
Numerical Methods in Linear Algebra

Dénes Sexty

University of Graz

2020-2021, winter term

Overview

1 Examples: Bridge, multidim Newton’s method, QM, vibrational
eigenmodes

2 Linear equations

3 Gauss elimination, Pivoting

4 Numerical errors, condition number

5 LU decomposition, iterative improvement

6 Householder reduction

7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR),
Conjugate gradient (CG) and others

8 Eigenvalues Subspace methods, power iteration, Lánczos method, Krylov
Schur

9 Diagonalization with Fourier transformation

10 Eigenvalues transformation method

Gradient method

We want to get to the conjugate gradient method, let’s first discuss the
Gradient method (a.k.a Steepest descent, Richardson’s method)
Take

N =
1

α
, P =

1

α
− A (1)

with α > 0. This leads to

xk+1 = xk + α(b− Axk) (2)

This converges for 0 < α < 2/λmax(A) for a positive definite A and might not
converge for a non positive definite A

Geometric interpretation of gradient method

Suppose A is symmetric (hermitic) and positive definit (∀x : xTAx > 0)
define

f (x) =
1

2
xTAx− xTb (3)

Since A is positive definit, this has a minimum. There we have ∇f (x) = 0

∇f (x) = Ax− b = 0 (4)

Minumum of f (x) solves the eq. Ax = b

The iteration

xk+1 = xk + α(b− Axk) (5)

steps along the negative gradient of f (x).
If α is small enough (0 < α < 2/ρ(A)) than f (x) decreases → we might get
to the minimum

Gradient method with variable stepsize

if we take small steps it’s going to take long to get to the minimum.
Idea: choose α such that f (x + α(b− Ax)) is minimized → optimal stepsize

f (x + αr) =
1

2
(x + αr)TA(x + αr)− bT (x + αr) (6)

We get minimum from ∂αf (x + αr) = 0

=⇒ α =
rT r

rTAr
(7)

Gradient method

Green: Gradient method with optimal
stepsize

Can still take many steps to converge

Teaser: Red corresponds to Conjugate
Gradient, which converges in two steps
(in 2d)

Krylov subspace

Some definitions first:
The vector space spanned by {r,Ar, . . . ,Akr} is the Krylov subspace
corresponding to A and r, denoted by Kk

k0 is the Krylov critical dimension if Kk0 = Kk0+1

two vectors u and v are conjugate with respect to A if we have uTAv = 0.

Consider a gradient method with whatever stepsize

xk+1 = xk + αk(b− Axk) = xk + αkrk (8)

Then rk ∈ Kk and xk+1 − x0 ∈ Kk

Shown by b− Axk+1 = b− Axk − αArk =⇒ rk+1 = rk − αArk

Conjugate Gradient

The conjugate gradient method (CG) searches for the minumum of f (xk+1) in
the affine subspace [x0 + Kk] (this means xk+1 − x0 ∈ Kk), where Kk is the
krylov subspace of r0

The Conjugate Gradient satisfies:

1 xk+1 is choosen such that rk+1⊥Kk

2 xk+1 is choosen such that it minimizes f (x) in [x0 + Kk]

This means that CG converges in at most n iterations. (But usually one needs
less for a good solution)

Conjugate Gradient alg.

The Algorithm for finding that minimum is:

Initialization: p0 = r0 = b− Ax0
Loop: αi = rTi ri/(pi

TApi)
xi+1 = xi + αipi

ri+1 = ri − αiApi

βi = rTi+1ri+1/(rTi ri)
pi+1 = ri+1 + βipi

one can show by induction:

∀i 6= j : rTi rj = 0, pT
i Apj = 0, ripj = 0 (9)

Also, αi is choosen such that f (xi + αipi) is minimized in αi .
p is sometimes called the “search direction”

CG costs

since ∀i 6= j : rTi rj = 0, the CG converges in at most n iterations in an n
dimensional vectors space (less
However, rounding errors lead to rn+1 6= 0, so we should use a small ε and stop
when

‖rk‖
‖r0‖

< ε (10)

for large systems, n and k0 ∼ 104 or larger, typically one needs much less than
n iterations.

Costs: n iterations maximally.
One iteration: matrix-vector product: O(n2), linear combinations of vectors
O(n)
Total: ≈ n3 slightly worse than Gauss or LU decomp.
But: usually needs less than n iterations.

Sparse matrices: multiplication costs only O(n) operations

CG convergence

One can show: The norm of ei = xi − x is reduced in each iteration by the
factor at least

√
cond2A− 1√
cond2A + 1

(11)

Preconditioning
given a matrix M such that:
M−1v is easy to calculate
cond2(M−1A) < cond2(A)

We can solve the preconditioned system M−1Ax = M−1b instead of Ax = b,
converges faster.

Initialization: r0 = b− Ax0, z0 = M−1r0, p0 = z0
Loop: αi = zTi ri/(pi

TApi)
xi+1 = xi + αipi

ri+1 = ri − αiApi

zi+1 = M−1ri+1

βi = zTi+1ri+1/(zTi ri)
pi+1 = zi+1 + βipi

non hermitian matrices and other methods

What happens if we have A non-symmetric positive definite?

Use B = AA+: v+Bv = v+AA+v =
∥∥A+v

∥∥ > 0 if A is non-singular
solve By = b using CG, this means AA+y = b
=⇒ x = A+y solves Ax = b

Further iterative methods:
BiConjugate Gradient (BiCG, BiCGStab), Generalized minimal residual
(GMRES): A does not need to be positive def, not guaranteed to converge,
but often does.
Block-CG: we want to solve Axk = bk for several right hand side b vectors.
We do the iterations the same time where the search directions for different k
“communicate”, such that the we look for a minimum on a larger Krylov space,
ensuring faster convergence
Multishift-CG: we want to solve (A + mi1)xi = bi . These ahve all the same
Krylov space. One can solve all of them in the same iteration with just one
matrix-vector multiplication and many linear combinations of vectors.

Eigenvalues

So far we had Ax = b, now we look at Ax = 0
General eigenvalue problem:

A(λ)x = 0 (12)

solutions at det(A(λ)) = 0, giving eigen values λi and eigenvectors xi .

Regular eigenvalue problem: A(λ) = A− λ1, this gives the usual form:

Ax = λx (13)

det(A− λ1) = polynomial of degree n =⇒ λ ∈ {λ1, . . . , λn}

Eigenvectors are determined up to a factor =⇒ choose x1 at will and solve for
xj , j > 1 using methods detailed before.

Eigenvalues

In practice looking for the roots of a large polynomial is hard (no direct method
for n > 4, even calculating the coefficients of the polynomial is hard for large n)

1 Subspace methods
Aim at finding a few eigenvalues with high precision by keeping track of a
subspace using a few vectors, and iteratively improving the precision.

2 Transformation methods
If we find Q such that

Q−1AQ = diag(λ1, . . . , λn) (14)

than λi are the eigenvectors,
AQ = Qdiag(λ1, . . . , λn) =⇒ columns of Q are the eigenvectors
Usually Q is built iteratively Q = Q1Q2 . . .Qn . . ., such that the non
diagonal elements of the transformed A decrease

3 Fourier transformation Works in some cases: for a certain class of
matrices: Mj,k =

∑
i αiδj,k+ni , using periodic boundary conditions

These types of matrices are often come up in physics, discretization of
PDEs, etc.

Condition numbers for eigenvalues

Consider the matrix

A =



0 0 ε
1 0 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1 0

 (15)

Let’s choose ε = 10−n, with n even. The characteristic polinomial for this is:

pA(λ) = det(A− λ1) = (λn − ε) (16)

=⇒ λi = 10−1 All eigenvalues are the same.
However, if we take ε = 0 we have λi = 0
=⇒ in some cases small variations of the matrix give a large change in the

eigenvalues.

Condition numbers for eigenvalues

We define the eigenvalue condition number

Γ(A) = inf
P−1AP=diag

cond(P), with cond(P) = ‖P‖
∥∥∥P−1

∥∥∥ (17)

This means Γ(A) ≥ 1
For symmetric (hermitian) matrices we have Γ2(A) = 1, as we ‖P‖2 = 1 for
orthogonal (unitary) P matrices

Bauer-Fike Theorem:
If we perturbe the matrix A→ A + δA, the eigenvalues change λi → λ′i
We have an upper estimate of their change:

|λi − λ′i | ≤ Γ(A) ‖δA‖ (18)

For a norm which satisfies ‖diag(d1, . . . , dn)‖ = max|di |

Power iteration

aka. von Mises Method – simplest subspace method
Suppose we have a symmetric (Hermitian) matrix, such that the eigenvalues are
non degenerate (we really need the largest absolute value is non-degenerate)

|λ1| > |λ2| > . . . > |λn| (19)

=⇒ any vector can be written as a linear combination of the eigenvectors xi

v =
∑

αixi (20)

We can start applying A: v0 = v , v1 = Av0, and so on: vk = Avk−1 = Akv0.
We can see:

v1 =
∑

αiλixi (21)

vk =
∑

αiλ
k
i xi

Our assumption means that at large k the first eigenvector will dominate

Power iteration

Use the following iteration:

v0 = v/ ‖v‖ (22)

vk+1 = Avk/ ‖Avk‖

We can write vk = α
(k)
i xi

We can also write

vk = Akv0/
∥∥∥Akv0

∥∥∥ =

1
λk
1
Akv0∥∥∥ 1

λk
1
Akv0

∥∥∥ =
α1x1 +

∑n
i=2

(
λi
λ1

)k
xi∥∥∥∥α1x1 +

∑n
i=2

(
λi
λ1

)k
xi

∥∥∥∥ (23)

=⇒ convergence rate given by |λ2|/|λ1|
vk converges to the eigenvector x1
Using dk = xk − xk−1

Adk = Axk − Axk−1 = Axk − λxk (24)

for some λ (as we calculate xk by normalizing Axk−1

=⇒ ‖Adk‖ helps judge how close we are to an eigenvalue.
We can get the eigenvalue by: eTk Av/(eTk v) (e.g. picking a component of a
vector, preferably a large one)

inverse power iteration

Sometimes we need the smallest eigenvale:

v0 = v/ ‖v‖ (25)

solve Ayk = vk−1 for yk

vk+1 = yk/ ‖yk‖

Is equivalent to power iteration with A−1 , which has eigenvalues
{1/λ1, . . . , 1/λn} ∣∣∣∣ 1

λ1

∣∣∣∣ < ∣∣∣∣ 1

λ2

∣∣∣∣ < . . . <

∣∣∣∣ 1

λn

∣∣∣∣ (26)

=⇒ power iteration will give the smallest eigenvalue, 1/λn

Can be efficiently carried out by calculating the LU decomposition of A

second largest e.v., Shifted power iteration

If we know the largest eigenvalue λ1 and eigenvector x1
make our vector orthogonal to that:

v0 = v/ ‖v‖ (27)

yk = Avk−1

vk+1 = yk − x1(xT1 yk) (28)

=⇒ This converges to the eigenvector of the second largest eigenvalue.

If we know there is an eigenvalue close to µ:

|λi − µ| < |λj − µ| for j 6= i (29)

We can use power iteration of (A− µ1)−1:

v0 = v/ ‖v‖ (30)

solve (A− µ1)yk = vk−1 for yk

vk+1 = yk/ ‖yk‖

=⇒ This converges to xi =⇒ λi is found

Lanczos method

What if we need more than a few eigenvectors? We should not throw away all
but the last vector in the krylov space

Kk = {v,Av,A2v, . . . ,Akv} (31)

Build the following base of the Krylov space (with A symmetric (hermitian)
matrix):

v1 =
v

‖v‖ (32)

vk =
yk
‖yk‖

, with yk = Avk−1 −
k−1∑
i=1

((Avk−1)+vi)vi

In words: take the new vector Avk−1, make it orthogonal to previous vectors
and normalize it.
This is equivalent to using the Gram-Schmidt procedure on the Krylov space
if vk is zero for some k, than we have exhausted the Krylov space of the vector
v and the the iteration is stopped.

Lanczos iteration

yk = Avk−1 −
k−1∑
i=1

((Avk−1)+vi)vi (33)

if A is symmetric we can write

((Avk−1)+vj) = (v+k−1Avj) = (v+k−1yj+1)︸ ︷︷ ︸
=0 if j<k−2

+

j∑
i=1

((Avj)
+vi) (v+k−1vi)︸ ︷︷ ︸

=0 for j<k−1

(34)

So we only need to make the new vector orthogonal for the last two vectors

yk = Avk−1 −
k−1∑

i=k−2

((Avk−1)+vi)vi (35)

Lanczos

Rewriting the last equation we have:

Avk−1 = vk ‖yk‖+ ((Avk−1)+vk−1)vk−1 + ‖yk−1‖ vk−2 (36)

We collect k column vectors into a matrix Vk , than this equation says:

AVk = VkTk + yk+1e
T
k (37)

with eTk = (0, . . . , 0, 1) the row vector of length k
i.e. If we apply A to our column vectors we get a linear combination of our
column vectors (the coefficients are in the Tk , which is a k × k matrix), except
for the last vector, which has an extra contribution that goes into the last
column
This also means if we multiply with V T

k from the left:

V T
k AVk = Tk (38)

and V T
k Vk = 1k×k since Vk is built from orthonormal vectors

Looking at the coefficients above, we also see that Tk is tridiagonal (and
symmetric)

Lanczos eigenvalues

Why is this useful?
Tk is a k × k matrix: V T

k AVk = Tk : can think of it as A restricted to the
vector space given by the basis Vk

Eigenvalues of Tk are related to eigenvalues of A
One can show: For any eigenvalue λT of Tk there exists an eigenvalue λA of A
such that

|λT − λA| ≤ ‖yk+1‖ (39)

One can show even more: if y is the eigenvector of Tk corresponding to λT

than

|λT − λA| ≤ ‖yk+1‖
eTk y

‖y‖ (40)

Which means we have a particularly good approximation if the last element of
the eigenvector y is small

Generalization for non-hermitian: Arnoldi method. Tk is upper Hessenberg in
this case.

Krylov-Schur

Lanczos is very useful, but we have no way to control which eigenvalues we get.
With large k the method becomes intractable. restarting can improve one
eigenvalue, but what if we need more?

Krylov-Schur
We start with an Arnoldi iteration

AVk = VkTk + yk+1e
T
k (41)

With unitary transformations on the vk and Tk we can achive a partition:

A(V1V2) = (V1V2)

(
B11 B12

0 B21

)
+ uk+1(b+

1 b
+
2) (42)

Such that V1 contains the eigenvectors corresponding to eigenvalues we want
to calculate, V2 contains uninteresting eigenvalues. We can now simply drop
V2 and start iterating again from

AV1 = V1B11 + uk+1b
+
1 (43)

We can do the expand-drop cycle until eigenvalues and eigenvectors converge
See details e.g. in: G.W. Stewart: Matrix Algorithms Vol II: Eigensystems

