^{+} \tag{43}
\end{equation*}
$$

We can do the expand-drop cycle until eigenvalues and eigenvectors converge See details e.g. in: G.W. Stewart: Matrix Algorithms Vol II: Eigensystems

