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Phase transitions

In many systems we observe phase change:
Ordered/Unordered, Solid/Liquid , Liquid/Gas, Magnetized/Unmagnetized
Variation of some parameter: Temperature, pressure, chemical potential,
external field, ...
Often there is an observable called Order parameter that allows the
differentiation of the phases macroscopically:
Density, magnetization, etc.

Phase diagram shows possible phases as the parameters are varied:

Water Ising model



Order of phase transitions

First order phase transitions have discontinuities (jump) in e.g. the density
Charactherised by a jump the first derivative of the free energy of the system.
This corresponds to a jump in e.g. the energy: Latent heat, magnetization , ...

Second order phase transition has no discontinuity. Second derivative of the
free energy is discontinous No latent heat but heat capacity diverges at Tc

Crossover is not a phase transition: the dependence is smooth (analytic) all
the way but the change is “rapid”



Phase transition on the lattice

Consider e.g. the Ising model.

Z =
∑

e−βH[S], F = −kBT lnZ (1)

We investigate this system on a finite lattice. Sum of finitely many terms, each
of which is an analytical function of the parameters β, h.

=⇒ No phase transition on a (finite) lattice

In the thermodynamical limit (V →∞) we can have discontinuities as (for
example)

∂β

(
∞∑
i=0

e−βHiOi

)
6=
∞∑
i=0

∂β(e−βHiOi ) (2)

We need to investigate the V →∞ limit (or rather, finite size scaling) to
investigate phase transitions on the lattice



1st order phasetransiton, finite size scaling

Suppose there are two class of configurations: + and −
The partition function is then written as Z = Z+ + Z−

Z = e−βf+(β)V + e−βf−(β)V (3)

where f± is the free energy density of the two phases: f± = −(kBT lnZ±)/V

β > βc =⇒ f+(β) < f−(β) (4)

β < βc =⇒ f−(β) < f+(β) (5)

β = βc =⇒ f+(β) = f−(β) (6)



1st order finite size scaling

We calculate the average energy:

E = 〈H〉 = − ∂

∂β
lnZ (7)

energy density

E

V
= − 1

V

∂

∂β
ln

(∑
α=±

e−βfαV

)
= − 1

VZ

∑
α=±

(−fα − βf ′α)Ve−βfαV =

=
h+e

−βf+V + h−e
−βf−V

e−βf+V + e−βf−V
with hα = fα + βfα

E

V
=


h++h−e

−β(f−−f+)V

1+e
−β(f−−f+)V for β > βc =⇒ f+ < f−

h+e
−β(f+−f−)V

+h−
e−β(f+−f−)V+1

for β < βc =⇒ f− < f+
(8)

In the infinite volume limit this gives:

ε =
E

V
=

{
h+ = f+ + βf ′+ for β > βc
h− = f− + βf ′− for β < βc

(9)



Latent heat, heat capacity

No we can calculate the latent heat:

∆E

V
= h+ − h−|β=βc = f+ + βf ′+ − (f− + βf ′−)

∣∣
β=βc

(10)

= βc(f ′+ − f ′−)
∣∣
β=βc

we continue with the heat capacity:

1

V

Cv

kBβ2
=
〈H2〉 − 〈H〉2

V
=

1

V

∂2

∂β2
lnZ = − 1

V

∂

∂β
〈H〉 = (11)

= − 1

V

∂

∂β

∑
α=±(−fα − βf ′α)Ve−βfαV∑

α=± e−βfαV
=

=

∑
[V (

hα︷ ︸︸ ︷
fα + βf ′α)2 − f ′α − f ′α − βf ′′α ]e−βfαV∑

e−βfαV
− V

(
∑(
−fα − βf ′α)e−βfαV

)2
(
∑

e−βfαV )2

Using only terms ∼ V

= V

∑
h2
αe
−βfαV∑

e−βfαV
− V

(∑
hαe

−βfαV
)2

(
∑

e−βfαV )2



Heat capacity

Now we evaluate at the phase transition βc

V

∑
h2
αe
−βfαV∑

e−βfαV
− V

(∑
hαe

−βfαV
)2

(
∑

e−βfαV )2
= (12)

= V
(h2

+ + h2
−)e−βfcV

2e−βfcV
− V

(
(h+ + h−)e−βfcV

2e−βfcV

)2

=
V

4

(
2h2

+ + 2h2
− − (h+ + h−)2

)∣∣∣
β=βc

=
V

4
(h+ − h−)2

∣∣∣
β=βc

So we finally have

CV

V
= V

kBβ
2

4
(h+ − h−)2

∣∣∣
β=βc

= V
kBβ

4

4
(f ′+ − f ′−)2

∣∣∣
β=βc

(13)

=⇒ At first order phase transitions cv/V scales with the volume V
This is true for other susceptibilities as well



2nd order phase transitions

2nd order phase transitions are described by power law behaviors
reduced temperature: t = T−Tc

Tc

e.g. Magnetization, its susceptibility, heat capacity, correlation length: (defined
for the intensive quantities)

M ∼ M0(−t)β for t < 0 (14)

M ∼ M ′0|h|1/δsign(h) for t = 0

χ ∼ χ0|t|−γ

C ∼ C0|t|−α

ξ ∼ ξ0|t|−ν

critical exponents: β, γ, α, ν, η
Some of these quantities also have a regular part, these dependencies describe
the singular part: χ = χr + χs

These exponents are calculated in some cases:
Ising model in 2d: α = 0, β = 1/8, γ = 7/4, ν = 1, η = 1/4



Universality classes

The critical exponents are not independent
Scaleing laws derived e.g. from Maxwell relations

α + 2β + γ = 2, dν = 2− α, γ = ν(2− η) (15)

2 independent exponents remain, these give the Universality class of the phase
transition.
The universality class depends on

Dimension of space

Dimensionality and symmetry of the spins

e.g. the 2d Ising model belongs to the 2d Z2 universality class
Details of the interactions or the dynamics does not matter, these give Tc and
a regular part of the free energy



scaling form

The power law behaviors can be extracted from Widom scaling forms
(generalized homogeneous function) e.g.

M(st, sβδh) = sβM(t, h) (16)

where this equation holds for any real number s.
use h = 0 and s = −1/t =⇒

M(1, 0) = (−1/t)βM(t, 0) =⇒ M(t, 0) ∼ (−t)β (17)

Or use t = 0 and sβδh = 1

M(0, 1) = (h)−1/(βδ)βM(0, h) =⇒ M(0, h) = h1/δM(0, 1) (18)

Widom scaling allows more: set st = sign(t) =⇒ s = 1/|t|

M(±1, |t|−βδh) = |t|−βM(t, h) (19)

we can describe behaviors of the system where both t 6= 0, h 6= 0



data collapse

M(±1, |t|−βδh) = |t|−βM(t, h) (20)

If we now measure |t|−βMt,h and plot it as a function of
|t|−βδh we see two universal curves: one for t > 0 and one
for t < 0
This is called data collapse

Scaling forms for M, χ,.. etc. exist,
they are based on a scaling form for the free energy f = fr +fs

fs(s
pt, sqh) = sd fs(t, h),

q

p
=
ν

2
(d + 2− η),

1

p
= ν (21)

using e.g. derivativ with respect to h one gets the scaling
form for M



Phase transformation in the Potts model

Sample configurations from
q = 4 Potts model

J = αβ, the coefficient of
the interaction term
M = 0 means here zero
magnetic field

Colors show the 4 different
spin states

Phase tr. clearly visible:
at J = 0.5 mostly random
clusters
at J = 1.5 almost all spins
in q = 1 state



Potts model

Measuring the components of the magnetisation
In practice the components are ordered:
M1 ≥ M2 ≥ . . . ≥ Mq

global permutation symmetry allows this

Which of these phasetransitions is 1st and 2nd
order?



Potts model

In the literature we can find the following table about the critical couplings:
q Jc order
2 0.881 2nd
3 1.005 2nd
4 1.099 2nd
5 1.174 1st
6 1.238 1st
7 1.298 1st
8 1.342 1st
9 1.386 1st

10 1.426 1st



Potts transition order

Using different volumes shows the limiting curve:



Histograms and transition order

The internal energy is different on the two sides of the phase transition
=⇒ For a first order phase transition we see two distinct peaks

Peaks get more pronounced for increasing volume



Potts Magnetizaton scaling



Potts heat capacity, magnetic susceptibility

Tc(L) is given by the peak of the susceptibility

Lattice size stops the growth of ξ at ξ ≈ L
=⇒ in the temperature where L ∼ |T − Tc |−ν =⇒ width of the peak as a

function of T : σ(L) ∼ L−
1
ν

we also have Tc(L)− Tc(∞) ∼ L−
1
ν



magnetic susceptibility

Magnetic susceptibility behaves similarly



Finite size effects on symmetry breaking

Consider the ising model:
Due to the symmetry si → −si , for every configuration S we have an other
configuration with opposite magnetisation and same interaction term.
=⇒ At zero magnetic field, we have:

M(T , h = 0) =
1

N

N∑
i

〈Si 〉 = 0 (22)

We therefore define the order parameter as the limit:

M(T ) = lim
h→0

lim
N→∞

M(T , h) (23)

Opposite order of limits is always zero.



Finite size effects on symmetry breaking

We know that for macroscopic systems the magnetization can be nonzero for
zero magnetic field.
The state with a given magnetization at T < Tc is metastable
Tunnelings become increasingly rare as the system size is increased.
te ergodic time: typical time sent between spin flips. One can measure
M ± δM if one uses simulations t � te , where δM is decreased as we increase
the simulation time.
When we reach t ∼ te the average magnetization will be zero also below
T < Tc

Especially hard in the critical region where we have large fluctuations: δM ∼ M
Practically one uses (root mean square):

Mabs = Mrms =
√
〈M2〉 =

〈(
N∑
i=1

SI/N

)2〉1/2

=
1

N

(
N∑

i,j=1

〈SiSj〉

)1/2

(24)

Especially important for isotropic spin systems such as O(2) where there is no
metastability at h = 0



Mabs = Mrms =
√
〈M2〉 =

〈(
N∑
i=1

SI/N

)2〉1/2

=
1

N

(
N∑

i,j=1

〈SiSj〉

)1/2

(25)

Mabs is nonzero at all temperatures, no strict phase transition.
At infinite temperature: 〈SiSj〉 = δij =⇒ Mabs = 1/

√
N

G(rij) = 〈SiSj〉 is a correlation function or two point function. At the critical
temperature, we have

G(rij) = G0|rij |−(d−2+η) (26)

which defines the critical exponent η

Suppose we have periodic boundary conditions, than 〈SiSj〉 depends only on
the relative position of i and j

Mrms =
1

N

(
N∑

i,j=1

〈SiSj〉

)1/2

=

 1

N2

∑
i,k

〈SiSi+k〉

1/2

=

(
1

N

∑
k

〈S0Sk〉

)1/2

(27)



Finite size effects on order parameter

if we have a finite system size, the maximal distance we can have is L/2
At the critical temperature∑

〈S0Sk〉 ∼
∫ L/2

0

rd−1G(r)dr ∼
∫ L/2

0

rd−1−d+2−ηdr ∼ L2−η (28)

with N = Ld we have for the OP:

Mrms ∼ (L2−d−η)1/2 ∼ L−β/ν (29)

The second relation follows by usage of scaling laws
2− η = γ/ν, dν = 2β + γ



Finite size effects

Before we had:

χ ∼ χ0|t|−γ , ξ ∼ ξ0|t|−ν (30)

=⇒ χ ∼ ξγ/ν . In a finite box ξ can not be larger than L.

χ = ξγ/νχo(L/ξ) (31)

χ0 should be constant for x � 1 , and χ0(x) ∼ xγ/ν as x → 0
Now define χ̃(x) = x−γχ0(xν)

χ = ξγ/νχo([(L/ξ)1/ν ]ν) = ξγ/ν(L/ξ)γ/ν(L/ξ)−γ/νχo([(L/ξ)1/ν ]ν) =(32)

= Lγ/ν χ̃((L/ξ)1/ν) = Lγ/ν χ̃(L1/ν |t|) = Lγ/ν χ̃(L1/νt)

χ̃ is an unknown function, the scaling function of the susceptibility. Allows the
measurement of critical exponents through data collapse.
Similarly one can derive:

cv = Lα/ν c̃v (L1/νt), m = L−β/νm̃(L1/νt) (33)

(They all follow from a scaling form of the free energy, now also involving finite
size L)



Finite size effects

Starting from the scaling form

χ(syt t, syhh, L/s) = sxχ(t, h) (34)

We again obtain:

χ = Lγ/ν χ̃(L1/νt) (35)

(This tells us how to expand the scaling form to the finite size)

Now we can measure the peak at |t| = 0

χ(t = 0) ∼ Lγ/ν (36)

scaling corrections might make numerical calculations hard:

A(L) = Lx(A1 + A2L
−x2 + . . .+ B ln L + . . .) (37)



Direct measurements of critical exponents

Possible if the system size is large enough and one gets close enough to critical
parameters
Two point function of scalar model with Z2 symmetry on 1024x1024 lattice:

Non universal behavior (∼ regular part) is also visible – one judges where the
universal part is by eye
One needs large lattices, well-tuned parameters, high accuracy → can be
demanding
Otherwise one can use Finite size scaling



Critical slowing down

Simulations around the critical region are typically hard:
1.: Critical fluctuations are large =⇒ Statistical errors will be large
2.: correlation length diverges: cluster sizes increase. Local update inefficient in
flipping clusters

The first property can not be changed, the physics of the 2nd order phase
transitions dictates this.

The second property means that the autocorrelation time of the simulation
grows around the critical point. This is called critical slowing down

τ ∼ |t|−zν ∼ ξz (38)

z is called the dynamical exponent. z is algorithm dependent
Obtaining a new configuration thus costs ∼ Ld+z computer time

For 2d Ising model with the local Metropolis update: z = 2.1665± 0.0012
Advanced algorithms Cluster algorithms, worm algorithm improve on this



MC for optimization

We a given a function f (x1, . . . , xn). We want to find the minimum (or
maximum) ∼ finding the ground state in some energy landscape
Finding a local maximum is relatively easy, finding the global minimum is
usually hard (without more information on the function)

IF the landscape is rugged finding the minimum is very hard. Computational
complexity grows faster than any power of the system size.

NP-complete optimization problems:

Travelling Salesman problem

Graph partitioning

Graph coloring

Knapsack problem

Sometimes we don’t need the global minimum, we just want to find a minimum
which is close to the global one, with preferably a fast algorithm.



Simulated Annealing

Idea: Let’s find the ground state by using a T = 0 MC simulation
We can get stuck at a local minimum → add heat and slowly cool down. =⇒
we control the temperature of the system in a predetermined way.
More heating and cooling cycles makes this effective: Simulated Annealing
Some experimentation with the Annealing Schedule is needed

Example: Travelling Salesman problem
we have to make a round trip getting to N cities by visiting each of them
exactly once. Which round trip gives the minimal distance?

State of the system: permutation of the cities
Hamiltonian: total path length
Update proposal 1: exchange two random cities in the permutation
Update proposal 2: remove a set of cities along a path and replace them with
the same cities in the opposite order
Update proposal 3: remove a set of cities along a path and insert them back
into an other random place in the path



Genetic Algorithms

Another optimization method with inspiration from Darwinian evolution
Survival of the fittest → optimization problem

genetic code

cross breading

mutations

death of the least fit

In nature the environment keeps changing and the species represent the
environment as well.
In our case the fitness criteria is constant → simpler problem

We need to implement a Fitness function which defines the optimization
problem f (s) =min. where s is the genetic representation of the solutions to
the problem (e.g. an ordering of the cities, a coloring of a graph, etc.)



Reproduction

We can implement sexual reporoduction in which two parents combine to give
an offspring (easy if we have a binary genetic representation, can be
complicated for e.g. permutations, see in the projects)

There can be asexual reproduction where we keep the best members of the
pool with perhaps some mutations.

Important terms, parameters:
pool: A set of N “solutions” at a certain point in time. We generate offspring
from it, kill off the weakest ones, then we have the next generation
Mutation rate: how often random mutations take place
Crossover rate: how often crossover takes place (generally parameters of the
generation of offspring from two parents)
Selection principle: how parents are selected (random, elitistic)



Knapsack problem

Given a pool of items with weights and values, put items into a knapsack such
that the value is maximal, and the weight is limited.

pi = value
wi = weight

genetic representation:
string of bits bi
signalling whether we take an i-th item

Fitness function:
f =

∑
pibi

(we stop counting when we hit the weight
limit)


