
Talk

Perturbation Theory in
Continuum

Φ4-Theory

Held at the Lattice Seminar WS 2018/19
by Bernd Riederer, BSc

at 31.10.2018

Contents

1 Introduction 2
1.1 Lagrangian and Hamiltonian of the system . . . . . . . . . . . . . . 2

2 Perturbation expansion 3
2.1 2-point Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Pictures in QFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Time-evolution operator . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Ground state of the full theory |Ω〉 . . . . . . . . . . . . . . . . . . 6
2.5 Full Correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Calculating n-Point Correlators (Wick’s Theorem) 8

4 Feynman Rules 10
4.1 Position Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Momentum Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Conclusion 13

1



1 Introduction

In this talk I will give a short reminder of (QFT) perturbation theory in the
continuum. Therefore I will use as a toy model the so called φ4-theory to illustrate
the most important steps. The whole talk follows closely [1].

To start with we need the Langrangian of the theory.

1.1 Lagrangian and Hamiltonian of the system

The Lagrangian L of the φ4 theory is given by the one of a real scalar field plus a
potential term proportional to φ4.

L(∂µφ, φ) =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 (1)

Sometimes the factor 1/4! is also absorbed into the coupling constant λ. The
equations of motion can be derived from the Euler-Lagrange equations and are
given by: (

∂µ∂
µ +m2

)
φ = − λ

3!
φ3 (2)

For λ = 0 the solution is given by the free Klein-Gordon field. However for λ 6= 0

this equation can not be solved by a Fourier analysis anymore.
Therefore we now want to divide the Lagrangian into a free part L0, which can

be solved analytically in closed form, and an interaction part Lint which depends
on the coupling constant.

L = L0 + Lint = L0 −
λ

4!
φ4 (3)

Since Lint does not depend on ∂µ the equal time commutation relations for the
canonical conjugate field φ and Π are unaffected and the (canonical) quantization
process keeps the same. 1 From this also follows that the Hamiltonian H can be
split into a free part H0 and an interaction part Hint which will be usefull later
on.

H =

∫
d3xH =

∫
d3xH0 +

∫
d3xHint (4a)

Hint =

∫
d3xHint = −

∫
d3xLint =

λ

4!

∫
d3xφ4 (4b)

1For the whole derivation of the following procedure I will assume canonical qunatization. The
pathintegral quantization will be used for the perturbation theory on the lattice in the next
talk. However restricting to canonical quantization has no influence on the results (as it
should be).
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Now we have finished to define the (already quantized) theory (see canonical
quantization of the Klein-Gordon field) and started already to split it into an
interacting part and free part for which we already know the solution i.e. the
Klein-Gordon filed equations. So the idea is to assume that λ is small and therefore
can be treated as a small perturbation to the free system.

2 Perturbation expansion

The aim of this section is to develop a formalism, that allows us to express physical
quantities (i.e. Observables) of the full field in terms of the free field where we
assume that the interaction is given by small perturbation defined by the coupling
constant λ. For now we will stick to calculation of so called Two point Correlator
functions.

2.1 2-point Correlator

A two point correlator is given by:

〈Ω |T {φ(x)φ(y)} |Ω〉 (5)

where T is the time-ordering symbol (only inserted for later convenience) and
|Ω〉 denotes the ground state of full theory. Note however that |Ω〉 6= |0〉 the
ground state of the free theory. This quantity can be physically interpreted as
the amplitude for a propagation of a particle from x to y. In the free theory this
propagation is described by the Feynman propagator:

〈0 |T {φ(x)φ(y)} | 0〉free = DF (x− y) =

∫
d4p

(2π)4
ie−ip·(x−y)

p2 −m2 + iε
(6)

The first step in finding the Correlator of the interacting theory will be to express
φ(x) of the full theory in terms of φ(x) in the free theory. Therefore we need a
short excursion to the different pictures in quantum mechanics.

2.2 Pictures in QFT

In quantum mechanics there a three (equivalent) pictures for describing systems:
the Heisenberg-picture, the Schrödinger -picture and the Interaction-picture.

The difference between the Heisenberg and the Schrödinger picture differs by a
change of basis with respect to time-dependency. The standard operator type in
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QFT is a Heisenberg operator. Therefore Heisenberg operators won‘t get an index
here.

Heisenberg Time dependent operators φ(x)

Schrödinger Time independent operators φS(~x) := φS(t0, ~x)

There is a connection between Heisenberg and Schrödinger picture via the time
evolution operator:

φ(x) = eiH(t−t0)φS(~x)e
−iH(t−t0) (7)

Now we define a new picture, the Interaction picture. It is a mixture of both and
defined as follows:

φ(x)

∣∣∣∣
λ=0

= eiH(t−t0)φS(~x)e
−iH(t−t0)

∣∣∣∣
λ=0

= eiH0(t−t0)φS(~x)e
−iH0(t−t0) =: φI(x) (8)

The operator in the interaction picture is now given by the time evolution of the
free (Schrödinger operator) field with respect to the free Hamiltonian. However
we still have to express the interaction picture in terms of the free field in the
Heisenberg picture since this are our solutions from the discussion of the Klein-
Gordon field. So the final result of the Operator for the interacting field in terms
of interaction picture operators (operator of the free field) is given as:

φ(x) = eiH(t−t0) e−iH0(t−t0)φI(x)e
iH0(t−t0)︸ ︷︷ ︸

φS(~x)

e−iH(t−t0) =: U †(t, t0)φI(x)U(t, t0) (9)

with U(t, t0) = eiH0(t−t0)e−iH(t−t0) the time evolution operator of the interaction
picture.

2.3 Time-evolution operator

We now want to evaluate this expression further. Since H and H0 are operators
which do not (neccessarily) commute (i.e. [H,H0] 6= 0) the Baker-Campbell-
Hausdorff formula to express U in terms of Hint would lead to a very complicated
expression. Therefore we need to find another solution. However it can be seen
that U(t, t0) is the unique solution to the time-dependent Schrödinger equation
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with initial condition U(t0, t0) = 1.

i
∂

∂t
U(t, t0) = i

∂

∂t
eiH0(t−t0)e−iH(t−t0) =

= ieiH0(t−t0)[iH0 − iH]e−iH(t−t0) =

= eiH0(t−t0) [H −H0]︸ ︷︷ ︸
Hint

e−iH(t−t0) =

= eiH0(t−t0)Hinte
−iH0(t−t0)︸ ︷︷ ︸

HI

eiH0(t−t0)e−iH(t−t0) =

= HIU(t, t0)

(10)

with HI = eiH0(t−t0)Hinte
−iH0(t−t0) = λ

4!

∫
d3xφI(x)

4. So U(t, t0) is the unique
solution of a Schrödinger equation, which only depends on the free fields and
therefore U(t, t0) has to be of the form U(t, t0) ∼ exp(−iHIt). I claim now that
the solution of U(t, t0) is given by a power series in λ which looks like:

U(t, t0) = 1 + (−i)

∫ t

t0

dt1HI(t1) + (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2)+

+ (−i)3
∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3HI(t1)HI(t2)HI(t3) + . . .

(11)

This can easily be shown by differentiating with respect to t. Each term in the
sum gives the previous one times −iHI(t) and also the initial condition is obviously
fullfilled. Since the terms of HI(t) are in time order for all integrals it can be easily
shown that the following identity holds (graphical proof):∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) =
1

2

∫ t

t0

dt1dt2T {HI(t1)HI(t2)} (12)

and for terms of order n the factor in front becomes 1/n!. Therefore the power
series can be rewritten.

U(t, t0) = 1 + (−i)

∫ t

t0

dt1T {HI(t1)}+
(−i)2

2!

∫ t

t0

dt1dt2T {HI(t1)HI(t2)}+

+
(−i)3

3!

∫ t

t0

dt1dt2dt3T {HI(t1)HI(t2)HI(t3)}+ · · · =

:= T

{
exp

(
−i

∫ t

t0

dt′HI(t
′)

)}
=

= T

{
exp

(
−iλ

4!

∫ t

t0

dt′
∫

d3xφI(t
′, ~x)4

)}
(13)
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where the time-order of a function has to be understood as the time ordering of
each term of the taylor series for the function. Now we have arrived at the point
where we can rewrite the interacting fields completely in terms of the free fields
φI(x). Also note that this expression by now is an exact reformulation of the
problem. If one could calculate all (infinite) terms of this power series the result
should be correct for any theory. However in perturbation theory we assume that
the coupling is small and therefore higher order terms can be neglected. Although
it has to be mentioned that it is not assured that this series has to converge at
all. The next thing we need for the correlator is the ground state of the full theory
given by |Ω〉.

2.4 Ground state of the full theory |Ω〉

To find a representation of the ground state we start with the time evolution of
the ground state for the free theory.

e−iHt |0〉 =
∑
n

e−iEnt |n〉 〈n | 0〉 (14)

where H |n〉 = En |n〉. Now we have to assume that 〈Ω | 0〉 6= 0 which has to
hold because otherwise HI would not be a small perturbation at all. We now can
extract the groundstate of the full theory from the sum above where we define
H |Ω〉 = E0 |Ω〉 (this just defines |Ω〉 as the ground state of H) with E0 < En∀n.

e−iHt |0〉 = e−iE0t |Ω〉 〈Ω | 0〉+
∑
n6=0

e−iEnt |n〉 〈n | 0〉 (15)

to get rid off the higher excitations n > 0 we can take the limit by sending t to ∞
in a slightly imaginary direction: t → ∞(1 − iε) := ∞′. Then the ground energy
term dies slowest. Now we got an expression for the ground state. Also I will
replace t by t + t0 which in the limit has no effect. The full expression for the
ground state now reads as:

|Ω〉 = lim
t→∞′

(
e−iE0(t+t0) 〈Ω | 0〉

)−1
e−iH(t+t0) e+iH0(t+t0)︸ ︷︷ ︸

H0|0〉=0→1

|0〉 =

= lim
t→∞′

(
e−iE0(t0−(−t)) 〈Ω | 0〉

)−1
U(t0,−t) |0〉

(16)

This implies that we can get the ground state of the full theory by evolving the
free field with the operator U from −t to t0. For the Bra-state a similar relation
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can be obtained:

〈Ω| = lim
t→∞′

〈0|U(t, t0)
(
e−iE0(t−t0) 〈0 |Ω〉

)−1
(17)

Now we have got all the pieces together for the full correlator.

2.5 Full Correlator

For simplicity I will assume that x0 > y0 > t0 (neglect time ordering operator).
Putting everything together yields:

〈Ω |φ(x)φ(y) |Ω〉 = lim
t→∞′

〈0|U(t, t0)
(
e−iE0(t−t0) 〈0 |Ω〉

)−1×

× U †(x0, t0)φI(x)U(x0, t0)×

× U †(y0, t0)φI(y)U(y0, t0)×

×
(
e−iE0(t0−(−t)) 〈Ω | 0〉

)−1
U(t0,−t) |0〉 =

= lim
t→∞′

(
e−iE02(t)|〈0 |Ω〉|2

)−1×

×
〈
0
∣∣U(t, x0)φI(x)U(x0, y0)φI(y)U(y0,−t)

∣∣ 0〉
(18)

To simplify this even more we can divide by 1 in the form of 〈Ω |Ω〉 to get rid off
the prefactor. Since everything on both sides of this expression is in time order we
can now use again the time ordering operator and get a very simple expression for
the full correlator valid for arbitrary x0 and y0:

〈Ω |T {φ(x)φ(y)} |Ω〉 = lim
t→∞′

〈
0
∣∣∣T {φI(x)φI(y)exp

[
−i
∫ t

−t
dt′HI(t

′)
]} ∣∣∣ 0〉〈

0
∣∣∣T {exp [−i

∫ t

−t
dt′HI(t′)

]} ∣∣∣ 0〉
(19)

Our final result for the full theory is:

The 2-point correlator function of the interacting φ4-theory can
be written as a power series in λ, where the expansion coefficients are
n-point correlators of the free theory. Also, again this expression
is exact.

Further this can be extended to n-point correlators of the full theory by adding
the same number of φI in the numerator.
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3 Calculating n-Point Correlators (Wick’s

Theorem)

We have now reduced our problem of calculating n-point correlators of the inter-
acting theory to calculating n-point correlators of the free theory. For n = 2 the
correlator is given by the Feynman propagator as stated in the beginning (see eq.
6). For higher n one could evaluate the expressions by brute force plugging in the
φI in terms of creation and annihilation operators. However this is already very
tidious for n = 3 and therefore we are now going to simplify these calculations.
The idea is to replace the time-order by normal order, so all normal ordered prod-
ucts will vanish when calculating the vacuum expectation value. To start with
we will have a look at 〈0 |T {φI(x)φI(y)} | 0〉. First split φI(x) into positive- and
negative frequency parts:

φI(x) = φ+
I (x) + φ−

I (y) (20)

where

φ+
I (x) =

d3p

(2π)3
1√
2E~p

a~pe
−ip·x φ−

I (x) =

∫
d3p

(2π)3
1√
2E~p

a†~pe
+ip·x

φ+
I (x) |0〉 = 0 〈0|φ−

I (x) = 0

Now we will rewrite the time ordered product in terms of normal ordered ones.
We start with x0 > y0:

T {φI(x)φI(y)} = φ+
I (x)φ

+
I (y) + φ+

I (x)φ
−
I (y)+

+ φ−
I (x)φ

+
I (y) + φ−

I (x)φ
−
I (y) =

= φ+
I (x)φ

+
I (y) + φ+

I (x)φ
−
I (y)+

+ φ−
I (y)φ

+
I (x)− φ−

I (y)φ
+
I (x)︸ ︷︷ ︸

=0

+

+ φ−
I (x)φ

+
I (y) + φ−

I (x)φ
−
I (y) =

= φ+
I (x)φ

+
I (y) + φ−

I (y)φ
+
I (x)+

+ φ−
I (x)φ

+
I (y) + φ−

I (x)φ
−
I (y)+

+
[
φ+
I (x), φ

−
I (y)

]
=

= : φI(x)φI(y) : +
[
φ+
I (x), φ

−
I (y)

]

(21)

where : a1a
†
2a3 := a†2a1a3 is the normal order operator which brings all operators
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into such an order that all creation operators are left to all annihilation operators
without adding commutators. For y0 > x0 the result would look the same except
for the commutator where y and x would be exchanged. Therefore we define a
new quantity, the contraction as follows:

φI(x)φI(y) :=


[
φ+
I (x), φ

−
I (y)

]
for x0 > y0[

φ+
I (y), φ

−
I (x)

]
for y0 > x0

(22)

Now we have found a relation between time-ordering and normal-ordering for two
fields:

T {φI(x)φI(y)} = : φI(x)φI(y) + φI(x)φI(y) : (23)

Also when sandwhiching this relation between vacuum stated we find that:

φI(x)φI(y) = DF (x− y) (24)

which is nothing else than the Feynman propagator. To extend this now to an
arbitrary number of fields one finds that:

T {φI(x1)φI(x2) . . . φI(xn)} = : φI(x1)φI(x2) . . . φI(xn)+all possible contractions :
(25)
This identity is known as Wick’s Theorem. The proof will be skipped here but
can easily done by e.g. induction. The real benefit of this theorem is now that
in the vacuum expectation value all terms which are not fully contracted vanish
and fully contracted terms can easily be replaced by the corresponding Feynman
propagators. Also it can be shown that only even n-point correlators survive, since
for an odd number there is no possibilty of full contraction. So Wick’s theorem
can be written in an easy form:

〈0 |T {φI(x1)φI(x2) . . . φI(xn)} | 0〉 =


0 for n = 2k + 1, k ∈ N0∑
pairs

DF (xp1 − xp2) . . . DF (xp2k−1
− xp2k)

(26)
Summary of our achievement:

We achieved to reduce the n-point correlators of the free theory to a
sum over products of simple Feynman propagators of the free theory.
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4 Feynman Rules

Now we come to the point where we can put everything together and find a dia-
gramatic representation for our formulas. The first thing is to introduce that the
Feynman propagator (in position space) is denoted as follows:

DF (x− y) =
x y

(27)

Now we go back to our 2-point correlator of the full theory 〈Ω |T {φ(x)φ(y)} |Ω〉
(see eq. 19). We will have a closer look at the numerator and now expand the power
series. Also remember that

∫
dtHI(t) =

∫
d4z(λ/4!)φI(z)

4. So the numerator reads
as: 〈

0

∣∣∣∣T {φI(x)φI(y)exp

[
−iλ

4!

∫
d4zφI(z)

4

]} ∣∣∣∣ 0〉 =〈
0

∣∣∣∣T {φI(x)φI(y)

[
1 +

(
−iλ

4!

)∫
d4zφI(z)

4+

+
1

2!

(
−iλ

4!

)2 ∫
d4zd4z′φI(z)

4φI(z
′)4 + . . .

]} ∣∣∣∣0〉
(28)

The first term in the power series is the Feynman propagator in eq. 27. However
the second term is already very interesting. We will now have a closer look at this
using Wick’s theorem. I will restrict myself to the fully contracted terms:

φI(x)φI(y)φI(z)φI(z)φI(z)φI(z) + φI(x)φI(y)φI(z)φI(z)φI(z)φI(z) +

+φI(x)φI(y)φI(z)φI(z)φI(z)φI(z) + . . . =

3DF (x− y)DF (z − z)DF (z − z) + 12DF (x− z)DF (z − y)DF (z − z)

(29)

Now we can use the diagramatic representation for the Feynman propagator to
visualize this equation.〈

0

∣∣∣∣T {φI(x)φI(y)

(
−iλ

4!

)∫
d4zφI(z)

4

} ∣∣∣∣ 0〉 =

= 3×
x y

× z + 12×
x z y

(30)
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Here it has to be said that a 4-point vertex gets an additional factor.

−iλ

4!

∫
d4z = z (31)

Further it has to be mentioned that the disconnected terms (those diagrams seper-
ated by a multiplication which do not contain any of the fieldparameters in the full
correlator on the left side) are the so-called vacuum bubbles and have no physical
meaning. This can easily be seen, because if one also calculates the denominator
only those parts are reproduced. Therefore the disconnected parts come from the
Hamiltonian part alone. It is possible to seperate the full correlator into a part of
all connected diagrams multiplied by the exponential of the disconnected diagrams
and therefore they are canceled out by the denominator. From all this we can now
define the Feynman rules in position space for the φ4 theory.

4.1 Position Space

1. For each propagator:

DF (x− y) =
x y

2. For each 4-point vertex (the only possible vertex):

−iλ

∫
d4z = z

3. For each external point:

1 =
x

4. Divide by symmetry factor:

1

s
=

1

n!

(
1

4!

)n

E
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with E the degeneracy of the diagram under interchange of
points

The real benefit of this Feynman rules now is that the whole perturbation series
for a n-point function of the full theory can be obtained by drawing all possible
diagrams with n external points. The order of the perturbation series is thereby
determined by the number of included vertices. Further for the φ4-theory only
even n-point functions exist since the 4-point vertex is the only possible vertex
and for n and odd number we would need at least a 3-point vertex.

4.2 Momentum Space

In physics is it however often useful to calculate things in momentum representa-
tions, therefore the Feynman rules have to be translated into a momentum rep-
resentation. The starting point therefore is again the Feynman propagator of the
theory. As stated in eq. 6 the Feynman propagator is given by:

DF (x− y) =

∫
d4p

(2π)4
ie−ip·(x−y)

p2 −m2 + iε
=

∫
d4p

(2π)4
D(p)e−ip·(x−y) (32)

When now 4 lines meet at a vertex momentum conservation is automatically im-
posed this can easily be seen by calculating the vertex itself using the position
space rules and then insert the propagator in its momentum representation. The
z-dependent parts (for a vertex at point z) then yields:∫

d4ze−ip1ze−ip2ze−ip3ze−ip4z = (2π)4δ(4)(p1 + p2 + p3 + p4) (33)

From this the Feynman rules in momentum representation can be obtained.

1. For each propagator:

D(p) =
p

2. For each 4-point vertex (the only possible vertex):

−iλ =

12



3. For each external point:

e−ipx =
p

x

4. Impose (four-)momentum conservation at each vertex:

(2π)4δ(4)

(∑
i

pi

)

5. Integrate over each undetermined momentum (not fixed in
loops): ∫

d4p

(2π)4

6. Divide by symmetry factor.

5 Conclusion

Now let me summarize what we have achieved. We started out with an interacting
theory where the equations of motion can not be solved in closed form simply
by fourier analysis. Therefore we developed a procedure to treat the interacting
part as a small perturbation to the free system using the definition of the quantum
mechanical pictures. Further we introduced a new picture, the Interaction picture,
which allowed us to write the fields and the Groud state of the full theory in terms
of the free fields. Then we started to think about calculating n-point functions
of the full theory to understand the dynamics of this theory. We found that it
is possible to rewrite the n-Point correlators as a power series in the coupling
parameter of the interacting part and therefore express the e.g. 2-point correlator
of the full theory as a sum of n-point correlators of the free theory.

Under application of Wick’s theorem, which allows us to replace time-ordered
products by normal ordered ones plus so called contractions, we were able to
simplify the calculations a lot. In the end we arrived at the result, that it is
possible to represent the terms of the power series in a diagrammatic way and
therefore (theoretically) calculate contributions to the n-point correlator simply
by drawing all possible diagrams and using the assigned rules to get back to the
formulas.
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