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Abstract: In this paper we investigate a new class of optimal
control problems with ODE as well as PDE constraints. We would
like to call them ”hypersonic rocket car problems”, since they were
inspired, on the one hand, by the well known rocket car problem
from the early days of ODE optimal control, on the other hand by
a recently investigated flight path trajectory optimization problem
for a hypersonic aircraft.

The hypersonic rocket car problems mimic the latter’s coupling
structure, yet in an strongly simplified form. They can therefore
be seen as prototypes of ODE-PDE control problems. Due to their
relative simplicity they allow to a certain degree to obtain analytical
solutions and insights into the structure of the adjoints, which would
currently be unthinkable with complex real life problems.

Our main aim is to derive and verify necessary optimality con-
ditions. Most of the obtained results bear a lot of similarities with
state constrained ODE optimal control problems, yet we also ob-
served some new phenomena.

Keywords: Optimal control of partial differential equations,
ODE-PDE-constrained optimization, state constraints, non-local
state-constraints, integro-state constraints, optimal control problems
for integro-differential equations, jump conditions.
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1. Introduction

Realistic mathematical models for applications with a scientific or engineering
background often have to consider different physical phenomena and therefore
may lead to coupled systems of equations that include partial and ordinary
differential equations. While each of the fields of optimal control of partial resp.
ordinary differential equations has already been subject to thorough research,
the optimal control of systems containing both has not been studied widely in
literature, neither theoretically nor numerically.

One of the few examples was an optimal control problem recently studied
by M. Wächter (2004) and Chudej et. al. (2009). It describes the flight of a hy-
personic aircraft under the objective of minimum fuel consumption. The flight
trajectory is described, as usual, by a system of ordinary differential equations
(ODE). This system is controlled by the usual control variables of flight path
optimization under various control and state variable inequality constraints.
However, due to the hypersonic flight conditions a thermal protection system is
indispensable and must therefore be taken into account in the model. Therefore
the ODE system has to be augmented by a quasi-linear heat equation with non-
linear boundary conditions. It is coupled with the ODEs through its boundary
conditions. A major goal of the optimization is the limitation of the heating of
the thermal protection system. This leads to a pointwise state constraint for its
temperature. This constraint couples the PDE with the ODE reversely. How-
ever the enormous complexity of this problem only allowed numerical analysis.

In the present paper we will consider a model problem as simple as possible
while still including the key features of this real-life ODE-PDE optimal control
problem. Thereby we hope to achieve some insight into the structure of those
problems and their solutions.

We would like to call that simplified model problem the ”hypersonic rocket
car problem”. To one part it consists of the classical ”rocket car on a rail track
problem” from the early days of ODE control, first studied by Bushaw (1952).
Fel’dbaum (1949) has studied similar problems of that type even earlier. He
particularly focussed the attention to the importance of optimal processes of
linear systems for automatic control. The behaviour of their optimal controls
was later called bang-bang. The second part is a one dimensional heat equation
with a source term depending on the speed of the car, denoting the heating due
to friction.

Other variants of hypersonic rocket car problems will be investigated in Pesch
et. al. (in preparation).

2. The hypersonic rocket car problem

In the following, the ODE state variable w denotes the one-dimensional position
of the car depending on time t with the terminal time tf unspecified. The PDE
state variable T stands for the temperature and depends on time as well as
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the spatial coordinate x describing the position within the car. The control
u denotes the acceleration of the car. The PDE is controlled only indirectly
via the velocity ẇ of the car like a distributed control. Obviously, boundary
control problems can also be formulated and will be published subsequently
(Pesch et. al., in preparation).

The aim is to drive the car in minimal time from a given starting position
and speed (w0 resp. ẇ0) to the origin of the phase plane while keeping its
temperature below a certain threshold Tmax.

All in all, the hypersonic rocket car problem considered here is given as
follows:

min
u∈U

{
tf +

1

2
λ

∫ tf

0

u2dt

}
, λ > 0 , (1a)

subject to

ẅ(t) = u(t) in (0, tf ) , (1b)

w(0) = w0 , ẇ(0) = ẇ0 , (1c)

w(tf ) = 0 , ẇ(tf ) = 0 , (1d)

U := {u ∈ L2(0, tf ): |u(t)| ≤ umax almost everywhere in [0, tf ]} , (1e)

and

∂T

∂t
(x, t) − ∂2T

∂x2
(x, t) = ẇ(t)2 in (0, 1)× (0, tf ) , (1f)

T (x, 0) = T0 on (0, 1) , (1g)

−∂T

∂x
(0, t) = −

(
T (0, t)− T0

)
,
∂T

∂x
(1, t) = −

(
T (1, t)− T0

)
on [0, tf ] , (1h)

and finally subject to a pointwise state constraint of type

T (x, t) ≤ Tmax almost everywhere in (0, 1)× (0, tf) . (1i)

The initial temperature T0 of the car is in the following set to zero. In the
numerical experiments the regularisation parameter λ is chosen as 1

10 and the
control constraint umax as 1.

3. The state-unconstrained problem and its associated
temperature profile

For better illustration and to alleviate comparison with the numerical results of
section 5.1. let us first have a brief look at the solution of the state unconstrained
(i. e. only ODE) problem:
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ẇ

w

=⇒

=⇒

Figure 1. Optimal trajectories of the regularized minimum-time problem in the phase
plane (grey). The dotted black curve is their envelope curve. The black curves are the
optimal solutions for the starting conditions w0 = −6 and ẇ0 = 0 resp. w0 = −6 and
ẇ0 = −6. Those will be picked up again later on.

Furthermore, the heat equation itself can be solved analytically, which will
be very helpful for later analysis:

T (x, t) =

∞∑

n=1

[∫ t

0

ẇ(s)2 e−k2
n (t−s) ds

]
·
(∫ 1

0

φn(y) dy

)
φn(x)

=

∞∑

n=1

[∫ t

0

ẇ(s)2 e−k2
n (t−s) ds

]
· 1

Nn

[
sin kn +

1

kn
(1− cos kn)

]
φn(x) (2)

This solution is obtained by Fourier’s method and some rather longsome com-
putations, which are omitted here; see Pesch et. al. (in preparation).

The eigenvalues kn are determined by

2kn
k2n − 1

= tankn (3)

and the normed eigenfunctions by

φn(x) =
1

Nn
(kn cos kn x+ sin kn x) (4)

with the norming factor

Nn =

√
1

2
k2n +

3

2
. (5)

Herewith one can compute the temperature profiles of the two trajectories shown
in Fig. 1:
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Figure 2. Temperature profiles along state-unconstrained trajectories; cf. Figure 1.
Data: w0 = −6, ẇ0 = 0 (left), resp. ẇ0 = −6 (right).

Please note that (1f) represents distributed heating, therefore the maximal
temperature with respect to space is always reached at x = 1

2 ; see below. Mod-
elling the heating of the car’s nose by a boundary control is done in Pesch et.
al. (in preparation).

The double hump structure of the heat profile for the (w0 = ẇ0 = −6)-curve
is due to the initial velocity pointing in the wrong direction, which makes it
necessary to slow down and turn around first.

To round of this prelude we would like to present some useful properties of
the solution T of the heat equation, namely that it is positive in [0, 1]× (0, tf ]
and possesses strong maxima w.r.t. x for all t > 0 on the vertical line x = 1

2 (as
already stated above).

Theorem 1 Let T (x, t) be a solution of (1b)-(1h) with the following properties:

(A1) T is continuous in [0, 1]× [0, tf ], ∂
i
xT , i = 1, . . . , 3, as well as

∂i
xTt, i = 0, 1, exist and are continuous in [0, 1]× (0, tf ];

(A2) Tx possesses a continuation in C0([0, 1]× [0, tf ]), also denoted
by Tx.

Then there holds:

a) If ẇ2 > 0 for [0, 1]× (0, tf ], then T > 0 in [0, 1]× (0, tf ].
b) T (x, t) = T (1− x, t).
c) T takes its strong maximum in x = 1

2 for each t0 ∈ (0, tf ). T (x, t0)
increases strictly monotonic in

[
0, 1

2

]
and decreases strictly monotonic

in
[
1
2 , 1
]
.

The proof of this theorem and further theorems concerning also other
hypersonic-rocket-car problems can be found in Pesch et al. (in preparation).
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4. Necessary optimality conditions:
Interpretation as integro state-constrained ODE opti-
mal control problem

Deriving necessary optimality conditions proved to be relatively challenging due
to the problem being very nonstandard. Therefore we first had to reformulate
it: The second order ODE (1) was transformed into a system of two first order
ODEs with the new variables w1 := w and w2 := ẇ. Additionally, one can utilize
the fact, that at any given point of time the maximum of the temperature with
respect to x is at x = 1

2 , by introducing an auxiliary state variable

w3(t) := T

(
1

2
, t;w2[0, t]

)
=

∫ t

0

∞∑

n=1

γ̃n w2(s)
2 e−k2

n (t−s) ds (6)

with

γ̃n =

(∫ 1

0

φn(y) dy

)
φn(

1

2
) and

∞∑

n=1

γ̃n = 1 . (7)

Here it is important to notice, that T does not only depend on the current speed
w2 but on its entire history, due to the integral term in (6). This will play a
crucial role later on.

The usual way to exploit necessary conditions by means of an adjoint based
method, formerly called indirect method, is as follows; cp., e. g. Pesch (1994):
Firstly, compute a numerical solution of the state unconstrained problem, to
be more precise an approximation for a candidate optimal solution. One of the
most powerful methods here is the multiple shooting method. See for example,
Bulirsch (1971), Stoer, Bulirsch (2002), Oberle (1983) and for some approved
codes, Oberle (1989), resp. Hiltmann et. al. (1993). The expected switching
structure (hypothesis) can usually be guessed via homotopy methods by tight-
ening the state constraint step by step.

Let us now assume, that exactly one boundary arc (ton, toff), ton < toff exists.
(This will be the case for w0 = −6, ẇ0 = 0). The reformulated problem is then
given as:

min
u∈U

{
tf +

1

2
λ

∫ tf

0

u2dt

}
, λ > 0 , (8a)

subject to

ẇ1(t) = w2(t) in (0, tf ) , (8b)

ẇ2(t) = u(t) in (0, tf ) , (8c)

ẇ3(t) =
d

dt
T

(
1

2
, t;w2[0, t]

)
in (0, tf ) , (8d)
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w1(0) = w0 , w2(0) = ẇ0 , (8e)

w1(tf ) = 0 , w2(tf ) = 0 , (8f)

w3(ton) = Tmax and w3(toff) = Tmax , (8g)

w3(0) = 0 , (8h)

w3(t)− Tmax ≤ 0 in (0, tf ) , (8i)

U := {u ∈ L2(0, tf ): |u(t)| ≤ umax almost everywhere in [0, tf ]} , (8j)

We were able to get completely rid of the PDE part and now have a pure ODE
problem. This of course comes at a high price: equation (8d) is a Volterra
integro-differential equation, making this new problem significantly more com-
plicated than a standard ODE optimal control problem. Only little is known
on optimal control problems with integro-differential equations; see Kappel,
Stettner (1976), Schmidt (2001), or Warga (1972). At least, the new state con-
straint (8i) is pointwise and of second order (see below), whereas (1i) with T
substituted by (2) constitutes a non-local state constraint.

Defining S(t,w, T ) := T
(
1
2 , t
)
− Tmax with w := (w1, w2, w3)

T two (total)
differentiations w. r. t. t yield ([t] shall in the following be an abbreviaton of the
list of all arguments evaluated at time t that apply to the respective function)

d

dt
S[t] = Tt

(
1

2
, t

)
= Txx

(
1

2
, t

)
+ w2(t)

2 , (9a)

d2

dt2
S[t] = Ttt

(
1

2
, t

)
= Txxt

(
1

2
, t

)
+ 2w2(t)u(t) . (9b)

Here, both the ODE (8c) and the PDE (1f) are substituted.
The junction points ton and toff are implicitely defined by (8g). They will

give rise to jump conditions.
In order to derive the adjoint equations for (8), we apply the Lagrange tech-

nique, for the sake of simplicity, formally only; see, e.g. Tröltzsch (2009).
Let the Lagrangian be defined by

L(w, u,p, ton, toff , tf ) :=

∫ tf

0

1 +
λ

2
u2 dt−

∫ tf

0

(ẇ1 − w2) p1 dt

−
∫ tf

0

(ẇ2 − u) p2 dt

−
∫ tf

0

[
ẇ3 −

d

dt
T

(
1

2
, t;w2[0, t]

)]
p3 dt

+

∫ tf

0

(w3 − Tmax) dµ(t)
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+(w3(ton)− Tmax)σon + (w3(toff)− Tmax)σoff .

Integration by parts then yields, while substituting (1d) and (8h),

L(w, u,p, toff , tf ) :=

∫ tf

0

1 +
λ

2
u2 dt+

[
w1 p1

]
t=0

+

∫ tf

0

w1 ṗ1 + w2 p1 dt

+
[
w2 p2

]
t=0

+

∫ tf

0

w2 ṗ2 + u p2 dt

−
[
w3 p3

]
t=tf

+

∫ tf

0

w3 ṗ3 +
d

dt
T

(
1

2
, t;w2[0, t]

)
p3 dt

+

∫ tf

0

(w3 − Tmax)µ(t) dt

+(w3(ton)− Tmax)σon + (w3(toff)− Tmax)σoff .

Here, we give the derivation of the adjoint p2 only:

Dw2L(. . .)h2 =

∫ tf

0

p1(t)h2(t) dt+

∫ tf

0

ṗ2(t)h2(t) dt

+

∫ tf

0

2w2(t)h2(t) p3(t) dt

−
∫ tf

0

(∫ t

0

∞∑

n=1

k2nγ̃n 2w2(s) e
−k2

n (t−s) h2(s) ds

)
p3(t) dt

Fubini
=⇒

∫ tf

0

p1(t)h2(t) dt+

∫ tf

0

ṗ2(t)h2(t) dt

+

∫ tf

0

(
2w2(t) p3(t)

−
∫ tf

t

∞∑

n=1

k2nγ̃n 2w2(t) e
−k2

n (s−t) p3(s) ds

)
h2(t) dt

!
= 0

for all h2 ∈ W 1,∞(0, tf ) with h2(0) = 0 .

This yields

ṗ2 = − p1 − 2w2(t)

(
p3(t)−

∫ tf

t

∞∑

n=1

k2nγ̃n e
−k2

n (s−t) p3(s) ds

)
, (10a)

a retrograde integro-differential equation of Volterra type.
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All other necessary conditions turn out the way they would in a classical
ODE control problem:

ṗ1 = 0 , (10b)

ṗ3 = −µ

and p3(tf ) = 0 and p3(t
+
on/off) = p3(t

−
on/off)− σon/off

with σon/off > 0 , (10c)

H [tf ] = 0 , H [t+on/off ] = H [t−on/off ] (10d)

with H(w, u,p) := 1 +
λ

2
u2 + w2 p1 + u p2

+
d

dt
T

(
1

2
, t;w2[0, t]

)
p3 (10e)

u(t) = P[−umax,umax]

(
− 1

λ
p2

)
(10f)

with P[a,b](z) := min {b,max {a, z}} ,

µ =

{
0 on [0, ton) ∪ (toff , tf ]

≥ 0 on [ton, toff ]
and µ

(
w3 − Tmax

)
= 0 . (10g)

Remark 1 As constraint (8i) is of second order, there can appear not only
boundary arcs but also touch points, cf. Figure 8. Necessary conditions for this
scenario can be derived analogously, the interior point condition

T (
1

2
, ttouch;w2[0, ttouch]) = Tmax

will cause a jump of p3 at ttouch.

5. Numerical results

5.1. Solution of the state-constrained problem

Solving the seemingly relatively simple (original) problem (1) already invokes a
level of complexity which makes, at the current state of the art, an indirect ”first
optimize, then discretize”- approach a vain or at least extremly cumbersome en-
deavour, leaving the direct ”first discretize, then optimize”-method as the more
promising technique. For numerical calculations we employed the interior point
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solver IPOPT (2007) by A. Wächter and Biegler (2002), resp. (2006) together
with the modelling software AMPL (2007). The use of AMLP guarantees that
all gradients are efficiently computed by automatic differentiation.

The first step was a time transformation τ := t
tf

to a normalized time

τ ∈ [0, 1], resulting in a problem with fixed terminal time at the cost of spawning
an additional optimization variable tf . Applying a quadrature formula to (1a),
discretizing the ODE with the implicit midpoint rule and the PDE with the
Crank-Nicolson scheme yielded a nonlinear program which could then be solved
by IPOPT. The results are shown in Figures 3 and 4:
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Figure 3. Temperature T (x, t) (left) and cross-section T
(
1
2
, t
)
(right) along a state-

constrained trajectory. Data: w0 = −6, ẇ0 = 0 and Tmax = 1.5, cf. Figures 1 and 2
(left).
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Figure 4. State-constrained optimal trajectory in the phase-plane (left) with associ-
ated optimal control u (right). Data: w0 = −6, ẇ0 = 0 and Tmax = 1.5.
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Figure 3 depicts the temperature profile as well as its cross-section at x = 1
2 ,

clearly showing the boundary subarc. In Figure 4 one can see the according
speed and position in the phase diagram and the optimal control.

Please note that the optimal control u is very small yet not identically zero
between ton and toff as could be the impression from the picture. The most
unusual feature is the nonlinear behaviour of the control immediately before
ton, which is also responsible for the little hump in the phase diagram. This
is caused by a ”memory effect” introduced by the heat equation (resp. by the
lag property of (8d) in the alternative formulation). To our knowledge, this
phenomenon has not yet been observed in ODE optimal control theory.

5.2. Verification of the necessary conditions

The main interest is of course not just to solve the problem, but to verify the
necessary conditions, represented by the multipoint boundary value problem
(10). To our knowledge, no off-the-shelf software seems to be available for prob-
lems like that. Therefore we verified (10) by using the discrete approximations
of the adjoints for (8) obtained from IPOPT.1

Figures 5–7 provide some visualization for the more complex equations:

0 1 2 3 4 5
−0.4

0

0.4

0.8

ṗ2

t 0 1 2 3 4 5
−0.4

0

0.4

0.8

−p1 − 2w2(t)
(
...
)

t

Figure 5. Left- and right-hand side of (10a)

1Note that IPOPT delivers estimates for the adjoint variables with opposite sign compared
to our notation.
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Figure 6. Estimated ODE adjoint p3 with jumps σ > 0 and complementarity condition
µ > 0, conf. (10c)
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−15
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15

t

− 1
λp2

u = P[−1,1]

(
− 1

λp2
)

Figure 7. Optimality check showing the perfect coincidence with the projection for-
mula (10f)

Furthermore p1 = const ≈ 0.6 and H [tf ] = 0. The inequality constraints
(8i) and (8j) are also perfectly observed. Continuity of the Hamiltonian at the
junction points follows immediately from the continuity of the optimal control.

As already mentioned in Remark 1, touch points are possible, too. Their nec-
essary conditions can be derived analogously, so as a conclusion of the numerics
we would just like to give a glimpse at the according results; see Fig. 8.

For more details on this we refer to Pesch et. al. (in preparation).

6. Conclusions and outlook

The problem studied in this paper has been inspired by problems from engineer-
ing control applications, where complex dynamical processes are described by
staggered systems of equations of different type such as ODEs and PDEs. It can
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p3

t

Figure 8. Temperature and adjoint p3 for the case w0 = −6 and ẇ0 = −6 (cf. Figure 1
and Remark 1), clearly showing a touch point and the according jump in the adjoint.
Here, Tmax has been changed to 4 and umax = ∞, to prevent infeasibility.

be seen as a kind of prototype for ODE-PDE control systems. As it has been
stripped of anything but the most necessary ingredients we were able to account
for the approximate validity of the necessary conditions based on discrete esti-
mates of the adjoint variables. At the current state of the art the application of
an adjoint based method for such a problem remains a tremendous challenge.

In this paper we transformed the ODE-PDE control problem into an only
ODE (yet nonstandard) problem. It is also possible to do it the other way
round, resulting in an only PDE problem (of course also nonstandard), which
is a splendid opportunity to carry over concepts from ODE to PDE optimal
control. However, this would go beyond the scope of this short paper. Some
first results can be found in Wendl et. al. (2010).
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Heizung und Kühlung für ein realistisches Sonnenhausmodell . Habilita-
tion, Munich University of Technology Munich, Germany.

Oberle, H. J. and Grimm, W. (1989) BNDSCO - A Program for the Numer-
ical Solution of Optimal Control Problems. Report No. 515, Institut for
Flight System Dynamics, German Aerospace Center, Oberpfaffenhofen,
Germany.

Pesch, H. J. (1994), A practical guide to the solution of real-life optimal
control problems. Control and Cybernetics , Vol. 23, 7–60.

Pesch, H. J., Rund, A., von Wahl, W., and Wendl, S. (in preparation)
On a Prototype Class of ODE-PDE State-constrained Optimal Control
Problems. Part 1: Analysis of the State-unconstrained Problems. Part 2:
The State-constrained Problems. In preparation.

Schmidt W. (2001) Necessary Optimality Conditions for Control Processes
Governed by Integro-differential Equations. Trudy Institut Matematiki
Minsk , Vol. 7(1), 151–158.

Stoer, J. and Bulirsch,R. (2002) Introduction to Numerical Analysis.
Texts in Applied Mathematics 12, 3rd ed., Springer, Heidelberg, Germany.
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tigung der instationären Aufheizung. PhD Thesis, Faculty of Mechanical
Engineering, Munich University of Technology, Munich, Germany.

Wendl, S., Pesch, H. J., and Rund, A. (2010) On a State-Constrained
PDE Optimal Control Problem arising from ODE-PDE Optimal Con-
trol. To appear in: M. Diehl, F. Glineur, and W. Michiels (Eds.), Recent
Advances in Optimization and its Applications in Engineering, Springer,
Berlin, 2010.

Wraga, J. (1972) Optimal control of differential and functional equations.
Academic Press, New York, London.


