Monte Carlo methods

Dénes Sexty

University of Graz

2020-2021, winter term

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)

Overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Examples: Ising model etc.
- Integration vs Sampling
- Beeudo random number generators
- Generation of random numbers with a given given distribution
- 5 Percolation, Random Walks
- 6 Improtance Sampling, Markov chains, Metropolis Alg.
- Statistics, error estimates: Jackknife, bootstrap
- 8 Langevin equation
- 9 fitting, χ^2 test
- **10** Potts model, Ising model, XY model, nonlinear O(n) model
- Monte carlo simulations in practice
- Phase transitions, finite size effects
- Optimization: Simulated Annealing, Genetic algorithms
- Cluster algorithms, Demon Algorithm
- Quantum Monte Carlo
- **IS** Sign Problem, Complex Langevin, Lefschetz Thimble

Ising model

Here we discuss the Ising-model.

$$H = -J \sum_{neighbors} s_i s_j - h \sum_i s_i$$
(1)

Near T_c there are large domains.

Spin-flip Metropolis alg. moves the boundaries of the domains

 \rightarrow many sweeps until a new configuration

Autocorrelation: $\tau \sim \xi^z$ $z \approx 2.125$ for 2D Ising, $z \approx 2$ for 3D Ising

Close to T_c one a 128×128 lattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Swendsen-Wang Algorithm

The idea in Swendsen-Wang is to better understand the physical degrees of freedom (the domains) and try to update them. Given a configuration

Visit all links which have the same spins at both ends

2 introduce a bond with probability

$$P_{bond} = 1 - e^{-2\beta J} \tag{2}$$

- identify clusters which are connected with bonds (Use Hoshen-Kopelmann as discussed in connection with percolation)
- 4 Flip all clusters with probability $\frac{1}{2}$
- **5** delete all bonds \rightarrow new configuration

The algorithm is **ergodic**

There is a nonzero chance that any spin becomes a cluster on its own and is flipped

 \implies Any configuration can be reached for any other configuration.

Detailed balance is satisfied \implies we get to the correct distribution

Very efficient As clusters can get broken up and large islands get flipped in one step.

2D:
$$z \sim 0.33$$
 3D: $z \sim 0.53$ (3)

Cluster ovservables

Further Advantage: Some observables measured in terms of clusters After identification of the clusters, every cluster could be flipped with 1/2 probability

 $\implies 2^{N_c}$ configurations can be reached, each with the same probability. We can use all of these configurations to measure some observables.

$$m = \frac{1}{V} \sum_{i} s_{i} = \frac{1}{V} \sum_{k=1}^{N_{c}} n_{k} \operatorname{sign} C_{k}$$
(4)

 N_c is the number of clusters, n_k is the number of spins in the *k*-th cluster. sign (C_k) is the orientation in the *k*-th cluster.

$$\langle m^2 \rangle = \frac{1}{V^2} \left\langle \left(\sum_{k=1}^{N_c} n_k \operatorname{sign}(C_k) \right)^2 \right\rangle = \frac{1}{V^2} \left\langle \sum_{k,k'=1}^{N_c} n_k n_{k'} \operatorname{sign}(C_k) \operatorname{sign}(C_{k'}) \right\rangle (5)$$
$$= \frac{1}{V^2} \left\langle \sum_{k=1}^{N_c} n_k^2 \right\rangle + \frac{1}{V^2} \left\langle \sum_{k\neq k'} n_k n_k' \operatorname{sign}(C_k) \operatorname{sign}(C_{k'}) \right\rangle$$

The second term averages to zero.

Swendsen-Wang one cluster variant

also called Wolff algorithm

- Choose a lattice point randomly (called the "seed" of the cluster)
- 2 Look for neighbors with the same spin and connect to them via a bond with probability $p_{bond} = 1 e^{-2\beta J}$
- Go to the new elements of the cluster and try their neighbors as before with probability p_{bond}
- 4 If the cluster's growth is finished, flip it.

No cluster identification is needed, but also no improved estimators are only partly available.

Average cluster size (p_i =prob. of choosing the seed in *i*-th cluster):

$$\langle n \rangle = \sum_{i} p_{i} n_{i} = \sum_{i} \frac{n_{i}}{V} n_{i} = V \langle m^{2} \rangle$$
 (6)

above T_c we have $\langle m \rangle = 0$ so we have

$$\chi = V \langle m^2 \rangle = \langle n \rangle \tag{7}$$

Wolff Cluster algorithm for O(N)

Generalization of the Swendsen-Wang algorithm for continous spins. $O(N)\ Spin\ model$

$$H = -J \sum_{neigh.} S_i S_j, \quad S_i = \begin{pmatrix} S_i^1 \\ S_i^2 \\ \vdots \\ S_i^N \end{pmatrix}, \quad S_i S_i = 1$$
(8)

S is invariant under global rotations with M orthogonal matrix

$$S'_{i} = MS_{i}, \quad M^{\mathsf{T}}M = 1 \implies S'_{i}S'_{j} = {S'_{i}}^{\mathsf{T}}S'_{j} = {S_{i}}^{\mathsf{T}}M^{\mathsf{T}}MS_{j} = S_{i}S_{j} \qquad (9)$$

Spins can be decomposed in parallel and perpendicular components given a vector \boldsymbol{u} with $\boldsymbol{u}\boldsymbol{u}=1$

$$S_{i}^{\parallel} = (S_{i}u)u, \quad S_{i}^{\perp} = S_{i} - S_{i}^{\parallel}$$
 (10)

 $\implies S_i^{\perp} u = S_i^{\perp} S_j^{\parallel} = 0$ Scalar products can be decomposed:

$$S_i S_j = (S_i^{\parallel} + S_i^{\perp})(S_j^{\parallel} + S_j^{\perp}) = S_i^{\parallel} S_j^{\parallel} + S_i^{\perp} S_j^{\perp}$$
(11)

Wolff algorithm for O(N)

we choose a random unit vector u

$$H = -J\sum_{neigh} S_i S_j = -J\sum \left[S_i^{\parallel} S_j^{\parallel} + S_i^{\perp} S_j^{\perp}\right]$$
(12)

We can write the parallel part as $S_i^{\parallel} = \epsilon_i |S_i^{\parallel}| u$ with $\epsilon_i = \pm 1$ We than decompose the Hamiltonian:

$$H = \underbrace{-J\sum_{i}|S_{i}^{\parallel}||S_{j}^{\parallel}|\epsilon_{i}\epsilon_{j}}_{=H^{\parallel}} \underbrace{-J\sum_{i}S_{i}^{\perp}S_{j}^{\perp}}_{=H^{\perp}}$$
(13)

$$H^{\parallel} = -\sum_{neigh} J_{ij}\epsilon_i\epsilon_j, \quad J_{ij} = J|S^{\parallel}_i||S^{\parallel}_j|$$
(14)

Effective Ising Hamiltonian with bond dependent coupling.

Wolff algorithm for O(N)

Now we can update ϵ_i with the Swendsen-Wang alg.

- **1** choose a random u vector with uu = 1
- 2 insert a bond between neighbors ϵ_i and ϵ_j with probability $p_{bond} = 1 e^{-2\beta J_{ij}}$
- identify clusters
- 4 Flip each cluster with probability $\frac{1}{2}$.

$$S_i = S_i^{\parallel} + S_i^{\perp} \rightarrow -S_i^{\parallel} + S_i^{\perp}$$
(15)

5 Delete all bonds

One can show that detailed balance, ergodicity is OK.

Quantum spins

Consider a **spin chain** with spin $\frac{1}{2}$ particles. Basis states for one spin:

spin up:
$$|+1\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 spin down: $|-1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$ (16)

Pauli operators:

$$\hat{\sigma}^{z}|s\rangle = s|s\rangle, \qquad \hat{\sigma}^{z} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \quad \hat{\sigma}^{x}|s\rangle = |-s\rangle, \quad \hat{\sigma}^{x} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
(17)

We have a chain of L spins. The Hilbert space is given by:

$$|s\rangle = |s_1\rangle \otimes |s_2\rangle \otimes \dots |s_L\rangle, \quad s_n = \pm 1, \quad \langle s|s'\rangle = \prod_{i=1}^L \langle s_i|s'_i\rangle$$
 (18)

Commutation relations:

$$\forall n, m: [\hat{\sigma}_n^x, \hat{\sigma}_m^x] = [\hat{\sigma}_n^z, \hat{\sigma}_m^z] = 0$$

$$\forall n \neq m: [\hat{\sigma}_n^x, \hat{\sigma}_m^z] = 0, \quad \forall n: [\hat{\sigma}_n^x, \hat{\sigma}_m^z] \neq 0$$

$$(19)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1D quantum spin chain

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

one dimensional Ising model in a transverse field

$$\hat{H} = \underbrace{-J\sum_{i=1}^{N} \hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z}}_{=\hat{H}_{1}} - \underbrace{h\sum_{i=1}^{N} \hat{\sigma}_{i}^{x}}_{=\hat{H}_{2}}$$
(20)

We want to calculate the canonical partition function

$$Z = \operatorname{Tr}\left(e^{-\beta\hat{H}}\right) \tag{21}$$

Baker-Campbell-Hausdorf:

$$e^{(A+B)\Delta t} = e^{A\Delta t} e^{B\Delta t} e^{-\frac{1}{2}[A,B]\Delta t^{2}} + O(\Delta t^{3})$$
(22)

Trotter Formula

$$e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n \tag{23}$$

Trotter's formula

$$e^{A/n} = 1 + \frac{A}{n} + O\left(\frac{1}{n^2}\right) \qquad e^{A/n}e^{B/n} = 1 + \frac{A+B}{n} + O\left(\frac{1}{n^2}\right)$$
$$(e^{A/n}e^{B/n})^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{A+B}{n}\right)^k + O(1/n^2)$$
$$\binom{n}{k} \frac{1}{n^k} = \frac{n(n-1)\dots(n-k+1)}{n^k} \frac{1}{k!} = (1+O(1/n))\frac{1}{k!}$$

$$\lim_{n \to \infty} (e^{A/n} e^{B/n})^n = \lim_{n \to \infty} \sum_{k=0}^n \frac{A+B}{k!} (1+O(1/n)) + O(1/n^2) = e^{A+B}$$

We can therefore use for small step : $e^{i(A+B)\Delta t}=e^{iA\Delta t}e^{iB\Delta t}+O(\Delta t^2)$

Higher order discretisation: $e^{i(A+B)\Delta t} = e^{iA\Delta t/2}e^{iB\Delta t}e^{iA\Delta t/2} + O(\Delta t^3)$ Exercise: Show that

$$e^{-iH_1\Delta t/2}\dots e^{-iH_L\Delta t/2}e^{-iH_L\Delta t/2}\dots e^{-iH_1\Delta t/2} = e^{-i\sum H_i\Delta t} + O(\Delta t^3)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Partition function

$$Z_{N} = \operatorname{Tr} \left(e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \right)^{N} = \sum_{s} \left\langle s \left| \left(e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \right)^{N} \right| s \right\rangle =$$
$$= \sum_{s^{(0)},\dots,s^{(N-1)}} \left\langle s^{(0)} \right| e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \left| s^{(1)} \right\rangle \left\langle s^{(1)} \right| e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \left| s^{(2)} \right\rangle \dots \left\langle s^{(N-1)} \right| e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \left| s^{(0)} \right\rangle$$

Now we calculate each matrix element:

$$\left\langle s \middle| e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \middle| s' \right\rangle = \left\langle s \middle| \prod_{i} e^{\frac{\beta J}{N}\hat{\sigma}_{i}^{z}\hat{\sigma}_{i+1}^{z}} \prod_{i} e^{\frac{\beta h}{N}\hat{\sigma}_{i}^{x}} \middle| s' \right\rangle = \prod_{i=1}^{L} e^{\frac{\beta J}{N}s_{i}s_{i+1}} \prod_{i=1}^{L} \left\langle s_{i} \middle| e^{\frac{\beta h}{N}\hat{\sigma}_{i}^{x}} \middle| s'_{i} \right\rangle$$

We can simplify the second factor using $(\hat{\sigma}^{\scriptscriptstyle X})^2 = 1$

$$\left\langle s_{i} \left| e^{\frac{\beta h}{N} \hat{\sigma}_{i}^{x}} \right| s_{i}^{\prime} \right\rangle = \left\langle s_{i} \left| \cosh \frac{\beta h}{N} + \sinh \frac{\beta h}{N} \hat{\sigma}_{i}^{x} \right| s_{i}^{\prime} \right\rangle$$
(25)

This means:

$$\left\langle s_{i} \left| e^{\frac{\beta h}{N} \hat{\sigma}_{i}^{x}} \right| s_{i}^{\prime} \right\rangle = \left\{ \begin{array}{c} \cosh \frac{\beta h}{N} \text{ for } s_{i} = s_{i}^{\prime} \\ \sinh \frac{\beta h}{N} \text{ for } s_{i} \neq s_{i}^{\prime} \end{array} = \underbrace{\sqrt{\sinh \frac{\beta h}{N} \cosh \frac{\beta h}{N}} \left(\frac{\sqrt{\cosh(\beta h/N)}}{\sqrt{\sinh(\beta h/N)}} \right)^{s_{i}s_{i}^{\prime}} = \\ = C e^{\frac{\beta}{N} K s_{i}s_{i}^{\prime}} \text{ with } K = \frac{N}{2\beta} \ln\left(\coth\left(\frac{\beta h}{N}\right)\right)$$

Partition function

$$\left\langle s \middle| e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \middle| s' \right\rangle = \prod_{i=1}^{L} e^{\frac{\beta J}{N}s_{i}s_{i+1}} \prod_{i=1}^{L} \left\langle s_{i} \middle| e^{\frac{\beta h}{N}\hat{\sigma}_{i}^{x}} \middle| s_{i}' \right\rangle = e^{\sum_{i=1}^{L}\frac{\beta J}{N}s_{i}s_{i+1}} \prod_{i=1}^{L} C e^{\frac{\beta}{N}Ks_{i}s_{i}'} = C^{L} e^{\sum_{i=1}^{L}\frac{\beta J}{N}s_{i}s_{i+1} + \sum_{i=1}^{L}\frac{\beta}{N}Ks_{i}s_{i}'}$$

$$(26)$$

Now we need the product of N such matrices:

$$Z_{N} = \sum_{s^{(0)},...,s^{(N-1)}} \prod_{t=0}^{N} \left\langle s^{(t)} \middle| e^{-\frac{\beta}{N}\hat{H}_{1}} e^{-\frac{\beta}{N}\hat{H}_{2}} \middle| s^{(t+1)} \right\rangle$$
(27)

We have periodic boundary conditions in t (and also in the i direction)

$$Z_{N} = C^{LN} \sum_{s^{(0)},...,s^{(N-1)}} \prod_{t=0}^{N} e^{\sum_{i=1}^{L} \frac{\beta J}{N} s^{(t)}_{i} s^{(t)}_{i+1} + \sum_{i=1}^{L} \frac{\beta K}{N} s^{(t)}_{i} s^{(t+1)}_{i}} = (28)$$
$$= C^{LN} \sum_{s^{(t)}_{i} = \pm 1} e^{\frac{\beta}{N} \sum_{i,t} \left[J s^{(t)}_{i} s^{(t)}_{i+1} + K s^{(t)}_{i} s^{(t+1)}_{i} \right]}$$

Quantum 1D Ising chain \rightarrow 2D classical (anisotropic) lsing model , (a) \rightarrow 2D classical (anisotropic) lsing model , (b) \rightarrow 2D classical (b) \rightarrow 2D classi

Quantum systems generally

1 $\hat{H} = \sum \hat{H}_i$ terms in each H_i should commute with each other. 2 Trotter decomposition:

$$Z = \lim Z_N, \quad Z_N = \operatorname{Tr}\left[\left(\prod_i e^{-\frac{\beta}{N}\hat{H}_i}\right)^N\right]$$
(29)

3 include the unity operator: $1 = \sum_{\alpha} |\alpha^{(t)}\rangle \langle \alpha^{(t)}|$ between each $\prod_i e^{-\frac{\beta}{N}\hat{H}_i}$

$$Z_{N} = \sum_{\alpha} \left\langle \alpha^{(0)} \left| \prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}} \right| \alpha^{(1)} \right\rangle \dots \left\langle \alpha^{(N-1)} \left| \prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}} \right| \alpha^{(0)} \right\rangle$$
(30)

4 Calculate the matrix element

$$\left\langle \alpha^{(t)} \bigg| \prod_{i} e^{-\frac{\beta}{N} \hat{H}_{i}} \bigg| \alpha^{(t+1)} \right\rangle$$
(31)

To get the partition function as a sum over "configurations" $\alpha^{(t)}$

This converts a *d* dimensional quantum system into a d + 1 dimensional classical statistical system, which can be dealt with using standard Monte Carlo methods.

Microcanonical simulations

Suppose we want to calculate in the Microcanonical ensemble (should not matter much if the system size is large)

Usually \rightarrow Use the equations of motion calculated e.g. in Hamiltonian formulation \equiv **Molecular dynamics**. Random sampling through chaotic behaviour. (Not discussed in detail in this lecture).

What to do with e.g. the Ising model, where no time evolution eq. is available?

Alternative: **Demon Algorithm** for calculating in the Microcanonical ensemble by Creutz. A demon travels on the lattice, and it has a bag which can contain a positive amount of energy

- initialize a configuration with a given energy E, the bag is empty. (or lattice ground state, bag contains all energy)
- 2 Propose a change in the configuration
- if the energy change is negative, the demon takes the energy (and puts it into the bag) and the change is carried out.
- if the energy change is positive, and the demon has enough energy in its bag, it is carried out, substracting the energy from the bag.
- **5** otherwise the change is rejected.
- 6 goto 2

Demon algorithm

From the point of the demon, the system acts a big heat reservoir. E_D , the energy in the bag is distributed as:

$$\implies p(E_D) \sim e^{-\beta E_L}$$

This allows the measurement of a temperature.

Consider e.g. Ising model with zero magnetic field. In this case the

$$E_D = 4kJ, \quad k = 0, 1, \dots$$
 (32)

$$\langle E_D \rangle = \frac{\sum_{k=0}^{\infty} 4k J e^{-\beta 4k J}}{\sum_{k=0}^{\infty} e^{-\beta 4k J}} = -\frac{\partial}{\partial \beta} \ln \sum e^{-\beta 4k J} = -\frac{\partial}{\partial \beta} \ln \frac{1}{1 - e^{-\beta 4J}} \notin 33)$$
$$= \frac{4 J e^{-\beta 4J}}{1 - e^{-\beta 4J}} = \frac{4 J}{e^{4\beta J} - 1}$$

This implies $\beta = \frac{1}{4J} \ln(1 + 4J/\langle E_D \rangle)$. For continous models we have

$$\langle E_D \rangle = \frac{\int_0^\infty E_D e^{-\beta E_D} dE_D}{\int_0^\infty e^{-\beta E_D} dE_D} = -\frac{\partial}{\partial \beta} \ln \int e^{-\beta E_D} dE_D = -\frac{\partial}{\partial \beta} \ln \frac{1}{\beta} = \frac{1}{\beta}$$

Sign problem

(日) (日) (日) (日) (日) (日) (日) (日)

We are interested in a system described with

$$Z = \int d\Phi e^{-S} = \operatorname{Tr}(e^{-\beta(\hat{H}-\mu\hat{N})}) = \sum_{C} W(c)$$
(34)

We have learned about improtance sampling so far:

We build a Markov chain of configurations (Metropolis algorithm, Langevin eq., etc.)

$$\ldots \rightarrow C_{i-1} \rightarrow C_i \rightarrow C_{i+1} \ldots$$
 (35)

where we arranged the properties of the chain such that $p(C) \sim W(C)$ (probability of visiting C proportional to the weight)

$$\langle X \rangle = \frac{1}{Z} \operatorname{Tr} X e^{-\beta(\hat{H} - \mu N)} = \frac{1}{Z} \sum_{C} W(C) X(C) = \frac{1}{N} \sum_{C} X[C_i]$$
(36)

If we have W[C] non positive (or even complex) this strategy breaks down. In that case we have a **Sign Problem**.

Sign problems

Sometimes we can solve the Sign problem by changeing the representation:

$$Z = \sum_{C} W[C] = \sum_{D} W'[D]$$
(37)

if $Z \ge 0$ we might be able to find a representation with positive terms $W'[D] \ge 0$. We can than simulate in terms of $D \implies$ We need to find the right variables.

Sometimes Z is non positive, in that case we have a sign problem in every representation (e.g. at complex parameters, in supersymmetry, etc.)

Time evolution in Quantum Mechanics

Time evolution operator: $U = e^{-it\hat{H}}$. e.g.: $|\Psi(x, t)\rangle = e^{-it\hat{H}}|\Psi(x, t = 0)\rangle$. We are interested in the transition amplitude

$$\langle q_2 | e^{-it\hat{H}} | q_1 \rangle$$
 (38)

We can calculate e.g. using the Schrödinger eq.: $i\partial_t \Psi = \hat{H}\Psi$.

Equivalently: Path integral formulation

$$\langle q_2 | e^{-it\hat{H}} | q_1 \rangle = \int_{q_1}^{q_2} Dq e^{iS[q(t)]}$$
 (39)

path integral is the sum for all functions q(t) with the correct boundary conditions $q(t = t_1) = q_1$, $q(t = t_2) = q_2$

Time evolution and other sign problems

$$\langle q_2 | e^{-it\hat{H}} | q_1 \rangle = \int_{q_1}^{q_2} Dq e^{iS[q(t)]}$$
 (40)

if we replace: $it \rightarrow \beta$, and do a Trace, we get thermal physics. (this trick is called imaginary time formalism) If we want to calculate time evolution \rightarrow Hard sign problem.

We sometimes have a sign problem if we introduce fermions. Famous example: Imbalanced Fermi gas

We often have sign problem if we introduce chemical potential. e.g.: Bose Gas, XY model, QCD, etc.

Topological terms in gauge theories also lead to a sign problem

How to solve sign problems?

Sometimes you can solve exactly using new variables

$$Z = \sum_{C} W[C] = \sum_{D} W'[D]$$
(41)

or using subsets

$$Z = \sum_{C} W[C] = \sum_{S} \left(\sum_{C \in S} W[C] \right)$$
(42)

If you find a good parameter for that, you can use Taylor expansion

$$Z(\mu) = Z(\mu = 0) + \mu \partial_{\mu} Z(0) + \frac{\mu^2}{2} \partial_{\mu}^2 Z(0) + \dots$$
(43)

For this one needs to have no sign problem at $\mu = 0$. coefficients are observables such charge density end susceptibility

$$n = \frac{1}{VZ} \partial_{\mu} Z(\mu), \quad \chi_q = \frac{1}{VZ} \partial_{\mu}^2 Z(\mu)$$
(44)

Reweighting

We want to calculate

$$\langle X \rangle = \frac{\sum_{c} W[C] X[C]}{\sum_{c} W[C]}$$
(45)

Suppose we come up with a modification of the weight $W[C] \rightarrow W'[C]$ such that W'[C] > 0. (We can use e.g. W' = |W|)

$$\langle X \rangle_{W} = \frac{\sum_{c} W[C]X[C]}{\sum_{c} W[C]} = \frac{\sum_{c} W'[C](W[C]/W'[C])X[C]}{\sum_{c} W'[C](W[C]/W'[C])}$$
(46)
$$= \frac{\frac{1}{Z'}\sum_{c} W'[C](W[C]/W'[C])X[C]}{\frac{1}{Z'}\sum_{c} W'[C](W[C]/W'[C])} = \frac{\langle (W/W')X \rangle_{W'}}{\langle (W/W') \rangle_{W'}}$$

Where we defined $Z' = \sum_{c} W'[C]$

if we have W' = |W| than $W/W' = e^{i\theta}$. For $\langle W/W' \rangle_{W'} \sim O(1)$ we have a mild sign problem, For $\langle W/W' \rangle_{W'} \ll 1$ we have a severe sign problem (and this method fails).

Reweighting 2

Let's look again at $\langle (W/W') \rangle_{W'}$

$$\langle (W/W') \rangle_{W'} = \frac{\sum_{C} W'(W/W')}{\sum_{C} W'} = \frac{\sum_{C} W[C]}{\sum_{C} W'[C]} = \frac{Z_{W}}{Z_{W'}}$$
 (47)

Using the free energy: $F = -k_B T \ln Z$

$$\langle (W/W') \rangle_{W'} = \frac{Z_W}{Z_{W'}} = e^{-\beta F_W}/e^{\beta F_{W'}} = e^{-\beta V \Delta f}$$
(48)

Where Δf is the difference of the free energy density between the two ensembles (*F* is extensive).

 \implies Sign problem is exponentially hard with the volume (and usually we want to have $V \rightarrow \infty$).

Toy model

$$Z = \int_{-\infty}^{\infty} e^{-(\sigma x^2 + i\lambda x)} dx, \quad \langle x^2 \rangle = \frac{1}{Z} \int_{-\infty}^{\infty} x^2 e^{-(\sigma x^2 + i\lambda x)} dx = ?$$
(49)

We use random uniform sampling in the region $-a \le x \le a$ to estimate integrals

$$\int_{-a}^{a} f(x) dx \approx \frac{1}{N} \sum_{i} f(x_{i})$$
(50)

$$\sigma=1+i,\ \lambda=20$$

 $Zpprox10^{-22}$
 $\sim10^{46}$ samples for 10% relative error

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solutions to sign problem using analiticity - Complex Langevin

We used Langevin equation before:

$$\frac{dx_i}{d\tau} = -\frac{\partial S}{\partial x_i} + \eta_i \tag{51}$$

We never had to mention probabilities \rightarrow use it for a complex action.

 x_i becomes complex

Observables are calculated using complex continuation (with $x \rightarrow x + iy$)

$$\langle O[x] \rangle = \frac{1}{T} \int d\tau O[x(\tau)] \quad \rightarrow \frac{1}{T} \int d\tau O[x(\tau) + iy(\tau)]$$
 (52)

For example:

$$\langle x^2 \rangle \rightarrow \langle x^2 - y^2 \rangle + i2 \langle xy \rangle$$
 (53)

Using the complex measure $\rho(x) = \frac{1}{Z}e^{-S(x)}$ and the real probability measure P(x, y) on the complex plane this means

$$\int dx \rho(x) O(x) \rightarrow \int dx dy P(x, y) O(x + iy)$$
(54)

Complex Langevin for toy model

(日) (日) (日) (日) (日) (日) (日) (日)

$$Z = \int_{-\infty}^{\infty} e^{-(\sigma x^2 + i\lambda x)} dx, \quad S = \sigma x^2 + i\lambda x$$
(55)

Now we complexify the Langevin equation $S(x) \rightarrow S(z)$, and $x \rightarrow z = x + iy$

$$\frac{\partial S(z)}{\partial z} = 2\sigma z + i\lambda \tag{56}$$

One can also calculate the derivate first and complexify afterwards (since S(x) is analytic, we get the same).

$$\frac{dx}{d\tau} = -\frac{\partial S}{\partial z_i} + \eta_i = -2\operatorname{Re}(\sigma(x+iy)) - \operatorname{Re}(i\lambda) + \eta_i$$
(57)
$$\frac{dy}{d\tau} = -2\operatorname{Im}(\sigma(x+iy)) - \operatorname{Im}(i\lambda)$$

To measure the original $\langle x^2 \rangle$ in the complexified theory we measure $x^2 - y^2$.

Complex Langevin solution of the toy problem

(日) (同) (日) (日) э

Complex Langevin

Sometimes Complex Langevin gives a spectacular solution Other times it converges to a wrong result: process wanders to far, fluctuations grow large

When does it give a good solution?

- 1. Action needs to be analytical (also no poles)
- 2. P(x, y) needs to vanish fast enough as $x, y \to \infty$.

Large amount of freedom, reparametrizations, kernels, etc.

Solutions to sign problem using analiticity 2

We want to calculate the integral

$$\int_{-\infty}^{\infty} F(x) e^{-S(x)} dx$$
(58)

If S(x) and F(x) is analytic, we consider them as complex functions S(z) and F(z). Assuming they have no poles:

$$\int_{-\infty}^{\infty} F(x)e^{-S(x)}dx = \int_{C} F(z)e^{-S(z)}dz$$
(59)

Where the C curve goes from $-\infty$ on the real axis to ∞ on the real axis. It can take an arbitrary shape in between. C is parametrized as z(t)

$$\int_{-\infty}^{\infty} F(x)e^{-S(x)}dx = \int dt \left(\frac{dz}{dt}\right)e^{S(z(t))}F(z(t))$$
(60)

it is easier to simulate on the curve C if $e^{\operatorname{Re}S(z(t))}$ has a sharp peak, and $e^{i\operatorname{Im}S(z(t))}$ is a mild sign problem

Lefschetz Thimble

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Constant imaginary part \implies no sign problem

$$\frac{d\mathrm{Im}S}{dt} = \frac{\partial ImS}{\partial x}\frac{dx}{dt} + \frac{\partial ImS}{\partial y}\frac{dy}{dt} = 0$$
(61)

$$\frac{\partial ImS/\partial x}{dy/dt} = -\frac{\partial ImS/\partial y}{dx/dt} \underset{Cauchy-Riemann}{\Longrightarrow} \frac{\partial ReS/\partial y}{dy/dt} = \frac{\partial ReS/\partial x}{dx/dt}$$
(62)

Which means the curve will be in the direction of the gradient of the real part of the action \implies sharply peaked.

Lefschetz thimble

generally we have multiple contributing thimbles

$$Z = \sum_{k} m_{k} e^{-i \operatorname{Im} S(z_{k})} \int_{C_{k}} dt \left(\frac{dz_{k}}{dt}\right) e^{-\operatorname{Re} S(z_{k}(t))}$$
(63)

 m_k is an integer, the intersection number The Jacobians give a residual sign problem if the thimble is curved

In practice in makes sense to map the real axis somewhere close to the thimbles, but not necceseraly exactly on them: Sign optimized manifolds