Scattering Phases in the $H \rightarrow WW^*$ channel

Master's Thesis Defense

Bernd Riederer 25th March 2020

Supervisor: Axel Maas

Introduction & Motivation

The Standard Model of Particle Physics

- Most successful theory up to now
- Describes 3 of 4 fundamental interactions and everyday matter as a Quantum Field Theory
 - Electromagnetic interaction
 - Weak interaction
 - Strong interaction
- Plus the Higgs-Sector providing masses to the particles
- Not the final answer: Dark matter, $g_{\mu} 2$ anomaly, . . . \rightarrow Need for Physics beyond the SM
- **But** before studying BSM physics we need to fully understand the SM: perturbative and non-perturbative
- Brout-Englert-Higgs effect introduces some ambiguities

Electroweak-Higgs-Sector

- $SU(2)_W \times U(1)_\gamma$ -Yang-Mills-Higgs-Theory
- Only Weak interaction \rightarrow no fermions & photon, $m_W = m_Z$

$$\mathcal{L} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \lambda \left(\phi^{\dagger}\phi - f^{2}\right)^{2}$$

$$W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g f^{abc} W^b_\mu W^c_\nu \qquad D_\mu = \partial_\mu - i g W_\mu$$

- Gauge symmetry $G(x) \in SU(2)_W$: $W_{\mu\nu}(x) \to G(x)W_{\mu\nu}(x)G(x)^{-1} \& \phi(x) \to G(x)\phi(x)$
- \cdot Additional global SU(2)_c symmetry of the Higgs field

Gauge-Fixed Perturbation Theory

- PT around minimum of the potential \rightarrow BEH-effect: Shifting the Higgs-field $\phi_i(x) = vn_i + h_i(x)$
- · vn_i such that $|\langle \phi \rangle| = |v| = f \rightarrow$ needs to fix the gauge
- In PT elementary fields are used to describe EW-phenomenology
- **But** they are gauge-dependent and thus unphysical (human choice)
- Though using a *wrong* premise PT agrees strikingly well with experiment
- Compare to intrinsically gauge-invariant objects (e.g. bound states) as the physical objects

FMS-Mechanism

- Compatible with standard Perturbation Theory?
 ⇒ Yes! Using FMS-Mechanism
- Maps Gauge SU(2) on Global (custodial) SU(2) $J^P \rightarrow J^P_c$
- e.g.: The mass spectrum of the Higgs-Boson (0_1^+)

• Lattice spectroscopy \Rightarrow Mass spectrum stays the same

[Maas, MPL A28 (2013) / Maas and Mufti, JHEP (2014)]

• What about other quantities?

Bernd Riederer

Scattering Phases in the $H
ightarrow WW^*$ channel

M

Study scattering properties of different physical Higgs-Bosons

- 1. SM Higgs $M_H \approx 125 \text{ GeV}$
 - Comparison of results with gauge-fixed PT
 - + HL-LHC will be capable of measuring phase shift \rightarrow direct comparison to measurement

2. Higgs with $M_H\gtrsim 2M_W\approx$ 160 GeV

- + Previous Lattice studies suggest no additional states \rightarrow Lüscher analysis will clarify this issue
- Possible implications for BSM Theories with additional Higgs-Bosons
 - ightarrow could be hard to detect

Lattice Methods

Lattice Quantities vs. Infinite Volume Quantities

- \cdot Lattice quantities (e.g. mass) $\not\leftrightarrow$ Infinite volume quantities
- Two main sources
 - 1. Discretization artifacts $\xrightarrow{?}$ avoided by small lattice spacing
 - 2. Particle in a box \rightarrow restricted interaction volume and wrap around effects
- For bound state energy and masses:

 $M_B(V) \approx m_{inf} + a_1 e^{-a_2 V}$

- But particles in a box always interact \rightarrow volume-dependent distortion of energy levels

Lattice energy spectrum $E_n(V) \leftrightarrow$ Continuum phase shift $\delta_l(E)$

- We consider 0^+_1 channel \rightarrow only formula for spinless particle is needed
- Relation between energy levels E_n and phase shift δ_l

$$\tan\left(\delta_{0}(q_{n})\right) = \frac{\pi^{\frac{3}{2}}q_{n}}{Z_{00}^{\vec{0}}(1,q_{n}^{2})} \quad \text{with } E_{n} = 2\sqrt{m_{inf}^{2} + \left(q_{n}\frac{2\pi}{N}\right)^{2}}$$
$$Z_{lm}^{\vec{d}}(r,q^{2}) = \sum_{\vec{x}\in P_{\vec{d}}}\frac{|\vec{x}|^{l}Y_{lm}(\vec{x})}{(\vec{x}^{2}-q^{2})^{r}} \quad \text{with } P_{\vec{d}} = \left\{\left(\vec{u}+\frac{\vec{d}}{2}\right) \middle| \vec{u}\in\mathbb{Z}^{3}\right\}$$

• Holds in threshold region: $2m_{inf}^{1_3^-} < E_n < \min\left(2m_{inf}^{0_1^+}, 4m_{inf}^{1_3^-}\right)$

Bernd Riederer

Scattering Phases in the $H
ightarrow WW^*$ channel

Spectroscopy

• Calculate correlators

 $C(\Delta t) = \left\langle \mathcal{O}^{\dagger}(\Delta t)\mathcal{O}(0) \right\rangle = \sum_{n} |\langle 0|\mathcal{O}|n \rangle|^{2} e^{-E_{n}\Delta t}$

• Sum over **all** states in the quantum number channel

$$E_{eff}\left(\Delta t + \frac{1}{2}\right) = \ln\left\{\frac{C(\Delta t)}{C(\Delta t + 1)}\right\}$$

- If dominated by $E_n: E_{eff} \approx E_n$
- Take periodicity in Δt and excited states into account $\rightarrow C(\Delta t) = \sum_{n} c_{n} \cosh(E_{n} \Delta t)$

Effective Mass

How to obtain information about further energy levels?

Bernd Riederer

Scattering Phases in the $H \rightarrow WW^*$ channel

$$C_{ij}(\Delta t) = \left\langle \mathcal{O}_i^{\dagger}(\Delta t) \mathcal{O}_j(0) \right\rangle$$

Diagonalization disentangles physical states

$$\lambda_n(\Delta t) \propto e^{-E_n \Delta t} (1 + \mathcal{O}(e^{-\Delta E_n \Delta t}))$$

Basis-Interpolators in the 1_3^- and 0_1^+ (physical Higgs) channel

cattering Phases in the $H
ightarrow WW^*$ channel

Bernd Riederer

Variational Analysis

Bernd Riederer

Scattering Phases in the $H
ightarrow WW^*$ channel

Variational Analysis

Bernd Riederer

Scattering Phases in the $H
ightarrow WW^*$ channel

Lattice Energy Spectrum

Energy spectrum E_n in the 0^+_1 channel (physical Higgs) as a function of the Lattice size N.

Bernd Riederer

Scattering Phases in the $H o WW^*$ channel

M

Lattice Energy Spectrum

Energy spectrum E_n in the 0^+_1 channel (physical Higgs) as a function of the Lattice size N.

Bernd Riederer

Scattering Phases in the $H o WW^*$ channel

Results

Parameter Sets

Set Name	$m_H \setminus \text{GeV}$	$a^{-1} \setminus \text{GeV}$	$lpha_{ m 200~GeV}$	Ν	
Example	118± 1	528	0.119	8:4:32	
Energy 1	141± 1	705	0.153	8:8:32	
Energy 2	91 ± 32	532	0.664	8:8:32	
Energy 3	107 ± 1	470	0.605	8:4:32	
Energy 4	110 ± 1	454	0.128	8:8:32	
Energy 5	116 ± 3	404	0.157	8:8:32	
Energy 6	95 ± 7	329	0.492	8:8:32	
Energy 7	95± 1	281	0.718	8:8:32	
Lüscher 1	91± 4	328	0.492	8:8:32 +	
Lüscher 2	103 ± 3	328	0.448	8:8:32 +	
Lüscher 3	118 ± 2	317	0.219	8:4:32 +	
Lüscher 4	130 ± 1	259	0.211	8:4:32 +	

 m_H is the mass of the lightest state in the 0^+_1 channel.

Scale a^{-1} is set by the mass of the lightest state in the 1_3^- channel: $m_W \stackrel{!}{=} 80.375 \text{ GeV}$. N are the used lattice sizes in the form $N_l : N_5 : N_u = \left\{ \begin{array}{l} N = N_l + nN_s \\ N = N_l + nN_s \end{array} \middle| n \in \mathbb{N}^0 \land N \leq N_u \end{array} \right\}$.

Bernd Riederer

Scattering Phases in the $H
ightarrow WW^*$ channel

Energy Spectrum

Energy spectrum E_n in the 0_1^+ channel (physical Higgs) as a function of the Lattice size N for Lüscher4.

Bernd Riederer

Scattering Phases in the $H
ightarrow WW^*$ channel

M

Phase shifts in rad for the given parameter sets in the 0^+_1 channel over the energy in lattice units.

Bernd Riederer

Scattering Phases in the $extsf{H} o extsf{WW}^st$ channel

Phase shifts in rad for the given parameter sets in the 0_1^+ channel over the energy in lattice units.

Bernd Riederer

Scattering Phases in the $extsf{H} o extsf{WW}^st$ channel

Phase shifts in rad for the given parameter sets in the 0^+_1 channel over the energy in lattice units.

Bernd Riederer

Scattering Phases in the $H o WW^*$ channel

Phase shifts in rad for the given parameter sets in the 0^+_1 channel over the energy in lattice units.

Bernd Riederer

Scattering Phases in the $H \rightarrow WW^*$ channe

Conclusion & Outlook

- 1. Particle spectrum below threshold as expected from gauge-fixed PT
 - ightarrow FMS mechanism still valid
 - Additional parameter sets
- 2. Resonance in threshold region seems possible
 - \rightarrow Additional observable particles?
 - · Improve statistics, operator-basis and error estimation
 - · Additional parameter sets along line of constant physics
 - · Calculate decay-widths and couplings and compare to PT
- + Higgs mass always in region 90 GeV-150 GeV
 - \rightarrow Hierarchy problem?
 - Additional parameter sets

Thank you!

1. Formulate gauge-invariant operator and correlator e.g.:

0⁺ singlet:
$$H(x) = \left(\phi_i^{\dagger}\phi_i\right)(x)$$

 $\langle H(x)H(y)\rangle = \left\langle \left(\phi_i^{\dagger}\phi_i\right)(x)\left(\phi_j^{\dagger}\phi_j\right)(y)\right\rangle$

- 2. Expand Higgs field in fixed gauge $\phi_i = vn_i + h_i$ $\left\langle \left(\phi_i^{\dagger}\phi_i\right)(x)\left(\phi_j^{\dagger}\phi_j\right)(y)\right\rangle = dv^4 + 4v^2 \left\langle \Re\left[n_i^{\dagger}h_i\right]^{\dagger}(x)\Re\left[n_j^{\dagger}h_j\right](y)\right\rangle + 2v\left\{ \left\langle \left(h_i^{\dagger}h_i\right)(x)\Re\left[n_j^{\dagger}h_j\right](y)\right\rangle + (x\leftrightarrow y)\right\} + \left\langle \left(h_i^{\dagger}h_i\right)(x)\left(h_j^{\dagger}h_j\right)(y)\right\rangle \right.$
- 3. Perform standard Perturbation Theory

$$\begin{split} \left\langle \left(\phi_{i}^{\dagger}\phi_{j}\right)(\mathbf{x})\left(\phi_{j}^{\dagger}\phi_{j}\right)(\mathbf{y})\right\rangle = d'\mathbf{v}^{4} + 4\mathbf{v}^{2} \left\langle \Re\left[n_{i}^{\dagger}h_{i}\right]^{\dagger}(\mathbf{x})\Re\left[n_{j}^{\dagger}h_{j}\right](\mathbf{y})\right\rangle_{\mathrm{t1}} + \\ + \left\langle \Re\left[n_{i}^{\dagger}h_{i}\right]^{\dagger}(\mathbf{x})\Re\left[n_{j}^{\dagger}h_{j}\right](\mathbf{y})\right\rangle_{\mathrm{t1}}^{2} + \mathcal{O}\left(g^{2},\lambda\right) \end{split}$$

Lattice Action

SU(2)-Gauge-Higgs-Theory on the Lattice

[I. Montvay and G. Münster, Quantum Fields on a Lattice (1994)]

$$\begin{split} S &= \sum_{x \in \Lambda} \left[\beta \left(1 - \frac{1}{2} \sum_{\mu < \nu} \operatorname{Re} \{ \operatorname{Tr} \{ U_{\mu\nu}(x) \} \} \right) + \\ &+ \gamma \left(\phi^{\dagger}(x) \phi(x) - 1 \right)^{2} + \phi^{\dagger}(x) \phi(x) - \\ &- \kappa \sum_{\pm \mu} \phi^{\dagger}(x) U_{\mu}(x) \phi(x + e_{\mu}) \right] \end{split}$$

Lattice parameters: β , γ and κ

Continuum parameters: g, λ and f

Operator Basis

$$\begin{split} \mathcal{O}_{\rho}(x) &= \phi^{\dagger}(x)\phi(x) & \mathcal{O}_{W}(x) = \operatorname{Tr}\left\{U_{\mu}(x)U_{\nu}\left(x + e_{\mu}\right)U_{\mu}^{\dagger}(x + e_{\nu})U_{\nu}^{\dagger}(x)\right\} \\ \mathcal{O}_{0+}(x) &= \sum_{\mu=1}^{3} \operatorname{Tr}\left\{X^{\dagger}(x)U_{\mu}(x)X(x + e_{\mu})\right\} & \mathcal{O}_{0+}(x) &= \sum_{\mu=1}^{3} \operatorname{Tr}\left\{\frac{X^{\dagger}(x)}{\sqrt{\det(X(x))}}U_{\mu}(x)\frac{X(x + e_{\mu})}{\sqrt{\det(X(x + e_{\mu}))}}\right\} \\ \mathcal{O}_{1-\mu}^{a}(x) &= \operatorname{Tr}\left\{\tau^{a}X^{\dagger}(x)U_{\mu}(x)X(x + e_{\mu})\right\} & \mathcal{O}_{1-\mu}^{a}(x) = \operatorname{Tr}\left\{\tau^{a}\frac{X^{\dagger}(x)}{\sqrt{\det(X(x))}}U_{\mu}(x)\frac{X(x + e_{\mu})}{\sqrt{\det(X(x + e_{\mu}))}}\right\} \\ \mathcal{O}_{1-30}^{a} &= \left\{ \begin{array}{c} \mathcal{O}_{0}^{(0-4)}(\vec{p}) \\ \mathcal{O}_{0+}^{(0-4)}(\vec{p}) \\ \mathcal{O}_{0+}^{(0-4)}(\vec{p}) \\ \mathcal{O}_{0+}^{(0-4)}(\vec{p}) \\ \mathcal{O}_{0+}^{(0-4)}(\vec{p}) \\ \mathcal{O}_{0+}^{(0-4)}(-\vec{p})\mathcal{O}_{0+}^{(0-4)}(\vec{p}) \\ \mathcal{O}_{0+}^{(0-4)a}(-\vec{p})\mathcal{O}_{1-\mu}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{1-\mu}^{(0-4)a}(-\vec{p})\mathcal{O}_{1-\mu}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{1-\mu}^{(0-4)a}(-\vec{p})\mathcal{O}_{1-\mu}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{0+1}^{(0-4)a}(-\vec{p})\mathcal{O}_{1-\mu}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{0+1-180}^{0-4)a} &= \left(\mathcal{O}_{1-90}^{0+1}\right)^{2} \end{array} \right\}$$
such that
$$\mathcal{O}_{0+1}^{1-5} = \left\{ \begin{array}{c} \mathcal{O}_{0-4)a}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{1-180}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{1-180}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{1-\mu}^{(0-4)a}(\vec{p}) \\ \mathcal{O}_{1-\mu}^{(0-4)a}(\vec{p})$$

Ы

Example Fit

Excited (upper) and ground state (lower) fits for N = 24 in the 0_1^+ channel. Dashed lines are fits with error bounds of the fit indicated by ribbons. See text for details.

Energy Spectrum: Lüscher1

Energy spectrum E_n in the 0^+_1 channel (physical Higgs) as a function of the Lattice size N for Lüscher1.

Energy Spectrum: Lüscher2

Energy spectrum E_n in the 0^+_1 channel (physical Higgs) as a function of the Lattice size N for Lüscher2.

Energy Spectrum: Lüscher3

Energy spectrum E_n in the 0^+_1 channel (physical Higgs) as a function of the Lattice size N for Lüscher3.

N	8	12	16	20	24	28	32
Example	95616	85558	81270	86760	172104	79638	12118
Energy 1	95616	-	81270	-	14325	-	11027
Energy 2	122160	-	119168	-	144053	-	17595
Energy 3	107488	121344	106848	91200	220837	87570	14425
Energy 4	123152	-	119840	-	43375	-	15798
Energy 5	92364	-	82390	-	131803	-	17339
Energy 6	81360	-	74140	-	98156	-	16745
Energy 7	162305	-	159400	-	93543	-	29331
Lüscher 1	137265	-	127990	-	121872	-	19665
Lüscher 2	208274	-	149740	-	107923	-	18343
Lüscher 3	291968	86460	259489	130640	199023	-	19772
Lüscher 4	464912	147122	238648	167890	232215	109667	29749

Number of used configurations for the Parameter Sets