Monte Carlo methods

Dénes Sexty

University of Graz

2020-2021, winter term
UNIVERSITÄT GRAZ
UNIVERSITY OF GRAZ $\left.\quad \begin{array}{l}\text { UNI }\end{array}\right]$

1 Examples: Ising model etc.
2 Integration vs Sampling
3 Pseudo random number generators
4 Generation of random numbers with a given given distribution
5 Percolation, Random Walks
б Improtance Sampling, Markov chains, Metropolis Alg.
7 Statistics, error estimates: Jackknife, bootstrap
8 Langevin equation
9 fitting, χ^{2} test
11 Potts model, Ising model, XY model, nonlinear $O(n)$ model
11 Monte carlo simulations in practice
112 Phase transitions, finite size effects
IE Optimization: Simulated Annealing, Genetic algorithms
11 Cluster algorithms, Demon Algorithm
IE Quantum Monte Carlo
${ }_{16}$ Sign Problem, Complex Langevin, Lefschetz Thimble

Here we discuss the Ising-model.

$$
\begin{equation*}
H=-J \sum_{\text {neighbors }} s_{i} s_{j}-h \sum_{i} s_{i} \tag{1}
\end{equation*}
$$

Near T_{c} there are large domains.
Spin-flip Metropolis alg. moves the boundaries of the domains
\rightarrow many sweeps until a new configuration

Autocorrelation: $\tau \sim \xi^{z}$
$z \approx 2.125$ for 2D Ising, $z \approx 2$ for 3D Ising

Close to T_{c} one a 128×128 lattice

The idea in Swendsen-Wang is to better understand the physical degrees of freedom (the domains) and try to update them.
Given a configuration
1 Visit all links which have the same spins at both ends
2 introduce a bond with probability

$$
\begin{equation*}
P_{\text {bond }}=1-e^{-2 \beta J} \tag{2}
\end{equation*}
$$

3 identify clusters which are connected with bonds
(Use Hoshen-Kopelmann as discussed in connection with percolation)
4 Flip all clusters with probability $\frac{1}{2}$
5 delete all bonds \rightarrow new configuration

Swendsen-Wang

The algorithm is ergodic
There is a nonzero chance that any spin becomes a cluster on its own and is flipped
\Longrightarrow Any configuration can be reached for any other configuration.

Detailed balance is satisfied \Longrightarrow we get to the correct distribution

Very effiecient As clusters can get broken up and large islands get flipped in one step.

$$
\begin{equation*}
2 \mathrm{D}: \quad z \sim 0.33 \quad 3 \mathrm{D}: z \sim 0.53 \tag{3}
\end{equation*}
$$

Further Advantage: Some observables measured in terms of clusters After identification of the clusters, every cluster could be flipped with $1 / 2$ probability
$\Longrightarrow \quad 2^{N_{c}}$ configurations can be reached, each with the same probability. We can use all of these configurations to measure some observables.

$$
\begin{equation*}
m=\frac{1}{V} \sum_{i} s_{i}=\frac{1}{V} \sum_{k=1}^{N_{c}} n_{k} \operatorname{sign} C_{k} \tag{4}
\end{equation*}
$$

N_{c} is the number of clusters, n_{k} is the number of spins in the k-th cluster. $\operatorname{sign}\left(C_{k}\right)$ is the orientation in the k-th cluster.

$$
\begin{aligned}
\left\langle m^{2}\right\rangle & =\frac{1}{V^{2}}\left\langle\left(\sum_{k=1}^{N_{c}} n_{k} \operatorname{sign}\left(C_{k}\right)\right)^{2}\right\rangle=\frac{1}{V^{2}}\left\langle\sum_{k, k^{\prime}=1}^{N_{c}} n_{k} n_{k^{\prime}} \operatorname{sign}\left(C_{k}\right) \operatorname{sign}\left(C_{k^{\prime}}\right)\right\rangle(\text { (5) } \\
& =\frac{1}{V^{2}}\left\langle\sum_{k=1}^{N_{c}} n_{k}^{2}\right\rangle+\frac{1}{V^{2}}\left\langle\sum_{k \neq k^{\prime}} n_{k} n_{k}^{\prime} \operatorname{sign}\left(C_{k}\right) \operatorname{sign}\left(C_{k^{\prime}}\right\rangle\right.
\end{aligned}
$$

The second term averages to zero.
also called Wolff algorithm
1 Choose a lattice point randomly (called the "seed" of the cluster)
2 Look for neighbors with the same spin and connect to them via a bond with probability $p_{b o n d}=1-e^{-2 \beta J}$
3 Go to the new elements of the cluster and try their neighbors as before with probability $p_{\text {bond }}$
4 If the cluster's growth is finished, flip it.
No cluster identification is needed, but also no improved estimators are only partly available.
Average cluster size ($p_{i}=$ prob. of choosing the seed in i-th cluster):

$$
\begin{equation*}
\langle n\rangle=\sum_{i} p_{i} n_{i}=\sum_{i} \frac{n_{i}}{V} n_{i}=V\left\langle m^{2}\right\rangle \tag{6}
\end{equation*}
$$

above T_{c} we have $\langle m\rangle=0$ so we have

$$
\begin{equation*}
\chi=V\left\langle m^{2}\right\rangle=\langle n\rangle \tag{7}
\end{equation*}
$$

Generalization of the Swendsen-Wang algorithm for continous spins.
$O(N)$ Spin model

$$
H=-J \sum_{\text {neigh. }} S_{i} S_{j}, \quad S_{i}=\left(\begin{array}{c}
S_{i}^{1} \tag{8}\\
S_{i}^{2} \\
\vdots \\
S_{i}^{N}
\end{array}\right), \quad S_{i} S_{i}=1
$$

S is invariant under global rotations with M orthogonal matrix

$$
\begin{equation*}
S_{i}^{\prime}=M S_{i}, \quad M^{T} M=1 \quad \Longrightarrow \quad S_{i}^{\prime} S_{j}^{\prime}=S_{i}^{\prime T} S_{j}^{\prime}=S_{i}^{T} M^{T} M S_{j}=S_{i} S_{j} \tag{9}
\end{equation*}
$$

Spins can be decomposed in parallel and perpendicular components given a vector u with $u u=1$

$$
\begin{equation*}
S_{i}^{\|}=\left(S_{i} u\right) u, \quad S_{i}^{\perp}=S_{i}-S_{i}^{\|} \tag{10}
\end{equation*}
$$

$\Longrightarrow \quad S_{i}^{\perp} u=S_{i}^{\perp} S_{j}^{\|}=0$
Scalar products can be decomposed:

$$
\begin{equation*}
S_{i} S_{j}=\left(S_{i}^{\|}+S_{i}^{\perp}\right)\left(S_{j}^{\|}+S_{j}^{\perp}\right)=S_{i}^{\|} S_{j}^{\|}+S_{i}^{\perp} S_{j}^{\perp} \tag{11}
\end{equation*}
$$

we choose a random unit vector u

$$
\begin{equation*}
H=-J \sum_{n e i g h} S_{i} S_{j}=-J \sum\left[S_{i}^{\|} S_{j}^{\|}+S_{i}^{\perp} S_{j}^{\perp}\right] \tag{12}
\end{equation*}
$$

We can write the parallel part as $S_{i}^{\|}=\epsilon_{i}\left|S_{i}^{\|}\right| u$ with $\epsilon_{i}= \pm 1$ We than decompose the Hamiltonian:

$$
\begin{align*}
& H=\underbrace{-J \sum\left|S_{i}^{\|}\right|\left|S_{j}^{\|}\right| \epsilon_{i} \epsilon_{j}}_{=H^{\|}} \underbrace{-J \sum S_{i}^{\perp} S_{j}^{\perp}}_{=H^{\perp}} \tag{13}\\
& H^{\|}=-\sum_{n e i g h} J_{i j} \epsilon_{i} \epsilon_{j}, \quad J_{i j}=J\left|S_{i}^{\|} \| S_{j}^{\|}\right| \tag{14}
\end{align*}
$$

Effective Ising Hamiltonian with bond dependent coupling.

Now we can update ϵ_{i} with the Swendsen-Wang alg.
1 choose a random u vector with $u u=1$
$\boxed{2}$ insert a bond between neighbors ϵ_{i} and ϵ_{j} with probability

$$
p_{\text {bond }}=1-e^{-2 \beta J_{i j}}
$$

3 identify clusters
4 Flip each cluster with probability $\frac{1}{2}$.

$$
\begin{equation*}
S_{i}=S_{i}^{\|}+S_{i}^{\perp} \rightarrow-S_{i}^{\|}+S_{i}^{\perp} \tag{15}
\end{equation*}
$$

5 Delete all bonds

One can show that detailed balance, ergodicity is OK.

Quantum spins

Consider a spin chain with spin $\frac{1}{2}$ particles. Basis states for one spin:

$$
\begin{equation*}
\text { spin up: }|+1\rangle=\binom{1}{0} \quad \text { spin down: }|-1\rangle=\binom{0}{1} \tag{16}
\end{equation*}
$$

Pauli operators:

$$
\hat{\sigma}^{z}|s\rangle=s|s\rangle, \quad \hat{\sigma}^{z}=\left(\begin{array}{cc}
1 & 0 \tag{17}\\
0 & -1
\end{array}\right), \quad \hat{\sigma}^{x}|s\rangle=|-s\rangle, \quad \hat{\sigma}^{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We have a chain of L spins. The Hilbert space is given by:

$$
\begin{equation*}
|s\rangle=\left|s_{1}\right\rangle \otimes\left|s_{2}\right\rangle \otimes \ldots\left|s_{L}\right\rangle, \quad s_{n}= \pm 1, \quad\left\langle s \mid s^{\prime}\right\rangle=\prod_{i=1}^{L}\left\langle s_{i} \mid s_{i}^{\prime}\right\rangle \tag{18}
\end{equation*}
$$

Commutation relations:

$$
\begin{array}{r}
\forall n, m:\left[\hat{\sigma}_{n}^{x}, \hat{\sigma}_{m}^{x}\right]=\left[\hat{\sigma}_{n}^{z}, \hat{\sigma}_{m}^{z}\right]=0 \tag{19}\\
\forall n \neq m:\left[\hat{\sigma}_{n}^{x}, \hat{\sigma}_{m}^{z}\right]=0, \quad \forall n:\left[\hat{\sigma}_{n}^{x}, \hat{\sigma}_{m}^{z}\right] \neq 0
\end{array}
$$

one dimensional Ising model in a transverse field

$$
\begin{equation*}
\hat{H}=\underbrace{-J \sum_{i=1}^{N} \hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z}}_{=\hat{H}_{1}} \underbrace{-h \sum_{i=1}^{N} \hat{\sigma}_{i}^{x}}_{=\hat{H}_{2}} \tag{20}
\end{equation*}
$$

We want to calculate the canonical partition function

$$
\begin{equation*}
Z=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right) \tag{21}
\end{equation*}
$$

Baker-Campbell-Hausdorf:

$$
\begin{equation*}
e^{(A+B) \Delta t}=e^{A \Delta t} e^{B \Delta t} e^{-\frac{1}{2}[A, B] \Delta t^{2}}+O\left(\Delta t^{3}\right) \tag{22}
\end{equation*}
$$

Trotter Formula

$$
\begin{equation*}
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n} \tag{23}
\end{equation*}
$$

$$
\begin{gathered}
e^{A / n}=1+\frac{A}{n}+O\left(\frac{1}{n^{2}}\right) \quad e^{A / n} e^{B / n}=1+\frac{A+B}{n}+O\left(\frac{1}{n^{2}}\right) \\
\left(e^{A / n} e^{B / n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{A+B}{n}\right)^{k}+O\left(1 / n^{2}\right) \\
\binom{n}{k} \frac{1}{n^{k}}=\frac{n(n-1) \ldots(n-k+1)}{n^{k}} \frac{1}{k!}=(1+O(1 / n)) \frac{1}{k!}
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{A+B}{k!}(1+O(1 / n))+O\left(1 / n^{2}\right)=e^{A+B}
$$

We can therefore use for small step : $e^{i(A+B) \Delta t}=e^{i A \Delta t} e^{i B \Delta t}+O\left(\Delta t^{2}\right)$
Higher order discretisation: $e^{i(A+B) \Delta t}=e^{i A \Delta t / 2} e^{i B \Delta t} e^{i A \Delta t / 2}+O\left(\Delta t^{3}\right)$ Exercise: Show that

$$
e^{-i H_{1} \Delta t / 2} \ldots e^{-i H_{\llcorner } \Delta t / 2} e^{-i H_{L} \Delta t / 2} \ldots e^{-i H_{1} \Delta t / 2}=e^{-i \sum H_{i} \Delta t}+O\left(\Delta t^{3}\right)
$$

Partition function

$$
\begin{gathered}
Z_{N}=\operatorname{Tr}\left(e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\right)^{N}=\sum_{s}\langle s|\left(e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\right)^{N}|s\rangle= \\
=\sum_{s^{(0)}, \ldots, s^{(N-1)}\left\langle s^{(0)}\right| e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\left|s^{(1)}\right\rangle\left\langle s^{(1)}\right| e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\left|s^{(2)}\right\rangle \ldots}^{\left\langle s^{(N-1)}\right| e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\left|s^{(0)}\right\rangle}
\end{gathered}
$$

Now we calculate each matrix element:

$$
\langle s| e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\left|s^{\prime}\right\rangle=\langle s| \prod_{i} e^{\frac{\beta J}{N} \hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z}} \prod_{i} e^{\frac{\beta h}{N} \hat{\sigma}_{i}^{\chi}}\left|s^{\prime}\right\rangle=\prod_{i=1}^{L} e^{\frac{\beta J}{N} s_{i} s_{i+1}} \prod_{i=1}^{L}\left\langle s_{i}\right| e^{\frac{\beta h}{N} \hat{\sigma}_{i}^{\chi}}\left|s_{i}^{\prime}\right\rangle
$$

We can simplify the second factor using $\left(\hat{\sigma}^{x}\right)^{2}=1$

$$
\begin{equation*}
\left\langle s_{i}\right| e^{\frac{\beta h}{N} \hat{\sigma}_{i}^{\times}}\left|s_{i}^{\prime}\right\rangle=\left\langle s_{i}\right| \cosh \frac{\beta h}{N}+\sinh \frac{\beta h}{N} \hat{\sigma}_{i}^{x}\left|s_{i}^{\prime}\right\rangle \tag{25}
\end{equation*}
$$

This means:

$$
\begin{gathered}
\left\langle s_{i}\right| e^{\frac{\beta h}{N} \hat{\sigma}_{i}^{x}}\left|s_{i}^{\prime}\right\rangle=\left\{\begin{array}{l}
\cosh \frac{\beta h}{N} \text { for } s_{i}=s_{i}^{\prime} \\
\sinh \frac{\beta h}{N} \text { for } s_{i} \neq s_{i}^{\prime}=\underbrace{\sqrt{\sinh \frac{\beta h}{N} \cosh \frac{\beta h}{N}}\left(\frac{\sqrt{\cosh (\beta h / N)}}{\sqrt{\sinh (\beta h / N)}}\right)^{s_{i} s_{i}^{\prime}}=}_{=C} \\
=C e^{\frac{\beta}{N} K s_{i} s_{i}^{\prime}} \text { with } K=\frac{N}{2 \beta} \ln \left(\operatorname{coth}\left(\frac{\beta h}{N}\right)\right)
\end{array},\right.
\end{gathered}
$$

Partition function

$$
\begin{align*}
\langle s| e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\left|s^{\prime}\right\rangle & =\prod_{i=1}^{L} e^{\frac{\beta J}{N} s_{i} s_{i+1}} \prod_{i=1}^{L}\left\langle s_{i}\right| e^{\frac{\beta h}{N} \hat{\sigma}_{i}^{x}}\left|s_{i}^{\prime}\right\rangle=e^{\sum_{i=1}^{L} \frac{\beta J}{N} s_{i} s_{i+1}} \prod_{i=1}^{L} C e^{\frac{\beta}{N} K s_{i} s_{i}^{\prime}}= \\
& =C^{L} e^{\sum_{i=1}^{L} \frac{\beta J}{N} s_{i} s_{i+1}+\sum_{i=1}^{L} \frac{\beta}{N} K s_{i} s_{i}^{\prime}}
\end{align*}
$$

Now we need the product of N such matrices:

$$
\begin{equation*}
Z_{N}=\sum_{s^{(0)}, \ldots, s^{(N-1)}} \prod_{t=0}^{N}\left\langle s^{(t)}\right| e^{-\frac{\beta}{N} \hat{H}_{1}} e^{-\frac{\beta}{N} \hat{H}_{2}}\left|s^{(t+1)}\right\rangle \tag{27}
\end{equation*}
$$

We have periodic boundary conditions in t (and also in the i direction)

$$
\begin{align*}
Z_{N} & =C^{L N} \sum_{s^{(0)}, \ldots, s^{(N-1)}} \prod_{t=0}^{N} e^{\sum_{i=1}^{L} \frac{\beta J}{N} s_{i}^{(t)} s_{i+1}^{(t)}+\sum_{i=1}^{L} \frac{\beta K}{N} s_{i}^{(t)} s_{i}^{(t+1)}}= \tag{28}\\
& =C^{L N} \sum_{s_{i}^{(t)}= \pm 1} e^{\frac{\beta}{N} \sum_{i, t}\left[J s_{i}^{(t)} s_{i+1}^{(t)}+K s_{i}^{(t)} s_{i}^{(t+1)}\right]}
\end{align*}
$$

Quantum 1D Ising chain \rightarrow 2D classical (anisotropic) Ising model

11 $\hat{H}=\sum \hat{H}_{i}$ terms in each H_{i} should commute with each other.
■ Trotter decomposition:

$$
\begin{equation*}
Z=\lim Z_{N}, \quad Z_{N}=\operatorname{Tr}\left[\left(\prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}}\right)^{N}\right] \tag{29}
\end{equation*}
$$

B include the unity operator: $1=\sum_{\alpha}\left|\alpha^{(t)}\right\rangle\left\langle\alpha^{(t)}\right|$ between each $\prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}}$

$$
\begin{equation*}
Z_{N}=\sum_{\alpha}\left\langle\alpha^{(0)}\right| \prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}}\left|\alpha^{(1)}\right\rangle \ldots\left\langle\alpha^{(N-1)}\right| \prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}}\left|\alpha^{(0)}\right\rangle \tag{30}
\end{equation*}
$$

4. Calculate the matrix element

$$
\begin{equation*}
\left\langle\alpha^{(t}\right| \prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}}\left|\alpha^{(t+1)}\right\rangle \tag{31}
\end{equation*}
$$

To get the partition function as a sum over "configurations" $\alpha^{(t)}$
This converts a dimensional quantum system into a $d+1$ dimensional classical statistical system, which can be dealt with using standard Monte Carlo methods.

Microcanonical simulations

Suppose we want to calculate in the Microcanonical ensemble (should not matter much if the system size is large)
Usually \rightarrow Use the equations of motion calculated e.g. in Hamiltonian formulation \equiv Molecular dynamics. Random sampling through chaotic behaviour. (Not discussed in detail in this lecture).
What to do with e.g. the Ising model, where no time evolution eq. is available?
Alternative: Demon Algorithm for calculating in the Microcanonical ensemble by Creutz. A demon travels on the lattice, and it has a bag which can contain a positive amount of energy

1 initialize a configuration with a given energy E, the bag is empty. (or lattice ground state, bag contains all energy)
2 Propose a change in the configuration
3 if the energy change is negative, the demon takes the energy (and puts it into the bag) and the change is carried out.
4 if the energy change is positive, and the demon has enough energy in its bag, it is carried out, substracting the energy from the bag.
5 otherwise the change is rejected.
6 goto 2

From the point of the demon, the system acts a big heat reservoir. E_{D}, the energy in the bag is distributed as:
$\Longrightarrow p\left(E_{D}\right) \sim e^{-\beta E_{D}}$
This allows the measurement of a temperature.
Consider e.g. Ising model with zero magnetic field. In this case the

$$
\begin{equation*}
E_{D}=4 k J, \quad k=0,1, \ldots \tag{32}
\end{equation*}
$$

$$
\begin{aligned}
\left\langle E_{D}\right\rangle & \left.=\frac{\sum_{k=0}^{\infty} 4 k J e^{-\beta 4 k J}}{\sum_{k=0}^{\infty} e^{-\beta 4 k J}}=-\frac{\partial}{\partial \beta} \ln \sum e^{-\beta 4 k J}=-\frac{\partial}{\partial \beta} \ln \frac{1}{1-e^{-\beta 4 J}} \neq 33\right) \\
& =\frac{4 J e^{-\beta 4 J}}{1-e^{-\beta 4 J}}=\frac{4 J}{e^{4 \beta J}-1}
\end{aligned}
$$

This implies $\beta=\frac{1}{4 J} \ln \left(1+4 J /\left\langle E_{D}\right\rangle\right)$.
For continous models we have

$$
\left\langle E_{D}\right\rangle=\frac{\int_{0}^{\infty} E_{D} e^{-\beta E_{D}} d E_{D}}{\int_{0}^{\infty} e^{-\beta E_{D}} d E_{D}}=-\frac{\partial}{\partial \beta} \ln \int e^{-\beta E_{D}} d E_{D}=-\frac{\partial}{\partial \beta} \ln \frac{1}{\beta}=\frac{1}{\beta}
$$

We are interested in a system described with

$$
\begin{equation*}
Z=\int d \Phi e^{-S}=\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)=\sum_{c} W(c) \tag{34}
\end{equation*}
$$

We have learned about improtance sampling so far:
We build a Markov chain of configurations (Metropolis algorithm, Langevin eq., etc.)

$$
\begin{equation*}
\ldots \rightarrow C_{i-1} \rightarrow C_{i} \rightarrow C_{i+1} \ldots \tag{35}
\end{equation*}
$$

where we arranged the properties of the chain such that $p(C) \sim W(C)$ (probability of visiting C proportional to the weight)

$$
\begin{equation*}
\langle X\rangle=\frac{1}{Z} \operatorname{Tr} X e^{-\beta(\hat{H}-\mu N)}=\frac{1}{Z} \sum_{C} W(C) X(C)=\frac{1}{N} \sum X\left[C_{i}\right] \tag{36}
\end{equation*}
$$

If we have $W[C]$ non positive (or even complex) this strategy breaks down. In that case we have a Sign Problem.

Sign problems

Sometimes we can solve the Sign problem by changeing the representation:

$$
\begin{equation*}
Z=\sum_{C} W[C]=\sum_{D} W^{\prime}[D] \tag{37}
\end{equation*}
$$

if $Z \geq 0$ we might be able to find a representation with positive terms $W^{\prime}[D] \geq 0$. We can than simulate in terms of $D \Longrightarrow$ We need to find the right variables.

Sometimes Z is non positive, in that case we have a sign problem in every representation (e.g. at complex parameters, in supersymmetry, etc.)

Time evolution operator: $U=e^{-i t \hat{H}}$. e.g.: $|\Psi(x, t)\rangle=e^{-i t \hat{H}}|\Psi(x, t=0)\rangle$. We are interested in the transition amplitude

$$
\begin{equation*}
\left\langle q_{2}\right| e^{-i t \hat{H}}\left|q_{1}\right\rangle \tag{38}
\end{equation*}
$$

We can calculate e.g. using the Schrödinger eq.: $i \partial_{t} \Psi=\hat{H} \Psi$.

Equivalently: Path integral formulation

$$
\begin{equation*}
\left\langle q_{2}\right| e^{-i t \hat{H}}\left|q_{1}\right\rangle=\int_{q_{1}}^{q_{2}} D q e^{i S[q(t)]} \tag{39}
\end{equation*}
$$

path integral is the sum for all functions $q(t)$ with the correct boundary conditions $q\left(t=t_{1}\right)=q_{1}, q\left(t=t_{2}\right)=q_{2}$

Time evolution and other sign problems

$$
\begin{equation*}
\left\langle q_{2}\right| e^{-i t \hat{H}}\left|q_{1}\right\rangle=\int_{q_{1}}^{q_{2}} D q e^{i S[q(t)]} \tag{40}
\end{equation*}
$$

if we replace: it $\rightarrow \beta$, and do a Trace, we get thermal physics. (this trick is called imaginary time formalism)
If we want to calculate time evolution \rightarrow Hard sign problem.

We sometimes have a sign problem if we introduce fermions. Famous example: Imbalanced Fermi gas

We often have sign problem if we introduce chemical potential. e.g.: Bose Gas, XY model, QCD, etc.

Topological terms in gauge theories also lead to a sign problem

Sometimes you can solve exactly using new variables

$$
\begin{equation*}
Z=\sum_{C} W[C]=\sum_{D} W^{\prime}[D] \tag{41}
\end{equation*}
$$

or using subsets

$$
\begin{equation*}
Z=\sum_{C} W[C]=\sum_{S}\left(\sum_{C \in S} W[C]\right) \tag{42}
\end{equation*}
$$

If you find a good parameter for that, you can use Taylor expansion

$$
\begin{equation*}
Z(\mu)=Z(\mu=0)+\mu \partial_{\mu} Z(0)+\frac{\mu^{2}}{2} \partial_{\mu}^{2} Z(0)+\ldots \tag{43}
\end{equation*}
$$

For this one needs to have no sign problem at $\mu=0$. coefficients are observables such charge density end susceptibility

$$
\begin{equation*}
n=\frac{1}{V Z} \partial_{\mu} Z(\mu), \quad \chi_{q}=\frac{1}{V Z} \partial_{\mu}^{2} Z(\mu) \tag{44}
\end{equation*}
$$

Reweighting

We want to calculate

$$
\begin{equation*}
\langle X\rangle=\frac{\sum_{c} W[C] X[C]}{\sum_{c} W[C]} \tag{45}
\end{equation*}
$$

Suppose we come up with a modification of the weight $W[C] \rightarrow W^{\prime}[C]$ such that $W^{\prime}[C]>0$. (We can use e.g. $\left.W^{\prime}=|W|\right)$

$$
\begin{align*}
\langle X\rangle_{W} & =\frac{\sum_{c} W[C] X[C]}{\sum_{c} W[C]}=\frac{\sum_{c} W^{\prime}[C]\left(W[C] / W^{\prime}[C]\right) X[C]}{\sum_{c} W^{\prime}[C]\left(W[C] / W^{\prime}[C]\right)} \tag{46}\\
& =\frac{\frac{1}{Z^{\prime}} \sum_{c} W^{\prime}[C]\left(W[C] / W^{\prime}[C]\right) X[C]}{\frac{1}{Z^{\prime}} \sum_{c} W^{\prime}[C]\left(W[C] / W^{\prime}[C]\right)}=\frac{\left\langle\left(W / W^{\prime}\right) X\right\rangle_{W^{\prime}}}{\left\langle\left(W / W^{\prime}\right)\right\rangle W^{\prime}}
\end{align*}
$$

Where we defined $Z^{\prime}=\sum_{c} W^{\prime}[C]$
if we have $W^{\prime}=|W|$ than $W / W^{\prime}=e^{i \theta}$.
For $\left\langle W / W^{\prime}\right\rangle_{W^{\prime}} \sim O(1)$ we have a mild sign problem,
For $\left\langle W / W^{\prime}\right\rangle_{W^{\prime}} \ll 1$ we have a severe sign problem (and this method fails).

Let's look again at $\left\langle\left(W / W^{\prime}\right)\right\rangle w^{\prime}$

$$
\begin{equation*}
\left\langle\left(W / W^{\prime}\right)\right\rangle_{W^{\prime}}=\frac{\sum_{c} W^{\prime}\left(W / W^{\prime}\right)}{\sum_{c} W^{\prime}}=\frac{\sum_{c} W[C]}{\sum_{c} W^{\prime}[C]}=\frac{Z_{W}}{Z_{W^{\prime}}} \tag{47}
\end{equation*}
$$

Using the free energy: $F=-k_{B} T \ln Z$

$$
\begin{equation*}
\left\langle\left(W / W^{\prime}\right)\right\rangle_{W^{\prime}}=\frac{Z_{W}}{Z_{W^{\prime}}}=e^{-\beta F_{W}} / e^{\beta F_{W^{\prime}}}=e^{-\beta v \Delta f} \tag{48}
\end{equation*}
$$

Where Δf is the difference of the free energy density between the two ensembles (F is extensive).
\Longrightarrow Sign problem is exponentially hard with the volume (and usually we want to have $V \rightarrow \infty)$.

$$
\begin{equation*}
Z=\int_{-\infty}^{\infty} e^{-\left(\sigma x^{2}+i \lambda x\right)} d x, \quad\left\langle x^{2}\right\rangle=\frac{1}{Z} \int_{-\infty}^{\infty} x^{2} e^{-\left(\sigma x^{2}+i \lambda x\right)} d x=? \tag{49}
\end{equation*}
$$

We use random uniform sampling in the region $-a \leq x \leq a$ to estimate integrals

$$
\begin{equation*}
\int_{-a}^{a} f(x) d x \approx \frac{1}{N} \sum_{i} f\left(x_{i}\right) \tag{50}
\end{equation*}
$$

$\sigma=\sqrt{2}, \lambda=0$
We need 100 samples to get 10% relative error
$\sigma=1+i, \lambda=20$
$Z \approx 10^{-22}$
$\sim 10^{46}$ samples for 10% relative error

Solutions to sign problem using analiticity - Complex Langevin

We used Langevin equation before:

$$
\begin{equation*}
\frac{d x_{i}}{d \tau}=-\frac{\partial S}{\partial x_{i}}+\eta_{i} \tag{51}
\end{equation*}
$$

We never had to mention probabilities \rightarrow use it for a complex action.
x_{i} becomes complex
Observables are calculated using complex continuation (with $x \rightarrow x+i y$)

$$
\begin{equation*}
\langle O[x]\rangle=\frac{1}{T} \int d \tau O[x(\tau)] \rightarrow \frac{1}{T} \int d \tau O[x(\tau)+i y(\tau)] \tag{52}
\end{equation*}
$$

For example:

$$
\begin{equation*}
\left\langle x^{2}\right\rangle \rightarrow\left\langle x^{2}-y^{2}\right\rangle+i 2\langle x y\rangle \tag{53}
\end{equation*}
$$

Using the complex measure $\rho(x)=\frac{1}{Z} e^{-S(x)}$ and the real probability measure $P(x, y)$ on the complex plane this means

$$
\begin{equation*}
\int d x \rho(x) O(x) \rightarrow \int d x d y P(x, y) O(x+i y) \tag{54}
\end{equation*}
$$

Complex Langevin for toy model

$$
\begin{equation*}
Z=\int_{-\infty}^{\infty} e^{-\left(\sigma x^{2}+i \lambda x\right)} d x, \quad S=\sigma x^{2}+i \lambda x \tag{55}
\end{equation*}
$$

Now we complexify the Langevin equation $S(x) \rightarrow S(z)$, and $x \rightarrow z=x+i y$

$$
\begin{equation*}
\frac{\partial S(z)}{\partial z}=2 \sigma z+i \lambda \tag{56}
\end{equation*}
$$

One can also calculate the derivate first and complexify afterwards (since $S(x)$ is analytic, we get the same).

$$
\begin{align*}
\frac{d x}{d \tau} & =-\frac{\partial S}{\partial z_{i}}+\eta_{i}=-2 \operatorname{Re}(\sigma(x+i y))-\operatorname{Re}(i \lambda)+\eta_{i} \tag{57}\\
\frac{d y}{d \tau} & =-2 \operatorname{Im}(\sigma(x+i y))-\operatorname{Im}(i \lambda)
\end{align*}
$$

To measure the original $\left\langle x^{2}\right\rangle$ in the complexified theory we measure $x^{2}-y^{2}$.

Complex Langevin solution of the toy problem

Gaussian Example

$$
S[x]=\sigma x^{2}+i \lambda x
$$

CLE

$$
\frac{d}{d \tau}(x+i y)=-2 \sigma(x+i y)-i \lambda+\eta
$$

$$
P(x, y)=e^{-a\left(x-x_{0}\right)^{2}-b\left(y-y_{0}\right)^{2}-c\left(x-x_{0}\right)\left(y-y_{0}\right)}
$$

$\left.\begin{aligned} & \begin{array}{l}\text { Gaussian distribution } \\ \text { around critical point }\end{array}\end{aligned} \frac{\partial S(z)}{\partial z}\right|_{z_{0}}=0$

Complex Langevin

Sometimes Complex Langevin gives a spectacular solution Other times it converges to a wrong result: process wanders to far, fluctuations grow large

When does it give a good solution?

1. Action needs to be analytical (also no poles)
2. $P(x, y)$ needs to vanish fast enough as $x, y \rightarrow \infty$.

Large amount of freedom, reparametrizations, kernels, etc.

Solutions to sign problem using analiticity 2

We want to calculate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} F(x) e^{-S(x)} d x \tag{58}
\end{equation*}
$$

If $S(x)$ and $F(x)$ is analytic, we consider them as complex functions $S(z)$ and $F(z)$. Assuming they have no poles:

$$
\begin{equation*}
\int_{-\infty}^{\infty} F(x) e^{-S(x)} d x=\int_{C} F(z) e^{-S(z)} d z \tag{59}
\end{equation*}
$$

Where the C curve goes from $-\infty$ on the real axis to ∞ on the real axis. It can take an arbitrary shape in between. C is parametrized as $z(t)$

$$
\begin{equation*}
\int_{-\infty}^{\infty} F(x) e^{-S(x)} d x=\int d t\left(\frac{d z}{d t}\right) e^{S(z(t))} F(z(t)) \tag{60}
\end{equation*}
$$

it is easier to simulate on the curve C if $e^{\operatorname{ReS}(z(t))}$ has a sharp peak, and $e^{i \operatorname{Im} S(z(t))}$ is a mild sign problem

Constant imaginary part \Longrightarrow no sign problem

$$
\begin{equation*}
\frac{d \operatorname{Im} S}{d t}=\frac{\partial \operatorname{Im} S}{\partial x} \frac{d x}{d t}+\frac{\partial \operatorname{Im} S}{\partial y} \frac{d y}{d t}=0 \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \operatorname{ImS} / \partial x}{d y / d t}=-\frac{\partial \operatorname{ImS} / \partial y}{d x / d t} \underbrace{\Longrightarrow}_{\text {Cauchy }- \text { Riemann }} \frac{\partial R e S / \partial y}{d y / d t}=\frac{\partial R e S / \partial x}{d x / d t} \tag{62}
\end{equation*}
$$

Which means the curve will be in the direction of the gradient of the real part of the action \Longrightarrow sharply peaked.

Mild sign problem \Longleftrightarrow sharply peaked action This curve is called the Lefschetz thimble
generally we have multiple contributing thimbles

$$
\begin{equation*}
Z=\sum_{k} m_{k} e^{-i \operatorname{Im} S\left(z_{k}\right)} \int_{C_{k}} d t\left(\frac{d z_{k}}{d t}\right) e^{-\operatorname{ReS}\left(z_{k}(t)\right)} \tag{63}
\end{equation*}
$$

m_{k} is an integer, the intersection number
The Jacobians give a residual sign problem if the thimble is curved

In practice in makes sense to map the real axis somewhere close to the thimbles, but not necceseraly exactly on them: Sign optimized manifolds

