
Numerical Methods in Linear Algebra

Dénes Sexty

University of Graz

2020-2021, winter term

Overview

1 Examples: Bridge, multidim Newton’s method, QM, vibrational
eigenmodes

2 Linear equations

3 Gauss elimination, Pivoting

4 Numerical errors, condition number

5 LU decomposition, iterative improvement

6 Householder reduction

7 iterative solution: Gauss-Seidel, Successive overrelaxation (SOR),
Conjugate gradient (CG) and others

Householder reduction

We still want to solve Ax = b.
We have used Gauss elimination, LU decomposition, and that pivoting is
typically needed.

Householder reduction
using orthogonal transformations, we bring the matrix to a triangular form:

OA = R (1)

where O is orthogonal: OTO = OOT = 1,

if we have two orthogonals: O1,O2

O1O2(O1O2)T = O1O2O
T
2 OT

1 = 1 (2)

=⇒ their product is also orthogonal

R is upper triangular : Rij = 0 for i > j

Householder reduction

Can also think of it as factorization: A = OTR

Ax = b =⇒ OTRx = b =⇒ OTy = b, Rx = y (3)

OTy = b is solved simply using y = Ob
Rx = y is solved using backsubstitution

Replaces Gauss elimination (LU decomposition)

numerically stable since it uses orthogonal transformations

O is a product of reflections

Reflections in n dimensions

Take a unit vector w, wTw = 1
This defines an n − 1 dimensional hyperplane of vectors orthogonal to w

we want the reflection x→ Px

x‖ = (wTx)w: projection to w
x = x‖ + x⊥ → Px = −x‖ + x⊥ = x− 2x‖
Px = x− 2w(wTx) = (1− 2wwT)x
outer product: wwT = M, Mij = wiwj

Reflections in n dimensions

P = (1− 2wwT)
P is symmetric: PT = P

P2 = (1− 2wwT)(1− 2wwT) = 1− 4wwT + 4wwTw︸ ︷︷ ︸
1

wT = 1 (4)

as w is a unit vector: wjwj = 1 =⇒ wiwjwjwk = wiwk

=⇒ P is orthogonal: PTP = PPT = P2 = 1

Reflections in n dimensions

Can we bring any two vectors in to each
other with a reflection?
given x 6= y two vectors with the
same length xTx = ‖x‖2 = ‖y‖2 =
yTy =⇒ There exists a reflection
such that Px = y, Py = x

Proof: w = x−y
‖x−y‖

(wwT)x = (x− y) (xT−yT)x

‖x−y‖2 = (x− y) (xT x+yT y−yT x−xT y)

2‖x−y‖2 =

= (x− y) (x−y)T (x−y)

2‖x−y‖2 = x−y
2

=⇒ Px = (1− 2wwT)x = x− 2
x− y

2
= y (5)

Householder reduction step 1

construct reflection such that

a1 =


a11

a21

...
an1

 P1a
1

−−→


−σ1

0
...
0

 P1 a1︸︷︷︸
=x

= −σ1e1︸ ︷︷ ︸
=y

with σ1 = ±
∥∥∥a1
∥∥∥ (6)

uT = (x− y)T = (a11 + σ1, a21, . . . , an1), P1 = 1− uuT/H (7)

H =
1

2
uTu =

1

2
(a1 + σ1e1)(a1 + σ1e1) =

1

2
(
∥∥∥a1
∥∥∥2

+ 2σ1a11 + σ2
1) = σ1(σ1 + a11) (8)

avoiding precision loss if signσ1 = signa11 =⇒ σ1 = sign(a11)
∥∥a1
∥∥

No pivoting required, the diagonal always becomes
∥∥a1
∥∥. If that is zero, the

matrix is singular

Householder reduction 2nd step

After first step aij → a′ij = (P1A)ij
2nd step: uT = (0, a′22 + σ2, a

′
32, . . . , a

′
n2), σ2 = sign(a′22)

√∑n
i=2(a′i2)2

P2 = 1− uuT/H =


1 0 · · · 0
0

[X]
...

0

 , H = σ2(σ2 + a′22) (9)

P2P1A =



−σ1 a′12 · · · a′1n
0 −σ2

[A′′]
... 0
...

...
0 0

 (10)

First row and first column of P1A is unchanged

Householder reduction

Do it n − 1 times: Pn−1 . . .P1A = R with R upper triangular
Q = (Pn−1Pn−2 . . .P2P1)T = P1P2 . . .Pn−2Pn−1

A = QR =⇒ “QR decomposition”

Complex QR
x ∈ Cn, x1 = re iΘ with r ,Θ ∈ R
u = x± e iΘ ‖x‖ e1 and P = 1− uu†

H
, H = u†u/2

Px = ∓e iθ ‖x‖ e1
orthogonality → unitarity

P†P =

(
1− uu†

H

)(
1− uu†

H

)
= 1− 2

uu†

H
+

uu†uu†

(1
2
u†u)2

(11)

= 1− 2
uu†

H
+ 2

uu†

H
= 1 (12)

sign choosen to maximize H

cost of Householder

cost of LU decomposition: O(n3)
matrix multiplication: O(n3) , need n − 1 reflections: O(n4)?

Actually multiplication with reflector is cheaper.
wwT = wiwj : calculating wiwjAjk

First calculate vk = wjAjk , takes O(n2) operations Than a′ij = aij − Cwivj takes
O(n2) operations =⇒ multiplication with reflector takes O(n2)
=⇒ QR reduction needs O(n3)

LU ∼ n3/3, QR reduction ∼ 2n3/3
but QR needs no pivoting and is numerically stable.

Iterative solution

Often one can have an iterative procedure that delivers a solution to some
problem. We are interested here in the solution to Ax = b
An example (not particularly efficient)
let M be a matrix. The geometric series is defined as:

Sn =
n∑

i=0

M i = 1 + M + M2 + . . .+ Mn (13)

now we can write Sn+1 = Sn + Mn+1 = 1 + SnM
=⇒ Sn(1−M) = 1−Mn+1

Sn = (1−Mn+1)(1−M)−1 (14)

if Mn −−−→
n→∞

0, than S∞ = (1−M)−1 This happens if M is “small” (e.g. all

eigenvalues are < 1)

limit of Mn

Suppose M is diagonalizable: M = Udiag(λ1, . . . , λn)U−1, with U orthogonal
(unitary)

Mk = Udiag(λ1, . . . , λn)U−1U︸ ︷︷ ︸
=1

diag(λ1, . . . , λn)U−1 . . . = (15)

= U(diag(λ1, . . . , λn))kU−1 = Udiag(λk
1 , . . . , λ

k
n)U−1

=⇒ Mk → 0 if λi < 1

Iterative solution 2

This leads to the following procedure:
Given a matrix A, and righthandside b,

1 calculate the matrix M = 1− A

2 v0 = b

3 vi+1 = b + Mvi

4 exit if converged

5 goto 3

we have calculated the geometric series using Sn+1 = 1 + MSn, applied to the
vector b
by convergence we have

v = (1 + M + . . .Mn + . . .)b = (1−M)−1b = A−1b (16)

converges only if A is “close” to the unit matrix

Jacobi method

We want to solve aijxj = bi
solve for xi formally:

xi = − 1

aii

∑
j 6=i

aijxj − bi

 (17)

Make this into an iteration:

x
(i+1)
i = − 1

aii

∑
j 6=i

aijx
(i)
j − bi

 (18)

if we get x (i+1) = x (i) we have found the solution.
=⇒ iterate until convergence

Iterative solution of Ax = b

We rewrite Ax = b in the form: x = G(ω)x + g(ω), where ω is a relaxation
parameter
We can thus define an iteration: xi+1 = G(ω)xi + g(ω)
In case of convergence

x = lim
i→∞

xi (19)

Procedure is not unique, depends on the choice of G(ω) and g(ω)
e.g. A = N(ω)− P(ω) with N(ω) non-singular

(N(ω)− P(ω))x = b =⇒ N(ω)xi+1 = P(ω)xi + g(ω) (20)

We choose N(ω) such that one can easily solve N(ω)x = y.

x = N−1(ω)P(ω)x + N−1(ω)b (21)

=⇒ G(ω) = N−1(ω)P(ω), g(ω) = N−1(ω)b

Iterative solution of Ax = b

Can be shown to converge if the spectral radius ρ of G(ω) is smaller than 1
(i.e. eigenvalues have absolute value smaller than 1)

ρ(G) = max|λk(G)| (22)

(In case G(ω) is not diagonalizable, diagonals < 1 in the Jordan normal form)

Convergence rate is given by λmax(G(ω))
The inverse of N(ω) must be easily calculable.

N(ω) is completely arbitrary (P(ω) = N(ω)− A), but it makes sense if it is
choosen to be related to A

Proof of convergence

ek = xk − x = N−1Pxk−1 + N−1b− (N−1Px + N−1b) = (23)

= N−1P(xk−1 − x) = N−1Pek−1

So the error vector is: ek = (N−1P)ke0

limk→∞Mk = 0 is equivalent to

ρ(M) < 1
as seen above

There is a norm for which ‖M‖ < 1
because

∥∥M i
∥∥ ≤ ‖M‖i → 0

Jacobi method

A = D − L − U =


a11 0 . . . 0
0 a22 . . . 0

.

.

.
. . .

.

.

.
0 0 . . . ann

 −


0 0 . . . 0

−a21 0 . . . 0

.

.

.
. . .

.

.

.
−an1 −an2 . . . 0

 −


0 −a12 . . . −a1n

0 0 . . . −a2n

.

.

.
. . .

.

.

.
0 0 . . . 0

 (24)

Assuming no zeroes on the diagonal, N(ω) = 1
ω
D

=⇒ P(ω) =
1− ω
ω

D + L + U in A = N(ω)− P(ω) (25)

G(ω) = (1− ω) + ωD−1(L + U), g(ω) = ωD−1b (26)

for ω = 1 we get the Jacobi method, for ω 6= 1 we have Jacobi overrelaxation
(JOR)

Iterate until convergence
Condition for exit if it’s non-convergent is also needed

Gauss-Seidel and Successive overrelaxation

Start again from A = D − L− U, choose N(ω) = 1
ω
D − L

=⇒ G(ω) = (D − ωL)−1[(1− ω)D + ωU], g(ω) = ω(D − ωL)−1b
Iteration equation:(after multiplication with (D − ωL)

(D − ωL)xi+1 = (1− ω)Dxi + ωUxi + ωb (27)

equivalent to:

xi+1 = (1− ω)xi + ωD−1(Lxi+1 + Uxi + b) (28)

Can be solved using forward substitution. Inverse of (D − ωL) not needed

x
(i+1)
j = (1− ω)x

(i)
j −

ω

aii
(

j−1∑
k=1

ajkx
(i+1)
k +

n∑
k=j+1

ajkx
(i)
k − bj) (29)

ω = 1 is called Gauss seidel method. ω 6= 1 is Successive over-relaxation
ω is called relaxation parameter
weighted average of previous vector and Gauss-Seidel iterate

Gauss Seidel vs Jacobi

Jacobi (JOR):

xi+1 = (1− ω)xi + ωD−1(Lxi + Uxi + b) (30)

x
(i+1)
j = (1− ω)x

(i)
j −

ω

aii

 j−1∑
k=1

ajkx
(i)
k +

n∑
k=j+1

ajkx
(i)
k − bj

 (31)

Gauss-Seidel (SOR):

xi+1 = (1− ω)xi + ωD−1(Lxi+1 + Uxi + b) (32)

x
(i+1)
j = (1− ω)x

(i)
j −

ω

aii

 j−1∑
k=1

ajkx
(i+1)
k +

n∑
k=j+1

ajkx
(i)
k − bj

 (33)

Same, except already known elements of xi+1 are used instead of xi .

convergence properties

if A is symmetric and positive definite than SOR process can be shown to
converge for 0 < ω < 2
Typically one chooses ω = 1.5− 2 to speed up convergence.
ω < 1 is sometimes useful if it otherwise does not converge.

Jacobi iteration can be shown to converge for a strictly diagonally dominant
matrix, as well as JOR for 0 < ω ≤ 1
for symmetric and positive definit A, JOR can be shown to converge for

0 < ω <
2

µmax
, (34)

where µmax is the maximal eigenvalue of D−1A Typically one takes ω = 2/3.

a matrix A is strictly diagonally dominan if for every i

|aii | >
∑
j 6=i

|aij | (35)

Practical considerations

What should be the convergence criterion?
we need ‖xk − x‖ < ε but we don’t know x.

‖xk+1 − xk‖ < ε is necessary, but not sufficient. (look at the sum
∑

i 1/i)

We can look at the residual r = b− Ax.
First try: ‖b− Axk‖ < ε This might also be misleading as

‖x− xk‖ =
∥∥∥A−1(b− Axk)

∥∥∥ ≤ ∥∥∥A−1
∥∥∥ ‖b− Axk‖ ≤

∥∥∥A−1
∥∥∥ ε (36)

So the error norm could be large if
∥∥A−1

∥∥ is large

Safest choice for unknown A:

‖b− Axk‖
‖b− Ax0‖

< ε (37)

Practical considerations 2

The iteration eq.: xk+1 = N−1Pxk + N−1b can be written as:

xk+1 = xk − N−1Nxk + N−1Pxk + N−1b = xk + N−1(−(N − P)xk + b) =

= xk + N−1(b− Axk) = xk + N−1rk (38)

rk+1 = b− A(xk + N−1rk) = rk − AN−1rk (39)

So the pseudocode could be:

1 Initialize: x = 0, r = b

2 While ‖r‖ > ε ‖b‖
3 Solve Ny = r for y

4 update solution: x = x + y

5 update residual: r = r − Ay

Computational costs of iterative method

Costs per iteration:

1 Calculating the norm costs n operations

2 Computing y costs n operations for Jacobi, n2/2 for Gauss-Seidel

3 Computing Av costs n2 operations for a dense matrix (for sparse matrix
with O(n) nonzero elements this costs is only O(n))

One iteration takes therefore O(n2) operations in contrast with O(n3) of the
direct methods.
=⇒ do we need O(n) iterations or less? The answer depends on many

things... (what is A, what is ω?) Often one finds out by experimenting

Gradient method

We want to get to the conjugate gradient method, let’s first discuss the
Gradient method (a.k.a Steepest descent, Richardson’s method)
Take

N =
1

α
, P =

1

α
− A (40)

with α > 0. This leads to

xk+1 = xk + α(b− Axk) (41)

This converges for 0 < α < 2/λmax(A) for a positive definite A and might not
converge for a non positive definite A

Geometric interpretation of gradient method

Suppose A is symmetric (hermitic) and positive definit (∀x : xTAx > 0)
define

f (x) =
1

2
xTAx− xTb (42)

Since A is positive definit, this has a minimum. There we have ∇f (x) = 0

∇f (x) = Ax− b = 0 (43)

Minumum of f (x) solves the eq. Ax = b

The iteration

xk+1 = xk + α(b− Axk) (44)

steps along the negative gradient of f (x).
If α is small enough (0 < α < 2/ρ(A)) than f (x) decreases → we might get
to the minimum

Gradient method with variable stepsize

if we take small steps it’s going to take long to get to the minimum.
Idea: choose α such that f (x + α(b− Ax)) is minimized → optimal stepsize

f (x + αr) =
1

2
(x + αr)TA(x + αr)− bT (x + αr) (45)

We get minimum from ∂αf (x + αr) = 0

=⇒ α =
rT r

rTAr
(46)

Gradient method

Green: Gradient method with optimal
stepsize

Can still take many steps to converge

Teaser: Red corresponds to Conjugate
Gradient, which converges in two steps
(in 2d)

