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Summary. Molten carbonate fuel cells are well suited for stationary power production and heat
supply. In order to enhance service life time, hot spots, resp. high temperature gradients inside the
fuel cell have to be avoided. In conflict with that, there is the desire to achieve faster load changes
while temperature gradients stay small. For the first time, optimal fast load changes have been
computed numerically, including a parametric sensitivity analysis, based on a mathematical model
of Heidebrecht. The mathematical model allows for the calculation of the dynamical behavior of
molar fractions, molar flow densities, temperatures in gas phases, temperature in solid phase, cell
voltage, and current density distribution. The dimensionless model is based on the description of
physical phenomena. The numerical procedure is based on a method of lines approach via spatial
discretization and the solution of the resulting very large scale optimal control problem s.t. a
differential-algebraic equation system by a nonlinear programming approach.

Keywords: molten carbonate fuel cell, load changes, optimal control, parametric sensitivity
analysis.

1 Dynamic 2D crossflow model of a molten carbonate fuel cell

A detailed dynamic 2D crossflow model of a molten carbonate fuel cell (MCFC) due to
our co-operation partners Heidebrecht and Sundmacher [1, 2] in a project financed by the
German Ministry for Education and Research is used for the numerical computation of fast
load changes by optimal control [3]. The mathematical model allows for the calculation of
the dynamical behavior of molar fractions, molar flow densities, temperatures in gas phases,
temperature in solid phase, cell voltage, and current density distribution. The dimensionless
model is based on the description of physical phenomena. Numerical simulation results for
the model can be found in [1, 2, 4]. The model represents all variables of a general MCFC in
dimensionless form. A closely related variant of the model was recently validated for a real
MCFC, a HotModule [5] produced by the project partner CFC Solutions GmbH, Munich,
and operated by another project partner, IPF Heizkraftwerksbetriebsges. mbH, Magdeburg,
see [6].

Main assumptions of the model are isobaric conditions, e.g. no pressure drops across
the gas channels, and one-dimensional plug flow conditions in the anode and cathode gas
phase. Three different currents and current densities are used in the layers of the solid. For a
detailed description and technical discussion including all the modeling assumptions we refer
to [1, 2]. In Fig. 1, a compartment model is given together with the relevant mathematical
variables. For simplicity, almost the same notation is used as in [1, 2]. Spatial domain is
Ω = [0, 1] × [0, 1] with spatial coordinates ζ1 and ζ2. Time is denoted by τ . The index i
refers to the different chemical substances: i ∈ I:={CH4, H2O, H2, CO, CO2, O2, N2}. Fig1
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1.1 Mathematical variables and equations

For given or controlled input parameters, the numerical solution of the dynamic model
predicts the behaviour of the states, which fulfill a coupled partial and ordinary differential-
algebraic equation system.

The input parameters are:

• Cell current Icell(τ).
• At the inlet of the anode gas channel: molar fractions χi,a,in(τ), gas temperature ϑa,in(τ),

and molar flow density γa,in(τ).
Abbreviation: wa,in(τ) = ((χi,a,in)i∈I , ϑa,in).

• At the inlet of the catalytic combustor: Gas temperature ϑair(τ), air number λair(τ).
• Switch for cathode recycle: Rback(τ) ∈ [0, 1].

In this paper we choose u(τ) := γa,in(τ) as a scalar boundary control, a selection that is
technologically feasible and will be used in Sect. 2.

The following states appear in the model equations (1-14):

• In the anode gas channel (j = a) resp. the cathode gas channel (j = c): molar fractions
χi,j(ζ, τ), gas temperatures ϑj(ζ, τ), and molar flow densities γj(ζ, τ). Near the elec-
trodes: partial pressures ϕi,j(ζ, τ). Note that a subset of the chemical substances, i.e. for
the molar fractions and partial pressures, is sufficient for the numerical solution.
Abbreviation: wj(ζ, τ) := ((χi,j)i∈I , ϑj), wa|c := (wa, wc).

• In the solid (electrolyte): temperature ϑs(ζ, τ).
• At the inlet of the cathode gas channel: molar fractions χi,m(τ), temperatures ϑm(τ),

and molar flow density γm(τ).
Abbreviation: wm(τ) := ((χi,m)i∈I , ϑm)

• Potentials ΦL
a (ζ, τ), ΦL

c (ζ, τ), cell voltage Ucell(τ).
Abbreviation: ΦL

a|c := (ΦL
a , Φ

L
c ).

• Ia, Ic current produced by the electrochemical reaction at the anode resp. cathode, Ie
current through the electrolyte.

Partial differential-algebraic equations with boundary conditions:

∂ϑs
∂τ

= c1
∂2ϑs
∂ζ21

+ c2
∂2ϑs
∂ζ22

+ ψ1(ϑs, wa|c, ϕa|c, Φ
L
a|c, Ucell),

∂ϑs
∂z

|∂Ω = 0, (1)

∂wa

∂τ
= −γaϑa

∂wa

∂ζ1
+ ψ2(ϑs, wa, ϕa, Φ

L
a ), wa|∂Ωa,in = wa,in(τ), (2)

∂wc

∂τ
= −γcϑc

∂wc

∂ζ2
+ ψ3(ϑs, wc, ϕc, Φ

L
c , Ucell), wc|∂Ωc,in = wm(τ), (3)

0 = −∂(γaϑa)

∂ζ1
+ ψ4(ϑs, wa, ϕa, Φ

L
a ), γa|∂Ωa,in = γa,in(τ), (4)

0 = −∂(γcϑc)

∂ζ2
+ ψ5(ϑs, wc, ϕc, Φ

L
c , Ucell), γc|∂Ωc,in = γm(τ), (5)

0 = ψ6(ϑs, χa, ϕa, Φ
L
a ), 0 = ψ7(ϑs, χc, ϕc, Φ

L
c , Ucell), (6)

∂ΦL
a|c

∂τ
= ψ8(ϑs, ϕa|c, Φ

L
a|c, Ucell, Ia|e|c; Icell). (7)

Integro differential-algebraic equations:

dUcell

dτ
=
Ia − Icell

ca
+
Ie − Icell

ce
+
Ic − Icell

cc
, (8)

Ia(τ) =

∫∫

Ω

ia(ϑs, wa, ϕa, Φ
L
a ) dζ, (9)

Ic(τ) =

∫∫

Ω

ic(ϑs, wc, ϕc, Φ
L
c , Ucell) dζ, (10)

Ie(τ) =

∫∫

Ω

ie(Φ
L
a|c) dζ, (11)
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dwm

dτ
= ψ9(wm,

∫

∂Ωa,out

wa dζ2,

∫

∂Ωa,out

γa dζ2,

∫

∂Ωc,out

wc dζ1,

∫

∂Ωc,out

γc dζ1, λair, ϑair, Rback), (12)

γm(τ) = ψ10(wm,

∫

∂Ωa,out

wa dζ2,

∫

∂Ωa,out

γa dζ2,

∫

∂Ωc,out

wc dζ1,

∫

∂Ωc,out

γc dζ1, λair, ϑair, Rback). (13)

Initial conditions:

ϑs|τ=0 = ϑ0,s(ζ), wa|τ=0 = w0,a(ζ), wc|τ=0 = w0,c(ζ), wm|τ=0 = w0,m,

ΦL
a |τ=0 = ΦL

0,a(ζ), Φ
L
c |τ=0 = ΦL

0,c(ζ), Ucell|τ=0 = U0,cell. (14)

The formulae for ψk and the values of the positive constants ca|e|c|1|2 can be found in [1, 2]
or [3], see also [7].

1.2 Discretized differential-algebraic equation system

Applying the method of lines (MOL) and a quadrature formula on (1–14) yields a semi-
explicit differential-algebraic equation system of (perturbation=differential) index one in
the new huge dimensional variable Y and diagonal matrix M = diag(E,O), E=identity
matrix, O=zero matrix, cf. Sternberg [3],

MẎ (τ) = ψ̃(Y (τ), u(τ), p), 0 = M [Y (0) − Y0]. (15)

The vector u(τ) denotes some or all of the input functions, e.g. γa,in(τ), which can be used
for (optimal) control purposes. The vector p denotes (some interesting) constants of the
model, which will be perturbed in Sect. 3.

2 Fast load changes for an MCFC by optimal control

One drawback of molten carbonate fuel cells is the slow system reaction for load changes.
The HotModule is operated in galvanostatic mode. A load change is modeled by a step-
function in the cell current Icell during the operation of the MCFC. In praxis a load change
is usually realised by successively reducing the cell current by small steps to avoid material
stresses caused by high temperature fluctuations inside the cell. Each step takes usually
several hours to level out to a new stationary state of the MCFC. In this paper we focus on
a single step to reduce the cell current. The following technologically interesting scenario is
analysed (see [3], also for further scenarios):

At τ ≤ 0 the computation is started with the stationary solution for constant Icell,1 = 0.7.
The input variable cell current is prescribed as a discontinuous step function

Icell(τ) =

{
Icell,1 = 0.7 if τ ≤ 0,
Icell,2 = 0.6 if τ > 0,

(16)

to model a load change for the MCFC.
A numerical simulation with constant boundary conditions at the anode inlet is compared

with an optimally controlled molar flow densitiy γa,in(τ) at the anode inlet (see Fig. 3). Goal
of the optimal control is to reach faster the new stationary state after the load change at
time τ = 0.

The cell voltage Ucell reacts very fast and significantly on a sudden load change of the
cell current (Fig. 2) and reacts also on changes of the slowest variable, the solid temperature
ϑs. A constant cell voltage Ucell indicates that the (new) stationary state has been reached.
Therefore the tracking type cost functional

min

∫ τf

0

[
Ucell(τ) − Ucell,2,stationary

]2
dτ with Ucell,2,stationary = 30.788 (17)

is used for optimal control purposes.
Hereby one searches for an optimal control function
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u(τ) = γa,in(τ) ∈ [0.85, 1.5] (18)

such that the initial value problem (15), i.e. the discretized version of Eqs. (1–14), is fulfilled,
and the cost functional (17) is minimized.

Since the solution of this problem is too time consuming, a slightly modified variant is
solved numerically. A sequence of k = 1, . . . , 5 optimal control problems with cost functionals

min

∫ τk+1

τk

[
Ucell(τ) − Ucell,2,stationary

]2
dτ (19)

and constraints (15, 18) is solved. A quasi-logarithmic type grid τ1 = 0, τ2 = 0.1, τ3 = 1.1,
τ4 = 11.1, τ5 = 111.1, τ6 = τf = 1111.1 is used, due to the different time scales of the
state variables. The electrical variables are very fast, the solid temperature is very slow,
all other states are moderately fast. In each subintervall [τk, τk+1] the control is discretized
on an equidistant subgrid. Initial conditions for the first optimal control problem are the
stationary solution for Icell,1. Initial conditions for the (k + 1)-th optimal control problem
are the free final conditions of the k-th optimal control problem.Fig2

Fig. 2 and 3 present the cell voltage Ucell(τ) and the optimal control γa,in(τ) in the five
time subintervals [τk , τk+1]. In each subinterval a linear time scale is depicted in the figures.

A fast increase of the cell voltage can be seen in the simulation until τ ≈ 0.005. (One
unit of the dimensionless time τ equals 12.5 seconds.) This is the immediate consequence
of the very fast change of the electrical variables. A moderate increase until τ ≈ 0.015 is
due to the fast change of the molar quantities. The final stationary value is reached only
after about τ ≈ 1000 (more than 3 hours) due to the slow changes in the solid temperature
ϑs. The oscillating behavior while reaching the new stationary cell voltage has undesirable
effects on the cell power Pcell = Icell Ucell and should be avoided.

In contrast the new stationary cell voltage Ucell,2,stationary(τ) is reached significantly
earlier for optimally controlled boundary conditions γa,in(τ) at the anode inlet.Fig3

Fig4

3 Sensitivity analysis of the optimal solution

Starting from the preceding optimal load change we are interested in the dynamical be-
haviour of the computed optimal solution if some of the (model) parameters are varying.
They are collected in a parameter vector p=(p1, p2, p3).

Under certain regularity assumptions, the optimal state Yopt(τ, p) and the optimal control
uopt(τ, p) of (15, 18, 19) depend continuously directional differentiable on the parameter
vector p, such that first order approximations

Yopt(τ, p) ≈ Yopt(τ, po) +
∂Yopt
∂p

(τ, po)(p− po), (20)

uopt(τ, p) ≈ uopt(τ, po) +
∂uopt
∂p

(τ, po)(p− po) (21)

with respect to a reference parameter value po=0 are valid (cf. Büskens and Maurer [8]).
See Fig. 4–12 and the following discussion for the results of the MCFC model. The optimal
control software NUDOCCCS (Büskens [9]) is used to compute numerically both the opti-

mal solution and the sensitivity differentials
∂Yopt

∂p (τ, po),
∂uopt

∂p (τ, po) of (20, 21) by a direct

solution approach [8, 9] which transforms the optimal control problem into a nonlinear pro-
gramming problem. The nonlinear programming problem is solved by an SQP algorithm.
The sensitivities are computed using the Karush-Kuhn-Tucker equations [10] and data al-
ready provided by the SQP algorithm.

Therefore the solution of one optimal control problem for a reference parameter po and
an a posteriori computation of the sensitivity differentials can replace the usual engineering
approach of solving a large number of optimal control problems (15, 18, 19) for a family of
interesting parameter values p.

We investigate the sensitivities beginning with the cell current Icell,2, that directly influ-
ences all states in the MCFC model. Subsequently we present the sensitivities with respect
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to the anode inlet temperature ϑa,in, that primarily affects the variables in the anode gas
channel, and finally with respect to the air number λair, that basically influences the states
in the burner, in the mixer and consequently the states in the cathode gas channel.

The reactions of the states can be arranged into three groups according to their time
constants. Exemplarily we present the sensitivity of the slow changing solid temperature ϑs

and of the very fast adapting cell voltage Ucell. Moreover we are interested in the robustness
of the computed optimal control.

3.1 Sensitivity analysis of a perturbation in the cell current

First, we consider a perturbation p1 in the new cell current Icell,2 = 0.6 + p1, see (16). The
sensitivity ∂ϑs

∂p1
of the solid temperature with respect to the perturbation is shown in Fig. 5.

Starting from zero, because the initial conditions are unchanged, the sensitivity increases
uniformly distributed along the flow direction ζ2 with time τ . This yields a higher but still
steady temperature distribution in the solid. As a consequence the material is stressed by
higher temperatures but not by higher temperature gradients.

The cell voltage Ucell adapts very fast to the new cell voltage Ucell,2,stationary. The way
how it adapts is strongly influenced by the cell current. As shown in Fig. 6 there are high
sensitivities in the first seconds. The optimal control is then able to level out to the given
nominal value. The sensitivity ∂Ucell

∂p1
drops to zero for large times.

The optimal controls γa,in(τ, p1) for p1 = 0 and p1 = 0.01 differ due to their different

stationary states. Therefore the sensitivity
∂γa,in

∂p1
of the optimal control does not vanish

for all times, see Fig. 7–8. Some peaks of the sensitivity
∂γa,in

∂p1
are due to the parameter

dependency of exit and entry times on the boundary of the admissible set for the optimal
control. Fig5

Fig6

Fig7

Fig8
3.2 Sensitivity analysis of a perturbation in the anode inlet temperature

In the second case we consider a perturbation p2 in the anode inlet temperature ϑa,in =
3.0 + p2. Compared to the perturbed cell current, Fig. 9 shows only a very small sensitivity
of the solid temperature.

The cell voltage and the optimal control (Fig. 4) show significant sensitivities only in the
the first seconds, that is to say close to the exit and entry point of the control constraint
(cf. [3]). Fig9

3.3 Sensitivity analysis of a perturbation in the air number

In the third case we investigate a perturbation of the air number λair = 2.3 + p3 at the air
inlet of the catalytic burner. Fig10

The variables in the cathode gas channel are directly affected by the perturbed air
number. The cathode gas temperature ϑc for example shows a high sensitivity. The change
in the cathode gas temperature influences the solid temperature ϑs via heat conduction.
Thus, Fig. 10 shows a significant sensitivity of the solid temperature ϑs.

Driven by the fast changes in the cathode gas channel, the cell voltage Ucell increases as
indicated by its positive sensitivity in Fig. 11. The control has to make sure that the desired
cell voltage Ucell,2,stationary is reached despite of the perturbations. The sensitivity of the
optimal control is depicted in Fig. 12. Since the sensitivity differs from zero for large times,
the optimal control of the perturbed system differs also for large times from the reference
system. Fig11

Fig12

4 Conclusion

Complicated dynamical systems are often modeled by large PDE/PDAE systems. Param-
eters of these models are often estimated or measured from experiments and may contain
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errors or may vary. These perturbations may lead to differences between the simulation re-
sults and the real system and are to be avoided. Hence, when these models are taken for
simulation and optimal control, the results must be analyzed concerning perturbations in
those parameters.

In this paper we have presented the optimal control of a MCFC model for load changes.
The molar flow density at the anode inlet is controlled in order to ensure a fast and stable load
change. The results are tested for perturbations in three input parameters. Our investigations
show that the system reacts relatively sensitive to perturbations in the cell current: Electric
variables affect the whole MCFC system. In contrast, the influence of the gas temperature at
the anode inlet to the solid temperature and the cell voltage of the MCFC is of lower order:
The gas temperature in the anode channel is dominated by heat exchange due to chemical
reactions (endothermic internal reforming, exothermic oxidation). However, there are other
quantities controlling the gas flows that have more influence on the dynamical behaviour
of the MCFC, e.g. the air number at the air inlet of the catalytic burner. Perturbations in
the air number effect the composition and temperature of the cathode gas and significantly
influence the cell behaviour via heat and ion conduction.

Perturbation in electrical variables like the cell current have an influence on the whole fuel
cell. In contrast, variables associated with the gas flows may have primarily local influence
like the anode inlet temperature or may have global influence like the air number.

All sensitivity studies have one common result: The structure of the optimal control
remains unchanged. At first the gas flow is maximal until the new stationary cell voltage is
reached for the first time. After a period of minimal gas flow, the gas flow tends to its new
stationary value.

Since the switching structure of the optimal control is stable with respect to perturbations
and since the optimal value of the cost functional varies only in the order of the perturbations,
the MCFC model is robust and adequate for optimal control; see [3] too.

The computation of the optimal solution for a scalar control takes 2 CPU hours (with
more control variables up to 48 CPU hours). If the computation of the sensitivity differentials
is included approximately 70 CPU hours are needed.

In practical operation of fuel cell systems the assumption of perfectly stationary states
is not valid. In order to react to fluctations and deviations from perfectly stationary states,
it may be helpful to compute sensitivities with respect to the initial values in an analogous
way.

Future investigations will be devoted to proper orthogonal decomposition (POD) tech-
niques in order to decrease computing time.

Acknowledgements

This research was partly funded by the German Federal Ministry of Education and Re-
search (BMBF) within the WING-project ”Optimierte Prozessführung von Brennstoff-
zellensystemen mit Methoden der Nichtlinearen Dynamik”. The first author was funded by
the Promotionsabschlussstipendium des HWP-Programms ”Chancengleichheit für Frauen in
Forschung und Lehre”.

We are indebted to our BMBF project partners Dr.-Ing. P. Heidebrecht and Prof. Dr.-
Ing. K. Sundmacher from the Max-Planck-Institut für Dynamik komplexer technischer
Systeme Magdeburg for providing us with the complicated fuel cell model and to Dipl.-
Ing. J. Berndt and Dipl.-Ing. M. Koch from the management of IPF Heizkraftwerksbetriebs-
ges. mbH Magdeburg for their continual support.
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List of abbreviations

DAE Differential-algebraic equation system
MCFC Molten carbonate fuel cell
MOL Method of lines
PDAE Partial differential-algebraic equation system
PDE Partial differential equation (system)
2D Dimension of the independent spatial coordinate

List of indice

i ∈ I = {CH4, H2O, H2, CO, CO2, O2, N2}
j compartment or layer in solid
a, c, e, m, s anode, cathode, electrolyte, mixer, solid
in, out inlet, outlet
air boundary data at air inlet
0 initial data
o nominal value
opt optimal solution

List of symbols

ca, ce, cc, c1, c2 positive constants
ia, ie, ic current density in different layers of the solid
p perturbation vector
u control (function)
wj = (χj , ϑj)
wa|c = (wa, wc)
Ia, Ie, Ic current in different layers of the solid
Icell total cell current
Pcell electric power
Rback ∈ [0, 1], switch for cathode recycle
Ucell cell voltage
Y variables after MOL-discretization
γ molar flow densitity
ζ = (ζ1, ζ2) spatial coordinates
ϑ temperature
λair air number
τ time
ϕ partial pressure
χ molar fraction

ψ, ψ̃ nonlinear functions
ΦL
a , ΦL

c electric potential at anode/cathode ion layer
ΦL
a|c = (ΦL

a , Φ
L
c )

Ω = [0, 1] × [0, 1], spatial domain
∂Ω boundary of spatial domain Ω
∂Ωa,in anode inlet, ζ1 = 0
∂Ωc,in cathode inlet, ζ2 = 0
∂Ωa,out anode outlet, ζ1 = 1
∂Ωc,out cathode outlet, ζ2 = 1
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Fig. 1. 2D MCFC crossflow model with compartments and mathematical variables
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Fig. 2. Simulated and optimal controlled cell voltage Ucell of MCFC model

                                    
 

 

 

 

 

 

 

 

                        
 

 

 

 

 

 

 

 

                              
 

 

 

 

 

 

 

 

                                    
 

 

 

 

 

 

 

 

γ
a
,i
n

time τ0 0.1 1.1 11.1 111.1 1111.1

1.5

0.85

Fig. 3. Optimal control molar flow density γa,in(τ ) at anode inlet (without perturbation)
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Fig. 4. Optimal control molar flow density γa,in(τ ) at anode inlet with perturbation p2 = 0.01 in
anode inlet temperature ϑa,in = 3.0 + p2
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Fig. 5. Sensitivity ∂ϑs
∂p1

in ζ1 = 0.5 with respect to a perturbation in the cell current Icell
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Fig. 6. Sensitivity ∂Ucell
∂p1

with respect to a perturbation in the cell current Icell
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Fig. 7. Sensitivity
∂γa,in

∂p1
with respect to a perturbation in the cell current Icell
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Fig. 8. Sensitivity
∂γa,in

∂p1
(scaled axis) with respect to a perturbation in the cell current Icell
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Fig. 9. Sensitivity ∂ϑs
∂p2

in ζ1 = 0.5 with respect to a perturbation in the anode inlet temperature
ϑa,in
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Fig. 10. Sensitivity ∂ϑs
∂p3

in ζ1 = 0.5 with respect to a perturbation of the air number λair = 2.3+p3
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Fig. 11. Sensitivity ∂Ucell
∂p3

with respect to a perturbation in λair = 2.3 + p3
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Fig. 12. Sensitivity
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with respect to a perturbation in λair = 2.3 + p3


