Numerical Methods in Linear Algebra

Dénes Sexty

University of Graz

2020-2021, winter term

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

UNI

1 Examples: Bridge, multidim Newton's method, QM, vibrational eigenmodes
2 Linear equations
3 Gauss elimination, Pivoting
4 Numerical errors, condition number
5 LU decomposition, iterative improvement
${ }_{6}$ Householder reduction
7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR), Conjugate gradient (CG) and others

We still want to solve $A \mathbf{x}=b$.
We have used Gauss elimination, LU decomposition, and that pivoting is typically needed.

Householder reduction

using orthogonal transformations, we bring the matrix to a triangular form:

$$
\begin{equation*}
O A=R \tag{1}
\end{equation*}
$$

where O is orthogonal: $O^{T} O=O O^{T}=\mathbf{1}$,
if we have two orthogonals: O_{1}, O_{2}

$$
\begin{equation*}
O_{1} O_{2}\left(O_{1} O_{2}\right)^{T}=O_{1} O_{2} O_{2}^{T} O_{1}^{T}=\mathbf{1} \tag{2}
\end{equation*}
$$

\Longrightarrow their product is also orthogonal
R is upper triangular : $R_{i j}=0$ for $i>j$

Can also think of it as factorization: $A=O^{\top} R$

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \quad \Longrightarrow \quad O^{T} R \mathbf{x}=\mathbf{b} \quad \Longrightarrow \quad O^{T} \mathbf{y}=\mathbf{b}, \quad R \mathbf{x}=\mathbf{y} \tag{3}
\end{equation*}
$$

$O^{T} \mathbf{y}=\mathbf{b}$ is solved simply using $\mathbf{y}=\mathbf{O} \mathbf{b}$ $R \mathrm{x}=\mathrm{y}$ is solved using backsubstitution

Replaces Gauss elimination (LU decomposition)
numerically stable since it uses orthogonal transformations
O is a product of reflections

Take a unit vector $\mathbf{w}, \mathbf{w}^{T} \mathbf{w}=1$
This defines an $n-1$ dimensional hyperplane of vectors orthogonal to \mathbf{w}

we want the reflection $\mathrm{x} \rightarrow P \mathrm{x}$
$\mathbf{x}_{\|}=\left(\mathbf{w}^{T} \mathbf{x}\right) \mathbf{w}$: projection to \mathbf{w} $x_{x}=x_{\|}+x_{\perp} \rightarrow P \mathbf{x}=-x_{\|}+x_{\perp}=x-2 x_{\|}$ $P \mathbf{x}=\mathbf{x}-2 \mathbf{w}\left(\mathbf{w}^{T} \mathbf{x}\right)=\left(1-2 \mathbf{w w}^{T}\right) \mathbf{x}$ outer product: $\mathbf{w w}^{T}=M, \quad M_{i j}=\mathbf{w}_{i} \mathbf{w}_{j}$
$P=\left(\mathbf{1}-2 \mathbf{w} \mathbf{w}^{T}\right)$
P is symmetric: $P^{T}=P$

$$
\begin{equation*}
P^{2}=\left(1-2 \mathbf{w} \mathbf{w}^{T}\right)\left(1-2 \mathbf{w} \mathbf{w}^{T}\right)=1-4 \mathbf{w} \mathbf{w}^{T}+4 \mathbf{w} \underbrace{\mathbf{w}^{T} \mathbf{w}}_{1} \mathbf{w}^{T}=1 \tag{4}
\end{equation*}
$$

as \mathbf{w} is a unit vector: $\mathbf{w}_{j} \mathbf{w}_{j}=1 \Longrightarrow \mathbf{w}_{i} \mathbf{w}_{j} \mathbf{w}_{j} \mathbf{w}_{k}=\mathbf{w}_{i} \mathbf{w}_{k}$
$\Longrightarrow P$ is orthogonal: $P^{T} P=P P^{T}=P^{2}=1$

Reflections in n dimensions

Can we bring any two vectors in to each other with a reflection?
given $\mathbf{x} \neq \mathbf{y}$ two vectors with the same length $\mathbf{x}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}=\|\mathbf{y}\|^{2}=$ $\mathbf{y}^{\top} \mathbf{y} \quad \Longrightarrow$ There exists a reflection
 such that $P \mathbf{x}=\mathbf{y}, P \mathbf{y}=\mathbf{x}$

Proof: $\mathbf{w}=\frac{x-y}{\|x-y\|}$
$\left(\mathbf{w} \mathbf{w}^{T}\right) \mathbf{x}=(\mathbf{x}-\mathbf{y}) \frac{\left(\mathbf{x}^{T}-\mathbf{y}^{T}\right) \mathrm{x}}{\|\mathrm{x}-\mathrm{y}\|^{2}}=(\mathbf{x}-\mathbf{y}) \frac{\left(\mathbf{x}^{T} \mathrm{x}+\mathrm{y}^{T} \mathrm{y}-\mathrm{y}^{T} \mathrm{x}-\mathrm{x}^{T} \mathrm{y}\right)}{2\|\mathrm{x}-\mathrm{y}\|^{2}}=$
$=(x-y) \frac{(x-y)^{T}(x-y)}{2\|x-y\|^{2}}=\frac{x-y}{2}$

$$
\begin{equation*}
\Longrightarrow P \mathbf{x}=\left(1-2 \mathbf{w} \mathbf{w}^{T}\right) \mathbf{x}=\mathbf{x}-2 \frac{\mathbf{x}-\mathbf{y}}{2}=\mathbf{y} \tag{5}
\end{equation*}
$$

construct reflection such that

$$
\begin{gather*}
a^{1}=\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right) \xrightarrow{P_{1} a^{1}}\left(\begin{array}{c}
-\sigma_{1} \\
0 \\
\vdots \\
0
\end{array}\right) \quad P_{1} \underbrace{a^{1}}_{=x}=\underbrace{-\sigma_{1} \mathbf{e}_{1}}_{=y} \text { with } \sigma_{1}= \pm\left\|a^{1}\right\| \\
\mathbf{u}^{T}=(\mathbf{x}-\mathbf{y})^{T}=\left(a_{11}+\sigma_{1}, a_{21}, \ldots, a_{n 1}\right), \quad P_{1}=1-\mathbf{u u ^ { T }} / H \\
H=\frac{1}{2} u^{T} u=\frac{1}{2}\left(a^{1}+\sigma_{1} \mathbf{e}_{1}\right)\left(a^{1}+\sigma_{1} \mathbf{e}_{1}\right)=\frac{1}{2}\left(\left\|a^{1}\right\|^{2}+2 \sigma_{1} a_{11}+\sigma_{1}^{2}\right)=\sigma_{1}\left(\sigma_{1}+a_{11}\right) \tag{8}
\end{gather*}
$$

avoiding precision loss if $\operatorname{sign} \sigma_{1}=\operatorname{sign} a_{11} \quad \Longrightarrow \quad \sigma_{1}=\operatorname{sign}\left(a_{11}\right)\left\|a^{1}\right\|$ No pivoting required, the diagonal always becomes $\left\|a^{1}\right\|$. If that is zero, the matrix is singular

After first step $a_{i j} \rightarrow a_{i j}^{\prime}=\left(P_{1} A\right)_{i j}$
2nd step: $\mathbf{u}^{T}=\left(0, a_{22}^{\prime}+\sigma_{2}, a_{32}^{\prime}, \ldots, a_{n 2}^{\prime}\right), \quad \sigma_{2}=\operatorname{sign}\left(a_{22}^{\prime}\right) \sqrt{\sum_{i=2}^{n}\left(a_{i 2}^{\prime}\right)^{2}}$

$$
\begin{gather*}
P_{2}=1-\mathbf{u u}^{T} / H=\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & \\
\vdots & {[\boldsymbol{X}]} \\
0 &
\end{array}\right), \quad H=\sigma_{2}\left(\sigma_{2}+a_{22}^{\prime}\right) \tag{9}\\
P_{2} P_{1} A=\left(\begin{array}{cccc}
-\sigma_{1} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
0 & -\sigma_{2} & \\
\vdots & 0 & {\left[A^{\prime \prime}\right]} \\
\vdots & \vdots & \\
0 & 0 &
\end{array}\right) \tag{10}
\end{gather*}
$$

First row and first column of $P_{1} A$ is unchanged

Do it $n-1$ times: $P_{n-1} \ldots P_{1} A=R$ with R upper triangular $Q=\left(P_{n-1} P_{n-2} \ldots P_{2} P_{1}\right)^{T}=P_{1} P_{2} \ldots P_{n-2} P_{n-1}$ $A=Q R \quad \Longrightarrow \quad$ "QR decomposition"

Complex QR

$\mathbf{x} \in \mathbb{C}^{n}, x_{1}=r e^{i \theta}$ with $r, \Theta \in \mathbb{R}$
$\mathbf{u}=\mathbf{x} \pm e^{i \Theta}\|x\| \mathbf{e}_{\mathbf{1}}$ and $P=1-\frac{\mathbf{u t}^{\dagger}}{H}, \quad H=\mathbf{u}^{\dagger} \mathbf{u} / 2$
$P \mathbf{x}=\mp e^{i \theta}\|x\| \mathbf{e}_{1}$
orthogonality \rightarrow unitarity

$$
\begin{align*}
P^{\dagger} P & =\left(1-\frac{\mathbf{u u}^{\dagger}}{H}\right)\left(1-\frac{\mathbf{u u}^{\dagger}}{H}\right)=1-2 \frac{\mathbf{u} \mathbf{u}^{\dagger}}{H}+\frac{\mathbf{u u}^{\dagger} \mathbf{u u}^{\dagger}}{\left(\frac{1}{2} \mathbf{u}^{\dagger} \mathbf{u}\right)^{2}} \tag{11}\\
& =1-2 \frac{\mathbf{u} \mathbf{u}^{\dagger}}{H}+2 \frac{\mathbf{u} \mathbf{u}^{\dagger}}{H}=1 \tag{12}
\end{align*}
$$

sign choosen to maximize H
cost of LU decomposition: $O\left(n^{3}\right)$
matrix multiplication: $O\left(n^{3}\right)$, need $n-1$ reflections: $O\left(n^{4}\right)$?

Actually multiplication with reflector is cheaper.
$\mathbf{w w}^{T}=w_{i} w_{j}$: calculating $w_{i} w_{j} A_{j k}$
First calculate $v_{k}=w_{j} A_{j k}$, takes $O\left(n^{2}\right)$ operations Than $a_{i j}^{\prime}=a_{i j}-C w_{i} v_{j}$ takes
$O\left(n^{2}\right)$ operations \Longrightarrow multiplication with reflector takes $O\left(n^{2}\right)$
\Longrightarrow QR reduction needs $O\left(n^{3}\right)$
$\mathrm{LU} \sim n^{3} / 3, \quad \mathrm{QR}$ reduction $\sim 2 n^{3} / 3$
but QR needs no pivoting and is numerically stable.

Often one can have an iterative procedure that delivers a solution to some problem. We are interested here in the solution to $A \mathbf{x}=\mathbf{b}$
An example (not particularly efficient) let M be a matrix. The geometric series is defined as:

$$
\begin{equation*}
S_{n}=\sum_{i=0}^{n} M^{i}=1+M+M^{2}+\ldots+M^{n} \tag{13}
\end{equation*}
$$

now we can write $S_{n+1}=S_{n}+M^{n+1}=1+S_{n} M$
$\Longrightarrow S_{n}(1-M)=1-M^{n+1}$

$$
\begin{equation*}
S_{n}=\left(1-M^{n+1}\right)(1-M)^{-1} \tag{14}
\end{equation*}
$$

if $M^{n} \xrightarrow[n \rightarrow \infty]{ } 0$, than $S_{\infty}=(1-M)^{-1}$ This happens if M is "small" (e.g. all eigenvalues are <1)

Suppose M is diagonalizable: $M=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{-1}$, with U orthogonal (unitary)

$$
\begin{align*}
M^{k} & =U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \underbrace{U^{-1} U}_{=1} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{-1} \ldots= \tag{15}\\
& =U\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)^{k} U^{-1}=U \operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right) U^{-1} \\
\Longrightarrow M^{k} \rightarrow 0 & \text { if } \lambda_{i}<1
\end{align*}
$$

This leads to the following procedure:
Given a matrix A, and righthandside b,
1 calculate the matrix $M=1-A$
(2) $\mathbf{v}_{0}=\mathbf{b}$
$3 \mathbf{v}_{i+1}=\mathbf{b}+M \mathbf{v}_{i}$
4 exit if converged
5 goto 3
we have calculated the geometric series using $S_{n+1}=1+M S_{n}$, applied to the vector b
by convergence we have

$$
\begin{equation*}
\mathbf{v}=\left(1+M+\ldots M^{n}+\ldots\right) \mathbf{b}=(1-M)^{-1} \mathbf{b}=A^{-1} \mathbf{b} \tag{16}
\end{equation*}
$$

converges only if A is "close" to the unit matrix

Jacobi method

We want to solve $a_{i j} x_{j}=b_{i}$
solve for x_{i} formally:

$$
\begin{equation*}
x_{i}=-\frac{1}{a_{i i}}\left[\sum_{j \neq i} a_{i j} x_{j}-b_{i}\right] \tag{17}
\end{equation*}
$$

Make this into an iteration:

$$
\begin{equation*}
x_{i}^{(i+1)}=-\frac{1}{a_{i i}}\left[\sum_{j \neq i} a_{i j} x_{j}^{(i)}-b_{i}\right] \tag{18}
\end{equation*}
$$

if we get $x^{(i+1)}=x^{(i)}$ we have found the solution.
\Longrightarrow iterate until convergence

We rewrite $A \mathbf{x}=\mathbf{b}$ in the form: $\mathbf{x}=G(\omega) \mathbf{x}+\mathbf{g}(\omega)$, where ω is a relaxation parameter
We can thus define an iteration: $\mathbf{x}_{i+1}=G(\omega) \mathbf{x}_{i}+\mathbf{g}(\omega)$
In case of convergence

$$
\begin{equation*}
\mathbf{x}=\lim _{i \rightarrow \infty} \mathbf{x}_{i} \tag{19}
\end{equation*}
$$

Procedure is not unique, depends on the choice of $G(\omega)$ and $\mathbf{g}(\omega)$ e.g. $A=N(\omega)-P(\omega)$ with $N(\omega)$ non-singular

$$
\begin{equation*}
(N(\omega)-P(\omega)) \mathbf{x}=\mathbf{b} \quad \Longrightarrow \quad N(\omega) \mathbf{x}_{i+1}=P(\omega) \mathbf{x}_{i}+\mathbf{g}(\omega) \tag{20}
\end{equation*}
$$

We choose $N(\omega)$ such that one can easily solve $N(\omega) \mathbf{x}=\mathbf{y}$.

$$
\begin{equation*}
\mathbf{x}=N^{-1}(\omega) P(\omega) \mathbf{x}+N^{-1}(\omega) \mathbf{b} \tag{21}
\end{equation*}
$$

$\Longrightarrow G(\omega)=N^{-1}(\omega) P(\omega), \quad \mathbf{g}(\omega)=N^{-1}(\omega) \mathbf{b}$

Can be shown to converge if the spectral radius ρ of $G(\omega)$ is smaller than 1 (i.e. eigenvalues have absolute value smaller than 1)

$$
\begin{equation*}
\rho(G)=\max \left|\lambda_{k}(G)\right| \tag{22}
\end{equation*}
$$

(In case $G(\omega)$ is not diagonalizable, diagonals <1 in the Jordan normal form)

Convergence rate is given by $\lambda_{\max }(G(\omega))$
The inverse of $N(\omega)$ must be easily calculable.
$N(\omega)$ is completely arbitrary $(P(\omega)=N(\omega)-A)$, but it makes sense if it is choosen to be related to A

Proof of convergence

$$
\begin{align*}
\mathbf{e}_{k} & =\mathbf{x}_{k}-\mathbf{x}=N^{-1} P \mathbf{x}_{k-1}+N^{-1} \mathbf{b}-\left(N^{-1} P \mathbf{x}+N^{-1} \mathbf{b}\right)= \tag{23}\\
& =N^{-1} P\left(\mathbf{x}_{k-1}-\mathbf{x}\right)=N^{-1} P \mathbf{e}_{k-1}
\end{align*}
$$

So the error vector is: $\mathbf{e}_{k}=\left(N^{-1} P\right)^{k} \mathbf{e}_{0}$
$\lim _{k \rightarrow \infty} M^{k}=0$ is equivalent to

- $\rho(M)<1$
as seen above
- There is a norm for which $\|M\|<1$
because $\left\|M^{i}\right\| \leq\|M\|^{i} \rightarrow 0$

$$
A=D-L-U=\left(\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \tag{24}\\
0 & a_{22} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right)-\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
-a_{21} & 0 & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
-a_{n 1} & -a_{n 2} & \ldots & 0
\end{array}\right)-\left(\begin{array}{cccc}
0 & -a_{12} & \ldots & -a_{1 n} \\
0 & 0 & \cdots & -a_{2 n} \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

Assuming no zeroes on the diagonal, $N(\omega)=\frac{1}{\omega} D$

$$
\begin{gather*}
\Longrightarrow P(\omega)=\frac{1-\omega}{\omega} D+L+U \quad \text { in } \quad A=N(\omega)-P(\omega) \tag{25}\\
G(\omega)=(1-\omega)+\omega D^{-1}(L+U), \quad \mathbf{g}(\omega)=\omega D^{-1} \mathbf{b} \tag{26}
\end{gather*}
$$

for $\omega=1$ we get the Jacobi method, for $\omega \neq 1$ we have Jacobi overrelaxation (JOR)

Iterate until convergence
Condition for exit if it's non-convergent is also needed

Gauss-Seidel and Successive overrelaxation

Start again from $A=D-L-U$, choose $N(\omega)=\frac{1}{\omega} D-L$
$\Longrightarrow G(\omega)=(D-\omega L)^{-1}[(1-\omega) D+\omega U], \quad \mathbf{g}(\omega)=\omega(D-\omega L)^{-1} \mathbf{b}$
Iteration equation:(after multiplication with $(D-\omega L)$

$$
\begin{equation*}
(D-\omega L) \mathbf{x}_{i+1}=(1-\omega) D \mathbf{x}_{i}+\omega U \mathbf{x}_{i}+\omega \mathbf{b} \tag{27}
\end{equation*}
$$

equivalent to:

$$
\begin{equation*}
\mathbf{x}_{i+1}=(1-\omega) \mathbf{x}_{i}+\omega D^{-1}\left(L \mathbf{x}_{i+1}+U \mathbf{x}_{i}+\mathbf{b}\right) \tag{28}
\end{equation*}
$$

Can be solved using forward substitution. Inverse of $(D-\omega L)$ not needed

$$
\begin{equation*}
x_{j}^{(i+1)}=(1-\omega) x_{j}^{(i)}-\frac{\omega}{a_{i i}}\left(\sum_{k=1}^{j-1} a_{j k} x_{k}^{(i+1)}+\sum_{k=j+1}^{n} a_{j k} x_{k}^{(i)}-b_{j}\right) \tag{29}
\end{equation*}
$$

$\omega=1$ is called Gauss seidel method. $\omega \neq 1$ is Successive over-relaxation ω is called relaxation parameter weighted average of previous vector and Gauss-Seidel iterate

Jacobi (JOR):

$$
\begin{gather*}
\mathbf{x}_{i+1}=(1-\omega) \mathbf{x}_{i}+\omega D^{-1}\left(L \mathbf{x}_{i}+U \mathbf{x}_{i}+\mathbf{b}\right) \tag{30}\\
x_{j}^{(i+1)}=(1-\omega) x_{j}^{(i)}-\frac{\omega}{a_{i i}}\left[\sum_{k=1}^{j-1} a_{j k} x_{k}^{(i)}+\sum_{k=j+1}^{n} a_{j k} x_{k}^{(i)}-b_{j}\right] \tag{31}
\end{gather*}
$$

Gauss-Seidel (SOR):

$$
\begin{gather*}
\mathbf{x}_{i+1}=(1-\omega) \mathbf{x}_{i}+\omega D^{-1}\left(L \mathbf{x}_{i+1}+U \mathbf{x}_{i}+\mathbf{b}\right) \tag{32}\\
x_{j}^{(i+1)}=(1-\omega) x_{j}^{(i)}-\frac{\omega}{a_{i i}}\left[\sum_{k=1}^{j-1} a_{j k} x_{k}^{(i+1)}+\sum_{k=j+1}^{n} a_{j k} x_{k}^{(i)}-b_{j}\right] \tag{33}
\end{gather*}
$$

Same, except already known elements of \mathbf{x}_{i+1} are used instead of \mathbf{x}_{i}.
if A is symmetric and positive definite than SOR process can be shown to converge for $0<\omega<2$
Typically one chooses $\omega=1.5-2$ to speed up convergence.
$\omega<1$ is sometimes useful if it otherwise does not converge.

Jacobi iteration can be shown to converge for a strictly diagonally dominant matrix, as well as JOR for $0<\omega \leq 1$
for symmetric and positive definit A, JOR can be shown to converge for

$$
\begin{equation*}
0<\omega<\frac{2}{\mu_{\max }} \tag{34}
\end{equation*}
$$

where $\mu_{\max }$ is the maximal eigenvalue of $D^{-1} A$ Typically one takes $\omega=2 / 3$.
a matrix A is strictly diagonally dominan if for every i

$$
\begin{equation*}
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right| \tag{35}
\end{equation*}
$$

Practical considerations

What should be the convergence criterion? we need $\left\|\mathbf{x}_{k}-\mathbf{x}\right\|<\epsilon$ but we don't know \mathbf{x}.
$\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|<\epsilon$ is necessary, but not sufficient. (look at the sum $\sum_{i} 1 / i$)

We can look at the residual $\mathbf{r}=\mathbf{b}-A \mathbf{x}$.
First try: $\left\|\mathbf{b}-A \mathbf{x}_{k}\right\|<\epsilon$ This might also be misleading as

$$
\begin{equation*}
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|=\left\|A^{-1}\left(\mathbf{b}-A \mathbf{x}_{k}\right)\right\| \leq\left\|A^{-1}\right\|\left\|\mathbf{b}-A \mathbf{x}_{k}\right\| \leq\left\|A^{-1}\right\| \epsilon \tag{36}
\end{equation*}
$$

So the error norm could be large if $\left\|A^{-1}\right\|$ is large

Safest choice for unknown A :

$$
\begin{equation*}
\frac{\left\|\mathbf{b}-A \mathbf{x}_{k}\right\|}{\left\|\mathbf{b}-A \mathbf{x}_{0}\right\|}<\epsilon \tag{37}
\end{equation*}
$$

The iteration eq.: $\mathbf{x}_{k+1}=N^{-1} P \mathbf{x}_{k}+N^{-1} \mathbf{b}$ can be written as:

$$
\begin{align*}
\mathbf{x}_{k+1} & =\mathbf{x}_{k}-N^{-1} N \mathbf{x}_{k}+N^{-1} P \mathbf{x}_{k}+N^{-1} \mathbf{b}=\mathbf{x}_{k}+N^{-1}\left(-(N-P) \mathbf{x}_{k}+\mathbf{b}\right)= \\
& =\mathbf{x}_{k}+N^{-1}\left(\mathbf{b}-A \mathbf{x}_{k}\right)=\mathbf{x}_{k}+N^{-1} \mathbf{r}_{k} \tag{38}\\
\mathbf{r}_{k+1} & =\mathbf{b}-A\left(\mathbf{x}_{k}+N^{-1} \mathbf{r}_{k}\right)=\mathbf{r}_{k}-A N^{-1} \mathbf{r}_{k} \tag{39}
\end{align*}
$$

So the pseudocode could be:
II Intialize: $\mathbf{x}=0, \mathbf{r}=\mathbf{b}$
2 While $\|\mathbf{r}\|>\epsilon\|\mathbf{b}\|$
3 Solve $N \mathbf{y}=\mathrm{r}$ for y
4 update solution: $\mathbf{x}=\mathbf{x}+\mathbf{y}$
5 update residual: $\mathbf{r}=\mathbf{r}-A \mathbf{y}$

Computational costs of iterative method

Costs per iteration:
1 Calculating the norm costs n operations
2 Computing y costs n operations for Jacobi, $n^{2} / 2$ for Gauss-Seidel
3 Computing $A \mathbf{v}$ costs n^{2} operations for a dense matrix (for sparse matrix with $O(n)$ nonzero elements this costs is only $O(n)$)
One iteration takes therefore $O\left(n^{2}\right)$ operations in contrast with $O\left(n^{3}\right)$ of the direct methods.
\Longrightarrow do we need $O(n)$ iterations or less? The answer depends on many things... (what is A, what is ω ?) Often one finds out by experimenting

Gradient method

We want to get to the conjugate gradient method, let's first discuss the Gradient method (a.k.a Steepest descent, Richardson's method) Take

$$
\begin{equation*}
N=\frac{1}{\alpha}, \quad P=\frac{1}{\alpha}-A \tag{40}
\end{equation*}
$$

with $\alpha>0$. This leads to

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha\left(\mathbf{b}-\boldsymbol{A} \mathbf{x}_{k}\right) \tag{41}
\end{equation*}
$$

This converges for $0<\alpha<2 / \lambda_{\max }(A)$ for a positive definite A and might not converge for a non positive definite A

Geometric interpretation of gradient method

Suppose A is symmetric (hermitic) and positive definit ($\left.\forall \mathbf{x}: \mathbf{x}^{T} A \mathbf{x}>0\right)$ define

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{x}^{T} \mathbf{b} \tag{42}
\end{equation*}
$$

Since A is positive definit, this has a minimum. There we have $\nabla f(\mathbf{x})=0$

$$
\begin{equation*}
\nabla f(\mathbf{x})=A \mathbf{x}-\mathbf{b}=0 \tag{43}
\end{equation*}
$$

Minumum of $f(\mathbf{x})$ solves the eq. $A \mathbf{x}=\mathbf{b}$

The iteration

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha\left(\mathbf{b}-\boldsymbol{A} \mathbf{x}_{k}\right) \tag{44}
\end{equation*}
$$

steps along the negative gradient of $f(\mathbf{x})$.
If α is small enough $(0<\alpha<2 / \rho(A))$ than $f(\mathbf{x})$ decreases \rightarrow we might get to the minimum

Gradient method with variable stepsize

if we take small steps it's going to take long to get to the minimum. Idea: choose α such that $f(\mathbf{x}+\alpha(\mathbf{b}-\boldsymbol{A} \mathbf{x}))$ is minimized \rightarrow optimal stepsize

$$
\begin{equation*}
f(\mathbf{x}+\alpha \mathbf{r})=\frac{1}{2}(\mathbf{x}+\alpha \mathbf{r})^{T} A(\mathbf{x}+\alpha \mathbf{r})-b^{T}(x+\alpha \mathbf{r}) \tag{45}
\end{equation*}
$$

We get minimum from $\partial_{\alpha} f(\mathbf{x}+\alpha \mathbf{r})=0$

$$
\begin{equation*}
\Longrightarrow \alpha=\frac{r^{T} r}{r^{T} A r} \tag{46}
\end{equation*}
$$

Gradient method

Green: Gradient method with optimal stepsize

Can still take many steps to converge

Teaser: Red corresponds to Conjugate Gradient, which converges in two steps (in 2d)

