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Optimal Control of Partial Differential Equations with
Nonsmooth Cost Functionals

Christian Clason∗ Karl Kunisch† Armin Rund ‡

Abstract— Over the last decade significant progress was made in the analysis and numerical treatment of optimal control prob-
lems with nonsmooth cost functionals. Such functionals are in the context of optimal control with sparsity constraints, for
switching control and for multi-bang optimal control problems. The natural setting of such problems is given by non-reflexive
Banach spaces, which leads to new analytical challenges. The lack of smoothness, on the other hand, demands novel numerical
methods for practical solution of the resulting infinite dimensional optimization problems.
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1 Introduction

We consider an optimal control problem of tracking type

(1)

{
min
u∈X
‖y − yd‖2L2(Ω) + αN (u)

s.t. Ay = u

where A is a differential operator, y is the state variable and yd

is a given desired state. The control u has to be determined in
such a manner that the state is brought as close to z as possi-
ble while observing the control cost term αN (u). The focus
here lies on the choice of the functional N which has a signif-
icant effect on the optimal control as can be seen from Figure
1, which is obtained for the case where A is the Laplacian with
homogenous Dirichlet boundary conditions on the unit square,
and z is a scaled version of the peaks function from MAT-
LAB. In the left column of Figure 1 the optimal controls for
the choices N (u) = ‖u‖2L2(Ω) and N (u) = ‖u‖2H1(Ω) are de-
picted. We observe the global smoothing effects of these func-
tionals when we compare with the choicesN (u) =M(u) and
N (u) = BV (u), whereM(u) stands for the Borel measure of
u, and BV (u) for the total bounded variation semi-norm. The
choiceM(u) promoted sparsity, i.e. u = 0 over large subsets
of the domain Ω, while the BV-semi norm promotes sparsity
of the derivative and results in piecewise constant values of the
optimal controls. We note here that the choice N (u) =M(u)
as opposed to N (u) =

∫
Ω
|u| dx results from difficulties when

proving existence of optimal controls for (1) using the latter
control cost.

(a) L2-control (b)M-control

(c) H1-control (d) BV -control

Figure 1: Optimal control for different functionals N .

While the results of Figure 1 are given here for a simple test
case problem it is by now well established that these features
are generic for a wide class of optimal control problems related
to different classes of partial differential equations. In the liter-
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ature N (u) = ‖u‖2L2(Ω) is typically chosen as control cost for
good reason: the simplicity of computing gradients and the use
in the linear quadratic regulator theory are among them. In the
case of nonlinear partial differential equations a specific type
of nonlinearity may require to replace the L2-norm by an Lp-
norm, with p > 2 or, in the case of boundary controls, with the
H1/2-norm for example, to obtain well-posedness of the dif-
ferential equation in variational form and existence to (1). The
choices ofM related to norm or semi-norms of non-reflexive
Banach spaces are much more recent. In the references we give
a list of some, but by no means all of the references which have
become available in the recent past.

There are several reasons which make the choice N (u) =
M(u) an important one. First, as we shall see below, the con-
trol will be allowed to be shut off (u = 0) over subsets of the
domain. Second, this norm expresses ’proportionality’ which
is not the case for the L2-norm. Moreover, as already pointed
out in [21] it provides an elegant solution to the problem of
optimal actuator placement. For a nice application we refer to
[2]. Also, as pointed out in [17], this formulation can be effi-
cient to solve inverse source problems in the case that A in (1)
represents a diffusion-convection operator.

In the following Section 2 we highlight some aspects related
to sparse optimal control related to linear elliptic equations
mostly following the results from [8]. Section 3 is devoted to
multi-bang control and Section 4 to switching control.

2 Elliptic control problems with sparse solution

Here we consider

(2) min
u∈M(Ω)

J(u) =
1

2
‖y − yd‖2L2(Ω) + α‖u‖M(Ω),

where y is the unique solution to the Dirichlet problem

(3)
{
−∆y + c0y = u in Ω,

y = 0 on Γ,

with c0 ∈ L∞(Ω) and c0 ≥ 0. We assume that α > 0,
yd ∈ L2(Ω) and Ω is a bounded domain in Rn, n = 2 or
3, with a smooth boundary. The controls are taken in the space
of regular Borel measuresM(Ω), which is identified with the
dual space of C0(Ω):

(4) ‖u‖M(Ω) = sup
‖z‖C0(Ω)≤1

〈u, z〉 = sup
‖z‖C0(Ω)≤1

∫
Ω

z(x) du.

The results of this section can be extended to the case where
the support of the controls is restricted to be in a subset ω ⊂ Ω.

We shall refer to y as a solution if it satisfies the very weak
solution concept, i.e.

(5)
∫

Ω

yAz dx =

∫
Ω

z du for all z ∈ H2(Ω) ∩H1
0 (Ω),

where A = −∆ + c0I . It is well known, see for instance [3],
that there exists a unique solution to (3) in the sense of (5).
Moreover, y ∈W 1,p

0 (Ω) for every 1 ≤ p < n
n−1 and

‖y‖W 1,p
0 (Ω) ≤ Cp‖u‖M(Ω).

Then, it can be obtained by the standard approach that (2) has
a unique solution. Hereafter, this optimal solution will be de-
noted by ū with an associated state ȳ. By using subdifferential
calculus of convex functions and introducing the adjoint state
we get the following first order necessary optimality condition,
see [8].

THEOREM 1 There exists a unique element p̄ ∈ H2(Ω) ∩
H1

0 (Ω) satisfying

(6)
{
−∆p̄+ c0p̄ = ȳ − yd in Ω,

p̄ = 0 on Γ,

such that

(7)

α‖ū‖M(Ω) +
∫

Ω
p̄ dū = 0,

‖p̄‖C0(Ω)

{
= α if ū 6= 0,
≤ α if ū = 0.

This optimality condition together with the Jordan decompo-
sition of ū = ū+ − ū−, can be used to deduce from (7) that
p̄ ⊂ [−α, α] and

(8)
{

supp (ū+) ⊂ {x ∈ Ω : p̄(x) = −α},
supp (ū−) ⊂ {x ∈ Ω : p̄(x) = +α}.

This implies that the optimal control is zero where |p̄(x)| 6= α
and implies the desired sparsity: unless the adjoint state, which
is in some sense a sensitivity measure, is maximal, the optimal
control is inactive.

In the case where we consider the observation of the state only
in a subset ωy ⊂ Ω, then we have the following property of the
support of the optimal control.

PROPOSITION 2 Let ωy be an open subset of Ω such that
Ω \ ωy is connected and consider the functional

(9) Jωy
(u) =

1

2
‖y − yd‖2L2(ωy) + α‖u‖M(Ω).

Then the associated optimal control ū satisfies supp (ū) ⊂ ω̄y .

Further results on the support of the controls which are all
based on the maximum principle are contained in [20].

To explain a numerical treatment for (2) we may commence by
observing that the optimality conditions of Theorem 1 may be
reformulated in primal-dual form as

(10)

{
p̄ = A−∗(A−1ū− yd),

0 ≥ 〈ū, p̄− p〉 for all ‖p‖C0
≤ α.
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This system is still intractable in function spaces, and hence we
consider its Moreau–Yosida regularization

(11)


pγ = A−∗(A−1uγ − yd),

uγ =
1

γ
(max(0, pγ − α) + min(0, pγ + α)),

for which convergence to a solution of (10) as γ → 0 can be
shown. Furthermore, this system can be solved efficiently by a
semi-smooth Newton method [11, 8], which is given in Algo-
rithm 1.

Algorithm 1 Semismooth Newton method for (11)

1: Set k = 0, Choose u0 ∈ L2(Ω)
2: repeat
3: Solve for yk in Ay = uk

4: Solve for pk in A∗p = yk − yd

5: Set
A+
k = {x ∈ Ω : pk(x) > α},
A−k = {x ∈ Ω : pk(x) < −α},

6: Set F (uk) = uk − 1
γ (χA+

k
(pk − α) + χA−

k
(pk + α))

7: Solve for δu ∈ L2(Ω)

δu− 1

γ
(χA+

k
+ χA−

k
)A−∗A−1δu = −F (uk)

using a matrix-free Krylov method
8: Set uk+1 = uk + δu and k = k + 1
9: until (A+

k+1 = A+
k ) and (A−k+1 = A−k )

This is still an infinite dimensional problem. In [8] a frame-
work based on approximation of the measure valued controls
by the linear combination of Dirac deltas was proposed and an-
alyzed which allows taking the limit γ → 0 computationally.
The analysis was later improved in [20].

The necessity to utilize measure spaces for the controls can
be avoided and replaced by L1(Ω) if additional constraints on
the norms are utilized, see e.g. [21, 4, 15]. Directional sparsity
was analyzed first in [15]. Results on sparse controls have been
extended to nonlinear elliptic [5], to parabolic [17, 6], and to
wave equations [18], where the citations only point at part of
the literature.

3 Multi-bang control

Multi-bang control refers to optimal control problems for par-
tial differential equations where a distributed control should
only take on values from a discrete set of values ui. This prop-
erty can be promoted by a combination of L2 and L0-type con-
trol costs. The resulting functional, however, is non-convex
and lacks weak lower-semicontinuity. More specifically we

consider the problem
(12)

min
u,y

1

2
‖y − yd‖2L2 +

α

2
‖u‖2L2 + β

∫
Ω

d∏
i=1

|u(x)− ui|0 dx

s. t. Ay = u, u1 ≤ u(x) ≤ ud for a.e. x ∈ Ω

where α > 0, β > 0, d ∈ N, and the binary term is given by

|t|0 :=

{
0 if t = 0,
1 if t 6= 0.

Below we summarize some results from [10] which rely in an
essential manner on a convexification process applied to (12).
For this purpose we define

F : L2(Ω)→ R, u 7→ 1
2‖A

−1u− yd‖2L2 ,

G0 : L2(Ω)→ R,

u 7→
∫

Ω

(
α

2
|u(x)|2 + β

d∏
i=1

|u(x)− ui|0

)
dx+ δU (u),

where δU is the indicator function of the admissible set

U :=
{
u ∈ L2(Ω) : u1 ≤ u(x) ≤ ud for a.e. x ∈ Ω

}
.

With this notation (12) can be expressed as

(13) min
u
F(u) + G0(u).

Since G0 is not convex standard convex analysis techniques are
not applicable. We therefore pass to the convexification of (12)
and consider

(14) min
u
F(u) + G(u),

where G = G∗∗0 , which is the biconjugate of G. The necessary
optimality condition of (13) can be expressed as: there exists
a p̄ = −F ′(ū) such that p̄ ∈ ∂G(ū), which holds if and only
if ū ∈ ∂G∗(p̄). Here, G∗ denotes the Fenchel conjugate of the
convex functional G, and ∂G∗ denotes its convex subdifferen-
tial. We thus obtain the primal-dual optimality system

(15)
{
−p̄ = F ′(ū) = A−∗(A−1ū− yd),
ū ∈ ∂G∗(p̄).

We have the following result concerning existence and struc-
ture of the solution.

THEOREM 3 There exists a solution (ū, p̄) ∈ L2(Ω)×H1
0 (Ω)

of (15). Moreover, if

(16)
√

2β/α ≥ 1

2
(ui+1 − ui) for all 1 ≤ i < d,

then

Ω =

d⋃
i=1

{x ∈ Ω : ū(x) = ui} ∪ {x ∈ Ω : ȳ(x) = yd(x)}

where ȳ is that the state corresponding to ū.
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To quantify the effect of the convexification process, i.e. the
passage from G0 to G, we introduce the critical set

(17) C = {x ∈ Ω : p̄(x) = 1
2 (ui + ui+1)

for some i ∈ {1, . . . , d− 1}, and ū(x) /∈ {ui, ui+1}}.

Then we have

THEOREM 4 If (ū, p̄) ∈ L2(Ω)×H1
0 (Ω) is a solution of (15)

and (16) holds, then for every u ∈ L2(Ω)

(18) J(ū) ≤ J(u) + β|C|,

where J denotes the cost functional in (12), and |C| stands for
the measure of C.

However, the optimality conditions (15) are not directly
amenable to numerical solution by Newton-type techniques.
For this reason we consider a regularized optimality system

(19)

{
−pγ = F ′(uγ) = A−∗(A−1uγ − yd),

uγ = (∂G∗)γ(pγ),

where (∂G∗)γ is the Moreau–Yosida approximation of the sub-
differential of the Fenchel conjugate G∗. Thus for the numeri-
cal realization, only (∂G∗)γ is needed which can be computed
without explicit knowledge of G, since G∗ = G∗0 . For system
(19) semi-smooth Newton methods are applicable. We close
this section with a numerical example. Again, z is a scaled
version of the MATLAB peaks function, and we choose the
desired control values {u1, . . . , u5} = {−2, . . . , 2}.

Figure 2: Effect of α, β on the structure of the control u, left:
α = 5.10−3, β = 10−3, right: α = 10−3, β = 10−3.

4 Switching control

Here we briefly describe two choices of cost functionals which
are amenable for computing multiswitching controls for differ-
ential equations. Such controls consist of an arbitrary num-
ber of components of which at most one should be simultane-
ously active. Switching can refer to alternating between differ-
ential spatial control-subdomains or between different compo-
nents of vector valued controls, when we refer to time depen-
dent control systems. Switching control is quite well-studied
for controlled ordinary differential equations, see e.g. [19] but

much less is known for partial differential equations, see, how-
ever, [13, 22]. In either case, little attention has been paid to
the efficient numerical solution of switching control problems.
In this respect we refer to [14] where a relaxation technique
combined with rounding strategies is proposed to solve mixed-
integer programming problems arising in optimal control of
partial differential equations. Here we follow a quite differ-
ent route which is based on the choice of specially tuned cost
functionals and convex analysis techniques. Below we draw on
results from [9, 1].

Here we consider the parabolic controlled partial differential
equation Ly = Bu on ΩT := [0, T ] × Ω, where L =
∂t − A for an elliptic operator A defined on Ω ⊂ Rn,
with homogenous boundary conditions, and B is defined by
(Bu)(t, x) = χω1

(x)u1(t) + χω2
(x)u2(t) for given control

domains ω1, ω2 ⊂ Ω.

To promote a switching structure between the temporal con-
trol functions u1 and u2, we first propose to use the regularized
binary function for

g(v) =
α

2
(v2

1 + v2
2) + β|v1v2|0,

for v = (v1, v2) ∈ R2. This term combines in a single func-
tional both switching enhancement and a quadratic cost for the
active control. For some ωT ⊂ ΩT we then consider the prob-
lem

(20)


min

u∈L2(0,T ;R2)

1

2
‖y − yd‖2L2(ωT ) +

∫ T

0

g(u(t)) dt,

s. t. Ly = Bu on ΩT , y(0) = y0,

for given y0 ∈ L2(Ω), and yd ∈ ωT . Using the solution op-
erator S = L−1B : u 7→ y, problem (20) can be expressed in
reduced form as

(21) min
u
F(u) + G0(u),

where F is smooth and convex, and G0 is neither smooth nor
convex nor, in fact, weakly lower semicontinuous. We there-
fore consider the relaxed problem

(22) min
u
F(u) + G(u),

where, as in the previous section we set G = G∗∗0 . Existence
and optimality conditions for the relaxed problem can readily
be obtained. We again consider the regularized system (19) for
S in place ofA−1, for which semi-smooth Newton methods are
applicable. In [9] the asymptotic behavior for γ → 0+ and suf-
ficient conditions are given for the limit problem, which guar-
antee that both controls cannot be simultaneously nontrivial ex-

cept for a singular set, for which |u1(t)| = |u2(t)| ≤
√

2β
α .

The practical realization of the approach requires to charac-
terize (∂G∗)γ which is quite involved, and a generalization to
more than two controls is not straightforward.
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To define a second choice for a switching functional we con-
sider control operators of the form

(23) (Bu)(t, x) =

N∑
i=1

χωi
(x)ui(t),

where the χωi
are the characteristic function of given control

domains ωi ⊂ Ω of positive measure, and (u1, . . . , uN ) is the
time-dependent control vector, of which only one component
should be nontrivial at any instance in time. For this purpose
we consider the optimal control problem

(24)


min

u∈L2(0,T ;RN )

1

2
‖y − yd‖2L2(ωT ) +

α

2

∫ T

0

|u(t)|21 dt,

s. t. Ly = Bu, y(0) = y0,

where |·|1 stands for the `1-norm on RN . This is a convex opti-
mization problem, for which the same steps can be carried out
as for (20), but without the need for the convexification step.
In the context of exact controllability problems with switching
controls (24) was utilized in [22]. In [1], it was shown that (24)
coincides with (20) for special choices of β sufficiently large.
We close with a numerical example from [1], where

yd =

N∑
i=1

cos(i+ t) sin2

(
2π

t

T

)
|x− xi|2,

and the observation and the seven control domains (of which
not all need to be active at any time) are depicted in Figure 3.

ωobs

ω1

ω2

ω3

ω4

ω5
ω6

ω7

Ω

Figure 3: Problem setting for N = 7 control components.

Figure 4 depicts the various control branches for two different
choices of the control weight α.
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−2
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·10−1
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Figure 4: Dependence of the controls on α for N = 7.
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