
Monte Carlo methods

Dénes Sexty

University of Graz

2020-2021, winter term

Overview

1 Examples: Ising model etc.

2 Integration vs Sampling

3 Pseudo random number generators

4 Generation of random numbers with a given given distribution

5 Percolation, Random Walks

6 Improtance Sampling, Markov chains, Metropolis Alg.

7 Statistics, error estimates: Jackknife, bootstrap

Random Walks

Conformation of a polymer chain in a
solutions
How far are the ends?

N monomers → R ∼ Nν

Simplest model: step in a random direction for each i
Also models a drunkard’s movement → “Random walk”

R ∼ t1/2 disagrees with experiment (of polimer chains)

1D random walk

We walk on a line, every step p = 0.5 for left, p = 0.5 for right.

Step at time i : Zi , i.e. Zi ∈ {−1, 1}, after i steps: Ri =
∑n

i=1 Zi

each Zi is independent =⇒ 〈Ri 〉 =
∑
〈Zi 〉 = 0

What’s the typical distance?

〈R2
n 〉 =

n∑
i=1

Z 2
i + 2

∑
i<j

〈ZiZj〉 = n (1)

If n is large Rn is the sum of many independent variables → Gaussian
distribution.

Generalizations, relations:

random walk in many dimensions: each direction has 1/(2d) chance

Gaussian random walk: stepsize is a Gaussian random variable. Used in
finance

Random walk without lattice: step in a random direction (sometimes also
at random times)

Wiener Process: limit of random walk with very small stepsizes (both
space and time)

Restricted Random walks

monomers repulse each other → Polymer chain cannot cross itself → R ∼ N1/2

is wrong

No backtrack random walk The next step cannot immediately turn back.
In the first step there are 2d possibilities, later only 2d − 1
Crossings are still allowed.

Self avoiding random walk (SAW) Visitng the same site twice is not allowed
(monomers repulse)
Defining the ensemble: What should be the weight of a random walk?

RW: all walks of length N are equally probable.
SAW: all walks of length N are equally probable, as long as they are SAWs.

How to generate SAWs?

=⇒ naive algorithm: Generate random walks. Throw result away if it
intersects.
Works if N is small, otherwise most walks get thrown away: “attrition problem”

Biased sampling
Check at each step how many steps are available: li , choose one among them
with equal probabilities. If li = 0: throw away and start from the beginning.
Now each walk has a weight:

w =
N∏
i=1

li
2d − 1

(2)

use these weights when calculating averages.

Reptation algorithm

Generating a “chain” of walks: . . .→Wi →Wi+1 → . . .

1 Assume we have a walk of length N: Wi

2 delete a point from a random end

3 add one point to a random end with random direction.
if it is intersecting: Wi+1 = Wi (change rejected)
else Wi+1 = new walk (change accepted)

Reptation

Can we get to every walk? No, there are trapped configurations:

Reptation can not change this or arrive here =⇒ process is non ergodic,
sampling is biased (i.e. not uniform).
Such configurations are so rare that there absence in the sampling is not
noticeable on the results.
Pivot algorithm

1 Pick a random point on the random walk, this divides walk to two sides

2 choose a random side

3 transform the choosen side using lattice symmetries (rotations, mirroring)

4 accept the new walk if it is SAW, otherwise keep the old walk

Random walks conclusion

Results form B. Li et. al. J. Stat. Phys. 80, 661 (1995)

ν = 3/4 in d = 2, (3)

ν = 0.59 . . . in d = 3,

ν = 1/2 in d = 4

Further generalizations of the polymer model:
monomer interactions (itroducing a potential)
interaction with solvent
Thermal effects

Importance Sampling

Usual question (thermal average):

〈F 〉 =
1

Z

∫
F (p, q)e−βH(p,q)dNpdNq =? (4)

Can be also written as (assume F depends on energy E or do an average at
constant energy otherwise)

〈F 〉 =

∫
F (E)ρ(E)e−βEdE (5)

For N � 1 the energy is sharply peaked. A typical uniform random
configuration will miss the peak =⇒ random sampling very unefficient

If we could sample configurations with probability p(Ci) ∼ e−βH(pi ,qi)

Averages calculated simply as

〈F 〉 =
1

N

N∑
i=1

F (pi , qi) (6)

This is called Importance sampling

Markov chains

Consider a sequence of “configurations” (e.g. phase space points of some
system) governed by some random process

. . .→ Φi → Φi+1 → . . .

It’s called a Markov chain if T (Φ′i+1|Φi), the probability to go from Φ does not
depend on i and only depends on Φi , not on older Φj with j < i (no memory)

Notation: transition probabilities: T (Φk |Φj) = Tkj

At step i the system is in state k with probability P
(i)
k

conservation of probability =⇒ :∑
j

Tjk = 1 (7)

at step i + 1 we have

P
(i+1)
k = TkjP

(i)
j (8)

Change of probability

How does P(i) change? We had P
(i+1)
k = TkjP

(i)
j

P
(i+1)
j − P

(i)
j =

∑
k

TjkP
(n)
k − P

(n)
j =

∑
k

TjkP
(n)
k︸ ︷︷ ︸

inflow

−
∑
k

TkjP
(n)
j︸ ︷︷ ︸

outflow

(9)

Similar to the master equation

∂P(Φ, t)

∂t
=
∑
Φ′

W (Φ← Φ′)P(Φ′)−
∑
Φ′

W (Φ′ ← Φ)P(Φ)

We are looking for a stationary solution Πk

=⇒ TikΠk = Πi eigenvector with eigenvalue λ = 1
Balance equation: ∑

k

TjkΠ
(n)
k =

∑
k

TkjΠ
(n)
j (10)

Detailed balance: TjkΠ
(n)
k = TkjΠ

(n)
j

Convergence to equilibrium

Suppose we choose Tjk such that the detailed balance is satisfied for some Πk

Consider the evolution of P: P(1) → P(2) → . . .
Does it converge to Πk? Let’s define σn =

∑
i |P

(n)
i − Πi |

σn+1 =
∑
i

∣∣∣∣∣∑
j

TijP
(n)
j − Πi

∣∣∣∣∣ =
∑
i

∣∣∣∣∣∑
j

(TijP
(n)
j − TjiΠi)

∣∣∣∣∣ = (11)

using detailed balance

=
∑
i

∣∣∣∣∣∑
j

(TijP
(n)
j − TijΠj)

∣∣∣∣∣ =
∑
i

∣∣∣∣∣∑
j

Tij(P
(n)
j − Πj)

∣∣∣∣∣ ≤∑
i,j

Tij

∣∣∣(P(n)
j − Πj)

∣∣∣ = σn

Since
∑

j(P
(n)
j − Πj) = 0, there is equality only if σn = 0, if we have Tij > 0

(strong ergodicity)
=⇒ convergence to unique equilibrium Πk

Convergence rate is given by second largest eigenvalue of Tjk

Metropolis Algorithm

If we can set up a process that satisfies detailed balance for some Πk , the
process will converge to Πk .

Metropolis algorithm achieves this.
Starting from configuration Φn

1 proposal with probability T0(Φ′|Φn−1)

2 Accepted with probability TA(Φ′|Φn−1)
if accepted: Φn+1 = Φ′

else: Φn+1 = Φn

To satisfy detailed balance, we must have

T0(Φ′|Φ)TA(Φ′|Φ)Π(Φ) = T0(Φ|Φ′)TA(Φ|Φ′)Π(Φ′) (12)

Metropolis

detailed balance:

TA(Φ|Φ′)
TA(Φ′|Φ)

=
Π(Φ)

Π(Φ′)

T0(Φ′|Φ)

T0(Φ|Φ′) = F (Φ|Φ′) (13)

Note that F (Φ|Φ′) = 1/F (Φ′|Φ)
We choose e.g.

TA(Φ′|Φ) =

{
F (Φ′|Φ) if F (Φ′|Φ) < 1,

1 otherwise
(14)

or

TA(Φ′|Φ) =
F (Φ′|Φ)

1 + F (Φ′|Φ)
(15)

Metropolis

Usually we choose the symmetric (aka. reversible) proposal:
T0(Φ′|Φ) = T0(Φ|Φ′)
Equilibrium is given by some action: Π(Φ) = e−S[Φ] In this case:

F (Φ′|Φ) =
Π(Φ′)

Π(Φ)
= e−S(Φ′)+S(Φ) = e−∆S (16)

In this case the acceptance probability is:

TA(Φ′|Φ) =

{
e−∆S if ∆S > 0,

1 if ∆S < 0
(17)

How to choose proposal probability?
change too big =⇒ acceptance rate will be small
change too small =⇒ exploration of configuration space too slow
Should be optimized

Running a Monte Carlo simulation

1 Initialize configuration

2 Choose parameters for proposal step (if applicable)

3 Generate Φ′ for Φn

4 calculate TA(Φ′|Φn)

5 generate random uniform r ∈ [0, 1]

6 accept if r < TA → Φn+1 = Φ′

else Φn+1 = Φn

7 goto 3 if nmax not reached

The sequence of configurations can be seen as dependent on “MC time”.
This is not the same as the real dynamical evolution of the system.
One measures time in MC hits/lattice site to make it volume independent

Example: Ising

H = −J
∑

neighbors

si sj − h
∑
i

si (18)

Update step: take a spin, and flip it.
Either go through spins over the lattice sequentally, or always choose a random
spin. Ergodic (any configuration can be reached) and reversible.
Since energy is local, only the neighboring spins are needed to calculate energy
change ∆E , which depends on the number of antiparallel spins.
Can calculate probabilities beforehand.
e.g. in d = 2 and h = 0 (there are more possibilities for h 6= 0)

of antipar. spins 0 1 2 3 4
∆E/J 8 4 0 -4 -8
ln(TA) −8βJ −4βJ 1 1 1

Critical slowing down

This update is usually OK, near critical points it is too slow

Correlation length ξ diverges
Time to flip a correlated region τ ∼ ξz
z is usually close to 2
Near criticality, time to thermalization tCPU ∼ Ld+z

Efficient update strategies
z is dependent on the update algorithm. If we flip a correlated cluster of spins
at once, we eliminate z Cluster algorithm
Another fast algorithm: Worm algorithm

Statistics

Suppose we have a MC simulation, results: xi , i = 1 . . .N
In equilibrium, they all have the same average and variance:

〈xi 〉 = 〈x〉, σ2
xi =

〈
(xi − 〈xi 〉)2

〉
= σ2

x (19)

Unbiased estimators:

x̂ =
1

N

∑
xi , σ̂2

x =
1

N − 1

∑
(xi − x̂)2 (20)

〈x̂〉 = 〈x〉, but how close is it? Look at its variance:

σ2
x̂ =

〈
(x̂ − 〈x〉)2

〉
=

〈(
1

N

∑
(xi − 〈x〉)

)2
〉

= (21)

=
1

N2

〈∑
i,j

(xi − 〈x〉)(xj − 〈x〉)

〉
=

1

N
〈x2〉+

1

N2

∑
i 6=j

〈xixj〉+ 〈x〉2

Statistics

For uncorrelated configurations, we have 〈xixj〉 = 〈xi 〉〈xj〉

σ2
x̂ =

1

N
σ̂2
x (22)

In this case we quote the results of the simulation as

x̂ ± σ (23)

with σ = σx̂ = σ̂x/
√
N

MC results

In a Monte Carlo simulation, measuring observables as a function of n one gets
e.g.:

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 10 20 30 40 50 60 70 80 90 100

s
o
m

e
 o

b
s
e
rv

a
b
le

MC time

exponential thermalization to thermal averages
Initial thermalization should be discarded from averages
Thermalization rate can be observable dependent!
Averages are easy:

〈O〉 =
1

nmax − ntherm

∑
i>ntherm

Oi (24)

How do we calculate errors?

Correlations

Since we generate Φn+1 from Φn, they are correlated (〈A〉 = µA).

C(A,B) =
〈(A− µA)(B − µB)〉

σAσB
=
〈AB〉 − 〈A〉〈B〉

σAσB
(25)

Suppose we have some observable An at MC time n. We define
Autocorrelation:

CA(t) = C(Ai ,Ai+t) =
〈AiAi+t〉 − 〈A〉2

〈A2〉 − 〈A〉2 (26)

(In equilibrium correlation depends only on t)

CA(t) ∼ exp(−t/τA)
τA: autorrelation time

We need τ = supτA
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

A
u
to

c
o
rr

e
la

ti
o
n

t

’corr’

Statistics

In the correlated case, we have to be more careful estimating the variance.
Using DA(t) = 〈AiAi+t〉 − 〈A〉2

σ2
x̂ =

1

N2

〈∑
i,j

(xi − 〈x〉)(xj − 〈x〉)

〉
=

1

N2

∑
i,j

DA(|i − j |) =

=
1

N2

N−1∑
t=−(N−1)

N−|t|∑
k=1

DA(|t|) = σ2
A

N−1∑
t=−(N−1)

N − |t|
N2

CA(t)

=
σ2
A

N

N−1∑
t=−(N−1)

CA(t)

(
1− |t|

N

)
≈ σ2

A

N
2

(
1

2
+

N∑
t=1

CA(t)

)
=
σ2
A

N
2τA,int

we introduced integrated autocorrelation time:

τA,int =
1

2
+

N∑
t=1

CA(t) ≈
∫ ∞

0

e−t/τdt = τ (27)

Autocorrelation

This can be understood as haveing

Nindep =
N

2τA,int
(28)

independent configurations.
Quote results as :

x̂ ±
√

1

N
2τA,intσ2

A (29)

Getting a good estimate for the autocorrelation requires a large dataset

Blocking

Divide dateset into consequent dataset of size NB .
If uncorrelated, their variance should decrease as ∼ 1/NB .
=⇒ repeat blocking for different sizes, and consider the results statistically

independent as ∼ 1/NB dependence sets in.

Problem: Some observables require “global quantities”.
example 1: do a fit on the data as a function of some parameter. What is the
statistical error of the fit parameters? one data point might give very noisy
data such that no senseful fit can be performed
example 2: What is the error of the variance estimator?
How to calculate errors for such qunatities? Using standard error propagation
might be cumbersome or too difficult
(standard error propagation for 1 variable: σf (A) = df

dA
σA)

Jackknife

Consider an initial sample set of N uncorrelated datapoints xi .
The original observable from the dataset:

Θ̂ = f ({xi}) (30)

Now construct N smaller datasets by removing the n-th datapoint from the set.
For each of this smaller datasets, we determine our observable Θn.
Estimator of the variance:

σ2
Θ̂ =

N − 1

N

N∑
n=1

(
Θn − Θ̂

)2

(31)

We can also remove a bias from the estimator (or at least the 1/N part), by
calculating

Θ̃ =
1

N

N∑
k=1

Θk (32)

and finally

〈Θ〉 = Θ̂− (N − 1)(Θ̃− Θ̂)± σΘ̂ (33)

Jackknife with blocking

Usually one needs blocking to get rid of autocorrelation.
divide the set xi into Njk separate “streams” of data
Consider the blocks as the jackknife “points”
e.g. xi , i = 1 . . . 1000, and take Njk = 10, than we have

Θ̂ = f ({xi=1...1000}), (34)

Θ1 = f ({xi=101...1000}),
Θ2 = f ({xi=1...100,201...1000}), and so on

and finally use the formulas on prev. slide for N = 10

Bootstrap

This is a resampling method. Consider an initial sample set of N uncorrelated
datapoints xi
The original observable from the dataset:

Θ̂ = f ({xi}) (35)

now create K new datasets Sk by drawing N random elements from the set
{xi}, with repetitions allowed.
for each set we calculate Θk = f (Sk).
We than calculate

Θ̃ =
1

K

K∑
k=1

Θk , σ2
Θ̃ =

1

K

K∑
k=1

(
Θk − Θ̃

)2

(36)

We can use this as estimators of the average and the variance (these are
biased, i.e. one needs a large K (check Θ̂− Θ̃)):

〈Θ〉 = Θ̃± σΘ̃ (37)

