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Langevin equation

We have an action with continous variables S [qi ]
Introduce Langevin time (similar to MC time)
qi have an evolution as a function of τ using the Langevin equation,
stochastic differential equation.

dqi = − ∂S
∂qi

dτ +
√

2dwi (τ) (1)

dwi is an increment of a Wiener process: random walk in the continuum

〈wi (τ)〉 = 0, 〈(wi (τ
′)− wi (τ))2〉 = (τ ′ − τ) (2)

Discretised with Ito calculus:

qi (t + ∆τ) = qi (τ) +

(
− ∂S
∂qi

)
∆τ + ηi,τ

√
2∆τ (3)

with 〈ηi,τ 〉 = 0, 〈ηi,τηj,τ ′〉 = δijδτ,τ ′ , Gaussian



Langevin eq.

P(qi , τ) probability density of the variables
If we have

P(qi , τ)→τ→∞ e−S(qi ) (4)

than we can use this for simulating the thermal averages.∫
e−S(q)F (q)dnq = lim

T→∞

1

T

∫ T

0

F (q(τ))dτ (5)

Averages collected along the trajectories.
P(qi , τ)→τ→∞ e−S(qi ) can be shown using the Fokker-Planck eq.

∂P(qi , τ)

∂τ
=
∑
i

∂

∂qi

(
∂

∂qi
+
∂S

∂qi

)
P(qi , τ) (6)

(Stationarity of e−S(qi ) is easy to show, whether P converges to there is a bit
harder to show)



deriving the Fokker-Planck eq.

We need ∂τP(qi , τ).

P(q′i , τ + ∆τ) =

〈∫
dqiP(qi , τ)

∏
i

δ

(
q′i − qi + δτ

∂S

∂qi
− ηi
√

2∆τ

)〉
η

(7)

for a constant c we have
∫
δ(cx)dx =

∫
δ(cx)d(cx)/c = 1/c This implies

δ(cx) = (1/|c|)δ(x) From that we have the rule:

δ(f (x)) =
∑

f (xi )=0

δ(x − xi )

|f ′(xi )|
(8)

Now we can evaluate the formula above:

P(q′i , τ + ∆τ) =

〈
P(q′i + ∆τ

∂S

∂qi
− ηi
√

2∆τ , τ)
1∏

i

∣∣∣−1 + ∆τ ∂
2S
∂q2

i

∣∣∣
〉
η

(9)

We have

1∏
i

∣∣∣−1 + ∆τ ∂
2S
∂q2

i

∣∣∣ =
1∏

i

(
1−∆τ ∂

2S
∂q2

i

) ≈ 1 +
∑
i

∆τ
∂2S

∂q2
i

(10)



deriving Fokker-Planck eq. 2

Now we taylor expand

P(q′i , τ + ∆τ) =

〈
P(q′i + ∆τ

∂S

∂qi
− ηi
√

2∆τ , τ)
1∏

i

∣∣∣−1 + ∆τ ∂
2S
∂q2

i

∣∣∣
〉
η

(11)

to order ∆τ we have:

P(q′i , τ + ∆τ) =

〈
P(q′i , τ) +

∑
i

∂iP(q′i , τ)∆τ∂iS −
∑
i

∂iP(q′i , τ)ηi
√

2∆τ

+
1

2

∑
i,j

∂i∂jP(q′i , τ)ηiηj2∆τ +
∑
i

P(q′i , τ)∆τ∂2
i S

〉
η

Now using 〈ηi 〉 = 0, 〈ηiηj〉 = δij

P(τ + ∆τ) = P + ∆τ

(∑
i

∂iP∂iS +
∑
i

∂2
i P +

∑
i

P∂2
i S

)
(12)

Which finally gives the Fokker-Planck equation:

∂P(qi , τ)

∂τ
=
∑
i

∂

∂qi

(
∂

∂qi
+
∂S

∂qi

)
P(qi , τ) (13)



Convergence

Here we show that using the Fokker-Planck eq. ∂τP =
∑

i ∂i (∂i + ∂iS)P
=⇒ P converges to e−S .

Let’s define Ψ(qi , τ) such that

P(qi , τ) = Ψ(qi , τ)e−S(qi )/2 (14)

Writing this ansatz into Fokker Planck:

Ψ̇e−S/2 = ∂i (Ψ′ − 1

2
S ′Ψ + S ′Ψ)e−S/2 = ∂i (Ψ′ +

1

2
S ′Ψ)e−S/2 =

=

Ψ′′ +
1

2
S ′′Ψ +

1

2
S ′Ψ′ − 1

2
S ′Ψ′︸ ︷︷ ︸

=0

−1

4
(S ′)2Ψ

 e−S/2

Now we note

−(−∂i + S ′/2)(∂i + S ′/2)Ψ = −(−∂i + S ′/2)(Ψ′ + S ′Ψ/2) (15)

= −(−Ψ′′ − S ′′Ψ/2−S ′Ψ′/2 + S ′Ψ′/2︸ ︷︷ ︸
=0

+S ′S ′Ψ/4)



Convergence 2

So we can write

Ψ̇ = −HFPΨ, HFP = Q+Q (16)

Where we defined the Fokker-Planck Hamiltonian HFP , which we see is
semi-positive definite
We have one stationary solution to QΨ = 0, which is Ψ = e−S/2 (It’s unique
except for some special cases)
We can write

Ψ(τ) = c0e
−S/2 +

∑
i

e−λiτΨi (17)

with λi > 0 for all i .

=⇒ Ψ→ e−S/2

P(τ) = Ψ(τ)e−S/2 → e−S (18)



Langevin eq. example of a toy model

We are given the action S(x) = ax2 + bx4

Suppose we are interested in

〈x2〉 =

∫∞
−∞ dxx2e−ax2−bx4∫∞
−∞ dxe−ax2−bx4 (19)

Calculate the drift term:

K(x) = −∂S
∂x

= −2ax − 4bx3 (20)

The discretised Langevin equation is thus:

x(τ + ∆τ) = x(τ) + ∆τ(−2ax − 4bx3) +
√

2∆τη(τ) (21)

We choose some ∆τ , and an initial x(τ = 0)
We solve the Langevin eq. numerically using an independent Gaussian random
number at every timestep.



Toy model example 2

We thus have x(τ) for τ = n∆τ .
now we use

lim
T→∞

1

T − T0

∫ T

T0

f (x(τ))dτ =

∫
dxΠ(x)f (x) (22)

with Π(x) ∼ e−S(x) the normalized equilibrium distribution. T0 > 0 is used to
get rid of the initial thermalization of the process, and thus get rid of the
dependence on the initial conditions (similarly to Metropolis simulations).

We thus use

〈f (x)〉 → 1

N

∑
τ>τ0

f (x(τ)) (23)

where N is the number of x(τ) steps we have with τ > τ0.

Numerically we use some ∆τ > 0, we have to carry out the extrapolation to
∆τ = 0. For the naive discretisation above the average observables are
expected to have a linear dependence on ∆τ . (Higher order discretisations
improve this)

→ measure at 3 different ∆τ values, fit linear to 〈f (x)〉∆τ and extrapolate to
∆τ = 0 (i.e. read of the intercept)



Continuum extrapolation

We need 〈x2〉∆τ at ∆τ → 0
For the naive discretisation, a linear dependence is expected, so we fit:
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Large ∆τ values are omitted as linear behavior sets in at small ∆τ .
How do we calculate the confidence interval of the fit?



Fitting

Let’s look at fitting a linear to the data (Linear regression)

We have a dataset: {xi , yi , δi} where we have data point yi with 1 σ error δi at
coordinate xi (Assuming no errors in xi ). We are looking for a and b such that
a + b ∗ x best describes the dataset.
What is the error on a and b, what is their correlation?
Define the best fit by the minimal χ2:

χ2 =
N∑
i=1

(
yi − a− bxi

δi

)2

(24)

Points with smaller errors are important, points with large errors are not.
Minimum:

0 =
∂χ2

∂a
= −2

N∑
i=1

yi − a− bxi
δ2
i

(25)

0 =
∂χ2

∂b
= −2

N∑
i=1

xi (yi − a− bxi )

δ2
i



Linear fit

Using

S =
∑ 1

δ2
i

, Sx =
∑ xi

δ2
i

, Sxx =
∑ x2

i

δ2
i

, Sy =
∑ yi

δ2
i

, Sxy =
∑ xiyi

δ2
i

,

and ∆ = SSxx − S2
x , we have:

aS + bSx = Sy ,
aSx + bSxx = Sxy

=⇒ a =
SxxSy−SxSxy

∆

b =
SSxy−SxSy

∆

(26)

Using error propagation (assuming independent yi variables):

δ2
a =

∑
i

(
∂a

∂yi

)2

δ2
i , δ2

b =
∑
i

(
∂b

∂yi

)2

δ2
i (27)

Covariance:

Cov(a, b) = 〈ab〉 − 〈a〉〈b〉 =
∑
i

∂a

∂yi

∂b

∂yi
δ2
i (28)



Linear fit errors

(
∂a

∂yi

)2

=

Sxx
1
δ2
i
− Sx

xi
δ2
i

∆

2

=
S2
xx − 2SxxSxxi + S2

x x
2
i

∆δ4
i

(29)

δ2
a =

∑
i

(
∂a

∂yi

)2

δ2
i =

S2
xxS − 2SxxS

2
x + S2

x Sxx

∆2
=

Sxx(SxxS − S2
x )

∆2
=

Sxx

∆

Similarly we can calculate:

δ2
b =

S

∆
, Cov(a, b) = −Sx

∆
(30)

Now we can get errors for any x:

δ2(a + bx) = 〈(a + bx)2〉 − 〈a + bx〉2 = δ2
a + δ2

bx
2 + 2xCov(a, b) (31)



Fit quality

Which fit makes sense?

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Besides looking at the plot (which is also important),
How can we decide whether the model (the function we fit) is probably OK or
not?



χ2 test

We want to see if the data we get is described with the function y = f (x). We
use

χ2 =
N∑
i=1

(
yi − f (xi )

δi

)2

(32)

if the model is correct we get yi from a Gaussian distribution

P(yi ) ∼ e
− yi−f (xi )2

2δ2
i , xi =

yi − f (xi )

δi
=⇒ P(xi ) ∼ e−x2

i /2 (33)

So χ2 is a sum of N Gaussian random variables with zero mean and σ = 1.
Probability for haveing χ2 > C 2

Q(C 2) =
1

(2π)N/2

∫ ∏
dxie

−
∑

x2
i /2Θ

((∑
x2
i

)
− C 2

)
(34)

Using polarcoordinates and then
∑

x2
i /2 = t, we have

1− Q(C 2) =
|SN−1|

(2π)N/2

∫ C2/2

0

tN/2−1e−t = Γinc(C 2/2,N/2) (35)

with the incomplete Gamma function.



Q-value

Probability to find a χ2/N value at least as large as a given C 2/N

small Q means :

model is wrong

errors are underestimated

errors are not really Gaussian, but have long tail

Smoothed Step function – for large N gets steeper
Standard deviation of χ2/N is

√
2/N



Fitting procedure

Usually we have some free parameters that we want to get from the data:

1 N data points xi , yi , δi

2 fit function: f (xi , aj) with ν free parameters

3

χ2 =
N∑
1

(
yi − f (xi , aj)

δ2
i

)2

(36)

4 Minimize χ2 with respect to aj . (calculate errors for aj with e.g.
Bootstrap, Jackknife, error propagation in simple cases)

5 χ2 test: calculate χ2/Ndof with Ndof = (N − ν)
if χ2/Ndof � 1 =⇒ : model is probably wrong (or other problems, as
above)
if χ2/Ndof � 1 =⇒ : This is called overfitting. Noise too large to say
anything, or errors are overestimated.



General linear Least Squares

Sometimes a linear fit cannot suffice, we want f (x) =
∑

akXk(x) for e.g. a
polynomial fit

χ2 =
∑(

yi −
∑

akXk(xi )

σi

)2

(37)

The minimum condition leads to
∑
αkjaj = βk with

αkj =
N∑
i=1

Xj(xi )Xk(xi )

σ2
i

, βk =
N∑
i=1

yiXk(xi )

σ2
i

, (38)

The errors and covariances are calculated from C = α−1

δ2(ai ) = Cii , Cov(ai , aj) = Cij (39)

Typically LU decomposition, QR decomposition or similar is used to calculate
the inverse.



General fitting

Generally we have f (xi , aj) nonlinear function.
We might be able to convert to a linear problem

yi = exp(−λxi ) → ln yi = −λxi (40)

Or even:

yi =
1

eβxi + 1
→ ln

(
1

yi
− 1

)
= −λxi (41)

Use error propagation to calculate errors.
Finally for the non-linear problems that remain, one uses a non-linear minimum
search to get the fit parameters (e.g. gradient descent method)



Potts model

The q-state Potts model is defined by the energy

H[S ] = −α
∑
x

∑
ν

δ(Sx ,Sx+ν̂)− h
∑
x

δ(Sn, 1), (42)

with the spins Sx ∈ {1, 2, . . . , q}, where x points to a lattice site on a d
dimensional lattice and x + ν̂ is a neighbor in +ν direction.
q = 2 Potts model is is eqivalent to the Ising model: {1, 2} → {−1, 1}, and the
HIsing = Hq=2Potts + Const

The symmetryes of the system play a central role in the type of phase
transitions the system can have
At h = 0 Potts model is symmetric under permutation:

1→ p(1)
2→ p(2)

...
q → p(q)

with p(i) a permutation of the numbers 1, 2, . . . q



Symmetries

p is an element of the permutation group Sq

δ(Sx ,Sx+ν̂) = δ(p(Sx), p(Sx+ν̂)) (43)

if h 6= 0, the symmetry is explicity broken by the magnetic field

Other symmetries:
The Ising model (for zero magnetic field is invariant under

Si → Si , Si → −Si (44)

as S1S2 = (−S1)(−S2).
Symmetry group: Z2 = {−1, 1}, (which is equivalent to S2)
Magnetic field again gives an explicit breaking



Continous spin systems

Nonlinear O(n) spin model
Consider n component spin vectors (with real components) which satisfy
|Si | = 1
The action is given by:

S = −β
∑
x

∑
ν

ST
x Sx+ν̂ − h

∑
x

S1 (45)

Transform all spins with Sx → MSx with some n × n matrix M.

ST
x Sx+ν̂ → ST

x MTMSx+ν̂ (46)

This is a symmetry transformation if MTM = 1, i.e. for orthogonal matrices.
The magnetic field term breaks the symmetry again.
XY-model n = 2 of the above is sometimes called the XY-model. (n = 3 is
called Heisenberg model)
Writeing the spins in terms of an angle we have S = (cos(φ), sin(φ))

S = −β
∑
x

∑
ν

cos(φx − φx+ν̂)− h
∑
x

cos(φx) (47)

The symmetry group is now the group of rotations in 2d, described with one
angle.



Canonical Ensemble, observables

We want to calculate the properties of these models couples to a heat bath
with temperature T .
Partition function using β = 1/(kBT ):

Z =
∑
{S}

e−βH[S], 〈O〉 =
1

Z

∑
{S}

O(S)e−βH[S] (48)

Where we have to carry out the sum for all configurations
q-state Potts model has qV , V = Ld configurations
Continous models: sum → integration
We use the notation J = αβ, M = hβ.

Observables:
Free energy: F = − 1

β
lnZ

Internal energy:

E = U = 〈H〉 =
1

Z

∑
{S}

H[S ]e−βH[S] = − 1

Z

∂

∂β

∑
{S}

e−βH[S] = − ∂

∂β
lnZ =

∂

∂β
(βF )



Observables 2

Magnetization
Assuming the form H[S ] = αA[S ] + hM[S ], with the magnetization M[S ] and
A giving the rest of the terms.

〈M〉 =
1

Z

∑
{S}

M[S ]e−βH[S] = − 1

β

1

Z

∂

∂h

∑
{S}

e−βH[S] = − 1

β

∂

∂h
lnZ =

1

β

∂

∂h
(βF )

Specific heat is defined as cV = ∂TE . First we convert to β derivative:

β =
1

kBT
=⇒ dβ = − 1

kBT 2
dT = −kBβ2dT (49)

∂

∂β
〈H〉 =

∂

∂β

 1

Z

∑
{S}

H[S ]e−βH[S]

 = (50)

=
1

Z 2

∑
{S}

H[S ]e−βH[S]

2

− 1

Z

∑
{S}

H[S ]H[S ]e−βH[S] = −〈H2〉+ 〈H〉2

This is the energy fluctuation∗(−1)

1

kBβ2
cV = − ∂

∂β
〈H〉 = 〈H2〉 − 〈H〉 = − ∂

∂β

(
− ∂

∂β
lnZ

)
= − ∂2

∂β2
(βF ) (51)



Observables 3

Magnetic Susceptibility Defined as:

χ = 〈(M − 〈M〉)2〉 = 〈M2〉 − 〈M〉2 (52)

Can also be calculated starting from:

∂

∂h

 1

Z

∑
{S}

M[S ]e−βH[S]

 = −−β
Z 2

∑
{S}

M[S ]e−βH[S]

2

+
−β
Z

∑
{S}

M[S ]2e−βH[S] =

= −β
(
〈M2〉 − 〈M〉2

)
So we have

χ = − 1

β

∂

∂h
〈M〉 =

1

β2

∂2

∂h2
lnZ = − 1

β2

∂2

∂h2
(βF ) (53)

Generally: (one usually divides with the volume Ω for extensive quantities)

Z =
∑

e−β(A[S]+jC [S]) (54)

average: 〈C [S ]〉/Ω = − 1

Ωβ

∂

∂j
lnZ (55)

susceptibility: χC = Ω
(〈

(C/Ω)2
〉
− 〈C/Ω〉2

)
=

1

Ωβ2

∂2

∂j2
lnZ



Boundary conditions

On the computer we have a finite lattice. What happens at the edges?

Periodic: makes the lattice a d dimensional torus. no boundary effect, but
still finite size effects

screw-periodic (aka. skew-periodic),free: easy to implement, some
systematic effect always there, only gone at infinite volume limit

antiperiodic: as periodic, but spin across the boundary gets a minus sign.
This allows studying the interface between phases (can control the
direction of the interface if combined with screw periodic)

Möbius: Can be used to study topological effects



Monte-Carlo simulations - Metropolis

We calculate averages using Markov chains with local Metropolis update.

Choose boundary conditions

Choose initial configuration: Cold start: all spins Sx = 1
Hot Start: Independent random Spins.

Monte Carlo “hit”: a proposed update for one of the spins. One hits all
spins either sequentially or chooses a random lattice point for each hit

“Sweep”: All lattice points were hit. (Or do Ω hits)

(if applicable) With some experimentation try to find proposals which lead
to an acceptance rate of 0.5− 0.8

Before measurements one needs typically O(102)− O(105) sweeps to get
rid of the effect of the initial conditions (e.g. compare hot and cold starts)

Between two measurements one does 10− 100 sweeps to decrease
autocorrelations on the data

Analysis of the data: calculate averages, errors, correlations, do fits



Monte-Carlo simulations - Langevin

We can also calculate averages using the Langevin equation, in case we are
looking at a system with continous variables

Choose boundary conditions

Choose initial configuration: Cold start: all spins Sx = 1
Hot Start: Independent random Spins.

Langevin step: One update of the fields with the discretised Langevin eq.
with stepsize ∆τ , increase Langevin time τ to τ + ∆τ

Before measurements one needs typically O(10)− O(1000) Langeevin
time for thermalization to get rid of the effect of the initial conditions (e.g.
compare hot and cold starts)

Between two measurements one waits 0.01− 1 Langevin time

Analysis of the data: calculate averages, errors, correlations, do fits

Carry out ∆τ → 0 extrapolation



Lattice in the computer

Representing fields on the lattice, one has to decide on the “layout”.
From the coordinates 0 ≤ ni < Li we calculate n the lattice index

n1, n2, . . . , nd → n = n1 + n2L1 + n3L1L2 + . . . (56)

which means 0 ≤ n < Ω with Ω =
∏

i Li , with a one to one relation {ni} ↔ n
One can use more complex functions to improve performance on a given
computer architecture

We need coordinates for neighbors:
n

(+ν)
i = ni (x)

n
(+ν)
ν + = 1

if n
(+ν)
ν == Lν: n

(+ν)
ν = 0

n
(+ν)
i → n(+ν)

We either store n(±ν) in the memory (“neighbor map”) or calculate on the fly
when needed, depending on which is faster on a given architecture.


