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Abstract

The word “accretion” with origin from the Latin “accretio” means to increase or to grow. In an astro-
nomical sense it means an increase of an object’s mass by attracting matter due to gravitational force.
Accretion disks can be understood as machines which feed the central object with interstellar matter and
gas. The feeding generates potential energy and the mass itself is later also transformed into energy.
They occur in objects of different scales, such as disks around protoplanetary systems, neutron stars,
stellar black holes in binaries and galactic black holes.
For accretion processes to take place, angular momentum transport is required. Only if matter transfers
its angular momentum to matter further outside the disk, an inward transport of matter is possible.
Instabilities of various kinds cause turbulences in the disk, which ensure angular momentum transport
via some kind of turbulent viscosity. The assumed turbulent viscosity enables not just angular momen-
tum transport, but is also a channel for conserving gravitational energy, originating in mass falling onto
the central object and transformed into thermal energy. This turbulent viscosity is mentioned in the
literature with the so-called α-prescription, which contains in it all the uncertainties that still exist with
respect to the origin and properties of this turbulent viscosity. The structure of an accretion disk is
dependent on the mass rate that is accreted by the central object, the central star’s mass, its angular
velocity and the isothermal sound speed. Moreover, a connection between the disk’s temperature and
its aspect ratio can be found. The internal temperature, that determines the disk’s thickness, depends
on mechanisms transporting energy to the surface, whereas the surface temperature is dependent on the
product MṀ . The dissipated energy, during the process of accretion, goes into heat, which is emitted
as radiation from the disk’s surface and leads to a characteristic spectrum of the disk. Different types
of accretion disks, which can be divided into two classes, the geometrically thin and the non-thin disks,
have been suggested. The geometrically thin disks contain the steady thin disk, which represents the
standard model. Many phenomena in connection with accretion disks have been observed, such as jets.
These jets are strongly collimated outflows which occur not in all systems with accretion disks, not all
the time respectively. They are assumed to be themselves an electromagnetic phenomena. The magnetic
model, in which outflows are produced by magnetic fields of a rotating object, has become the standard
for explaining the development of jets. Also different models for explaining the structure, the spectrum
and the interaction of disks with their environment have been proposed.
As the structure is dependent on the mass rate, it is obvious to look at objects with high masses for ob-
serving these astrophysical phenomena. Therefore black holes in binaries or galactic black holes are great
candidates for getting more observational data and greater insight in the physics underlying accretion
disks. Measured data from the observation of the center of our Galaxy, Saggitarius A∗, has supported
the theory of accretion disks, some kind of surrounding matter, respectively.
This thesis does not lay claim of a full summary or representation of the current outcomes in the field of
accretion physics neither are all possible models and types of accretion disks presented. The thesis is a
summary based on subjective selection of the very most important chapters, following the work of some
leading scientists in this sector.
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Introduction

Accretion disks have gained more and more interest in astrophysics, initiated with the discovery of a flat
solar system, which means that all planets orbit the sun in one plane. Disks are found in star formation
processes, accreting binary X-ray sources, black holes and galaxies. They usually play an important
role as they determine the emitted radiation from the central object and can reveal processes of planet
formation. Besides, they give insight in phenomena like jets and outflows with high X-ray and ultraviolet
emission.
Matter falling onto a central massive object cannot be accreted directly as it has angular momentum.
Therefore, the matter settles into a flattened rotating configuration, an accretion disk. The process of
prime importance is the redistribution of angular momentum inside the disk. Matter nearer the central
object transfers angular momentum to the outer parts of the disk and falls onto the star. During this
process the disk spreads, which leads to the ultimate goal, to distribute as much angular momentum on as
less as possible matter. Generally, an accretion disk is subject to a variety of instabilities, gravitational,
magneto-rotational, pure hydrodynamical and convective ones, that, in turn, cause turbulence in the
disk, which ensures outward transport of angular momentum. These effects are represented by the so-
called turbulent viscosity. However, its origin remains still uncertain. Turbulence plays a dual role in
the evolution of an accretion disk, firstly it is necessary for angular momentum transport to take place,
second it provides a channel of conversion of gravitational energy, liberated as mass falls onto the star,
into thermal energy. The process of angular momentum transport is much slower in systems of larger
scale, which encourages amongst other things to see analogies between the present state of the Galaxy and
a very much earlier stage of the solar system when it was a spinning disk of gas and dust. Moreover, there
exist some interesting connections between disks and outbursts, like jets. Lacking direct observations of
disks, different models have been proposed to explain many properties reflected in the emission spectrum.
Nevertheless, uncertainty still exists with respect to some basic questions.
This thesis shall give an overall view of the basic equations and considerations, mechanisms and models
with respect to accretion disks. The first chapter gives a short introduction and explanation of accretion
itself. The second one represents in a more mathematical way the equations describing the structure
and shape of an accretion disk, as well as the prime mechanisms inside the disk, such as the angular
momentum transport in connection with the turbulent viscosity. Furthermore some models that are
useful for describing many phenomena in a wide range of objects are introduced. The last chapter refers
to accretion onto black holes. It delineates the definition of the inner rim of an accretion disk around a
black hole, the formation of it in a binary system with a stellar black hole and further different types
of accretion onto stellar and galactic black holes. Last but not least, recent observational data of our
nearest candidate for a galactic black hole, Saggitarius A*, are presented. A table of the used variables
and the list of references are given in the appendices.
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Introduction

Figure 1: Messier 104, commonly known as the Sombrero Galaxy, in visible and infrared light
(NASA/JPL-Caltech and The Hubble Heritage Team (STScI/AURA)).
This picture has been chosen for illustrating the smooth ring of dust around the galaxy and
therefore to get an image of an accretion disk around a central mass.
The lower left picture: A visible light image taken by the Hubble space telescope of Messier 104.
The observations have been made May-June 2003 with the space telescope’s Advanced Camera
for Surveys. They were taken with a red, green and blue filter to reveal an image in realistic
colors. In this picture only the near rim of the dusty disk can be clearly seen in silhouette.
The lower right picture: A recent image made with Spitzer’s infrared array camera, that was
able to uncover the bright, smooth ring of dust surrounding the galaxy, seen in red. It is
composed of four images, taken at 3.6 (blue), 4.5 (green), 5.8 (orange) and 8.0 (red) µm.
(The starlight contribution at 3.6 µm has been subtracted to enhance the visibility of the dust
features.) With this image an otherwise hidden disk of stars within the dust ring can be seen.
It also reveals that the disk is warped, possibly due to the gravitational encounter of another
galaxy. It also shows that there are clumpy areas at the far edges of the ring, which indicates
young star forming regions.
The center of this galaxy is supposed to be a super massive black hole, with a mass billion
times bigger than our sun.
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1 Definition of Accretion

Accretion disks are widespread in objects located in the outer space and are responsible for their in-
teraction with their environment. Lacking the possibility of direct observations, which means spatially
resolved observations, a lot of questions with respect to the basic properties and mechanisms remain still
open. Although we are already able to resolve such disks around stars via interferometry, however, this
is just possible for a few objects.
Accretion means the mechanism of matter accumulation of a central mass due to its gravitational force.
During this process angular momentum is transferred from matter of the inner parts to matter further
out in the disk, which enables matter to move inward and finally to fall onto the center. In the following
the main process is explained with respect to a potential with a point-like central source, based on the
work of H.C. Spruit 1996a.

1.1 Fundamental Equations

Gas or matter is falling into a potential φ with a point-like central source from a distance r0 to a distance
r and converts gravitational energy into kinetic energy, by an amount of ∆E.

φ = −GM
r

(1.1)

∆E = GMm

(1
r
− 1
r0

)
(1.2)

Using the gravitational constant G and the central object’s mass M . If we assume a large initial distance
(r0 →∞) the equation simplifies to ∆E = GMm/r. Further two cases for the amount of energy dissipated
per unit mass can be distinguished.

Case 1: If the gas is brought to rest, for instance on the surface of the star.

e = GM

r
(1.3)

Case 2: If the gas goes into a circular Kepler orbit. The dissipated energy goes into internal energy of
the gas and radiation, which escapes, usually in the form of photons, to infinity.

e = 1
2
GM

r
(1.4)

If radiation losses are neglected adiabatic accretion takes place.1 Therefore the internal energy per unit
mass for an ideal gas with constant ratio of specific heat is given by

e = P

(γ − 1)ρ . (1.5)

1 That is the case when the gas is accreted and therefore only if the gas does not go into a Keplerian orbit.
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1 Definition of Accretion

Using the equation of state P = RρT/µ for an ideal gas, the specific heat γ, the universal gas constant R,
T as the temperature, the gas density ρ and the mean atomic weight per particle µ.

Assuming the second case 1.4, that the gas is going into a circular orbit, the temperature of the gas after
the dissipation has taken places, is given by

T = 1
2(γ − 1)Tvir , (1.6)

defining the virial temperature as
Tvir = GMµ

Rr
. (1.7)

As the speed of sound (cs = (γRT/µ)1/2) is dependent on the temperature, in an atmosphere with
temperature near Tvir the speed of sound is close to the escape speed (vesc =

√
2GM/r) from the system.

Such an atmosphere may evaporate on a relatively short time scale in the form of a stellar wind. The
larger γ the larger the temperature in the accreted gas. Beyond a critical value of γ the temperature is
too high for the gas to stay bound in the potential. The adiabatic spherical accretion takes place on the
dynamical or free fall time scale

τd = 1
Ωk

= r

vk
=

√
r3

GM
. (1.8)

Using the Keplerian orbital velocity vk =
√
GM/r and the Keplerian angular velocity Ωk =

√
GM/r3,

G, M and r as mentioned above.

When radiative losses are not neglected and become important the accreting gas can stay cool irrespective
of the value of γ. Usually the temperatures of accretion disks are much lower than the virial temperature.
It should be noted that the optical depth of the disk increases with the accretion rate Ṁ . When the
optical depth becomes large enough to trap the photons in the flow, the accretion carries them inside the
disk, together with the gas, towards the central mass. Therefore above a critical rate, Ṁc, accretion is
adiabatic.
According to the accretion rate, critical values for the disk’s luminosity as well as for the disk’s flux can
be defined. Outward traveling photons are scattered or absorbed and exert a radiative force. In objects
with high luminosity this radiative force has the tendency to blow their atmospheres away. During this
process two forces occur. The force caused by the radiative flux Fκ/c and the force of gravity pulling
back on the mass, GM/r2.2 The critical flux is defined as the flux at which both forces are in balance,
the Eddington flux

FE = c

κ

GM

r2 (1.9)

with c the speed of light. Assuming the flux to be spherical symmetric, a critical luminosity, the Eddington
luminosity LE can be defined.

LE = 4πGM c

κ
(1.10)

Assuming the gas to be fully ionized, its opacity is dominated by electron scattering, and for solar
composition κ is of the order of 0, 3 cm2/g. Therefore LE can be written like 3

2 This equations apply to one gram of matter and a scattering or absorbing surface area of [κ] = cm2 to the escaping
radiation. 3 The sign � refers to the physical quantities with respect to the sun.
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1.1 Fundamental Equations

LE ≈ 1, 7 · 1038 M

M�
erg/s ≈ 4 · 104 M

M�
L�. (1.11)

Furthermore an Eddington accretion rate can be derived

GM

r
ṀE = LE → ṀE = 4πr c

κ
. (1.12)

It is important to mention that the Eddington luminosity is a true limit which can not be exceeded (by
a statically radiating object, except by geometrical factors of order unity), whereas no maximum exists
according to the Eddington accretion rate. Assuming an accretion rate Ṁ > ṀE, all the plasma including
the radiation energy is just swallowed.
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2 Accretion Disks

2.1 Structure/Thickness

2.1.1 Geometrical Thickness

The discussion in this subsection is based on the work of Spruit 1996a.
To derive a disk’s thickness one must find its equilibrium in the direction perpendicular to the disk plane,
in the z direction. Assuming an axis symmetric disk, using cylindrical polar coordinates (r, φ, z) and
measuring the forces at a point r0(r, φ, z) in a co-rotating frame with the Keplerian angular velocity Ωk,
the gravitational acceleration is given by −GM/r2 r̂ and the centrifugal acceleration by Ω2

kr. (r̂ defines
a unit vector in the spherical radial direction r.4) The residual acceleration toward the mid-plane by
expanding both accelerations near r0 is given by:

gz = −Ω2
kz (2.1)

A hydrostatic density distribution under this acceleration, by assuming an isothermal gas, can be de-
duced

ρ = ρ0(r) exp
(
− z2

2H2

)
. (2.2)

With the used variables ρ as the hydrostatic density, ρ0(r) the density at the mid-plane, the z direction
and H, the scale height. The scale height H(r) can be written as function of the isothermal sound speed
cs, see Definition of Accretion

H = cs
Ωk

. (2.3)

The aspect ratio of the disk can be written in various ways:

δ = H

r
= cs

Ωkr
=
(
T

Tvir

)1/2
. (2.4)

For the moment we are ignoring viscosity and derive the equation of motion in the potential of a point
like mass.

∂v
∂t

+ v · ∇v = −1
ρ
∇P − GM

r2 r̂ . (2.5)

Using v the velocity, ∇P the pressure gradient, G the gravitational constant, M the object’s mass and
r̂ as defined above. More detailed, the pressure gradient term is
4 In the following and above, the bold font stands for vectors.
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2 Accretion Disks

1
ρ
∇P = R

µ
T∇ lnP . (2.6)

If cooling is important, the pressure gradient term is negligible, which is equivalent to the assumption that
the gas moves hypersonically on nearly Keplerian orbits. (Using dimensionless quantities r̃ = r/r0, ṽ =
v/(Ω0r0), t̃ = Ω0t, ∇̃ = r0∇, the equation of motion goes into −T/Tvir∇̃ lnP − 1/r̃2r̂ and the coefficient
of the pressure gradient term is T/Tvir � 1 if cooling is important.)

2.1.2 Optical Thickness

The released energy through viscous dissipation from the gravitational potential energy can move inward
with the matter or can be emitted by radiative cooling processes in the vertical direction to the disks
plane. The efficiency of such cooling processes is more or less dependent on the optical depth of the disk.
One discriminates between the optical thick case (where the optical depth τ � 1) and the optical thin
case (τ � 1). This differentiation is dependent on the observation frequency. The further discussion is
based on the work of D. Asmus 2008.

Optical Thick Case

In the case of a high opacity of the disk, the emitted photons are constantly absorbed and re-emitted
or scattered on there way outside. The average path length is much smaller than the vertical expansion
of the disk. Assuming the Thomson scattering on free electrons to be the dominant process, which can
only be assumed if almost all of the matter is fully ionized (plasma), a radiative emission rate per unit
area can be found

q−thick = 2acT 4

3κρh2 . (2.7)

a = 4σSB/c refers to the radiation constant, σSB the Stefan-Boltzmann constant, h represents the half
thickness of the disk, H/2, and κ the opacity. In the optical thick case a radiation pressure (prad =
(a/3)T 4) occurs, which must be added to the total pressure.

Optical Thin Case

The average path length of the photons is bigger than h, which means a photon is usually able to escape
the disk without absorption and re-emission, or scattering. The emitted energy is strongly dependent on
the observed physical processes and a detailed description would need a separate treatment of electrons
and ions. We can approximate it, however, by two assumptions. For both it is required that the gas can
be described through an equation of state and temperature and the radiation pressure can be neglected.

• The density is so low that the occurring cooling can be neglected, as there is too less interaction.
This means that the heat factor (f(r)), which measures the efficiency of radiative cooling, of the
whole disk is constant (see 2.5.2). q+ and q− refer to the height integrated viscous dissipation rate
and the radiative loss rate and are given in equation 2.76.

f(r) = const. ←→ q− ∝ q+ (2.8)

6



2.2 Angular Momentum Transport/ Viscosity

• The gas is only cooled through thermal bremsstrahlung, given through:

q−brak = −1, 24 · 1021ρ2T 1/2 erg
s cm3 . (2.9)

2.2 Angular Momentum Transport/ Viscosity

In many cases the accreting gas has a non-zero angular momentum and therefore can not be accreted
directly. Only if matter transfers its angular momentum to matter further out in the disk, an inward
transport of matter is possible.5 This principle of distributing as much angular momentum on as little
as possible matter is the main definition of accretion (Asmus 2008). The result of this asymmetric
behavior is, that almost all the mass of a disk can be accreted, without an external torque removing
the angular momentum. Usually disks are subjects to gravitational, magnetorotational (MRI), purely
hydrodynamical and convective instabilities that, in turn, cause turbulence in disks which ensures outward
transport of angular momentum. This effect of turbulence can be characterized as turbulent viscosity.
The dual role of turbulence shall be mentioned. Firstly, it is responsible for outward angular momentum
transport, secondly, it provides a channel for conserving gravitational energy, originating in mass falling
onto the central object and transformed into thermal energy. This dissipated energy, in turn, can be
measured and observed as it contributes to the emitted radiation. The further steps and equations
including the subsection Evolution of the Disk’s Viscosity are based on the work of G. (Mamatsashvili
2011)

For a more specific explanation we are assuming the simplest disk model: a central object of large mass
M surrounded by a razor thin gaseous accretion disk. The approximation of a razor thin disk means
that the scale height H = cs/Ωk is much smaller than the distance from the central star H/r � 1. This
is equivalent to the requirement that the speed of sound cs is much lower than the rotation velocity
vk = rΩk, or in other words the disk is supersonic. Using again cylindrical polar coordinates (r, φ, z),
with the central mass in its origin and the disk at the z = 0 plane, basic hydrodynamic equations are
integrated in the vertical direction and therefore yield to two-dimensional equations. The disk is then
characterized by its surface density Σ

Σ =
∞∫
−∞

ρ dz ≈ 2H0ρ0. (2.10)

The approximation on the right side is used to clarify that the coefficient in front of H0 is dependent on
details of the vertical structure of the disk. The disk being accreting means that there is also a radial
or „drift“xvelocity vr towards the central object. This „drift“xvelocity is much smaller than the orbital
velocity vk and the quantities can be ordered like this: vr � cs � vk = rΩk implying that accretion takes
place on a longer time scale than the dynamical time τd. Due to the fact that we assume the disk to be
axis-symmetric all variables are only functions of r and time t, so by integrating the continuity equation
over z the conservation of mass in terms of the surface density Σ(r, t) is

∂Σ
∂t

+ 1
r

∂

∂r
(rΣvr) = 0. (2.11)

The former ordering of the velocities is directly linked with the viscosity parameter ν, so we can find an-
other equation in a similar way for describing the angular momentum conservation.
5 As the orbits are close to Keplerian, a change in angular momentum of a ring of gas also means it must change its distance
from the central object. So in a thin disk this implies a redistribution of mass in the disk.
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2 Accretion Disks

∂

∂t
(Σr2Ω) + 1

r

∂

∂r
(rΣvrr2Ω) = 1

r

∂

∂r
(νΣr3Ω′) (2.12)

Viscous forces are now included proportional to ν and the prime with Ω defines a derivation with respect
to r. A single equation for the evolution of the surface density can be derived by combining 2.11 and
2.12.

∂Σ
∂t

= 3
r

∂

∂r

[
r1/2 ∂

∂r
(νΣr1/2)

]
(2.13)

This equation can be understood as the basic equation of the time-dependent surface density, or mass
transport, relating it to some kind of viscosity, parameterized by ν in a Keplerian disk. It is the standard
thin disk diffusion equation. As ν is not necessarily constant and can be a very complex function of
local variables, such as temperature, radius, surface density and ionization fraction, 2.11 is a non-linear
diffusion-type equation for Σ. Therefore, this equation should be solved numerically, but if it can be
expressed as a power of radius, an analytic solution is possible (Lynden-Bell and Pringle 1974). Using
this simplification one can get a general feeling for angular momentum evolution. Estimates can be
made with regard to the radial velocity, 2.14, and the typical timescale of viscous/secular evolution,
2.15.

vr = − 3
Σr1/2

∂

∂r
(νΣr1/2) ∼ ν

r
(2.14)

τvisc ∼
r

vr
∼ r2

ν
(2.15)

Further, the energy dissipation rate, the heat produced during the accretion process, can be derived per
unit area, per unit time at some r.

Q(r) = 1
2νΣ(rΩ′)2. (2.16)

This heat originates from the gravitational energy released from the infalling matter.
The here presented analysis shows that viscosity is an important parameter for disk evolution and is
mainly responsible for the outward transport of angular momentum. However, we just introduced ν in
2.12 without detailed description, since it is one of the major unresolved questions. Standard molecular
viscosity is far too small and therefore the viscous time scale too big for getting appropriate timescales
compared with observed disk lifetimes. Estimates for protoplanetary disks show that the Reynolds num-
ber is around 1014.6 The dynamical time scale for protoplanetary disks is of the order of a few years, so
the viscous time scale would be of the age of the universe. This predicts that there must be another kind
of mechanism or some kind of anomalous viscosity producing time scales of orders of magnitude smaller.
From laboratory experiments it is known that there is a critical value of the Reynolds number around
103−104, if it is gradually increased, after which the flow becomes turbulent. After this critical value the
velocity undergoes large and chaotic variations on random short time and length scales. When a disk’s
Reynolds number is compared with its threshold values in laboratory experiments, scientists assume disk
flows to be turbulent as well. This turbulent flow will be characterized by the size of the turbulent eddies
λt and the turnover velocity vt of the largest eddies and therefore the turbulent viscosity can be defined
6 The Reynolds number is given as the ratio of viscous and dynamical times by τvisc/τd ∼ r2/(Hλ) ∼ Re, it quantifies
the relative importance of inertial forces to viscous forces for given flow conditions. The mean free path for a typical
protoplanetary disk is λ ∼ 1/nσ = 2, 5 cm, using for the number density n ∼ 4 · 1014 cm−3 of molecules and for cross-section
σ ∼ 10−15 cm2, for H/r ∼ 0, 05 and r ∼ 1 AU for the radius.
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2.2 Angular Momentum Transport/ Viscosity

as ν = λtvr. As we assume λt to be of order magnitude larger than the mean free path, ν becomes larger
too and can provide anomalous transport of angular momentum.
Unfortunately, yet the underlying physical mechanisms causing the transition to turbulence in disks
is not exactly known, and so the sizes and velocities of eddies neither. Investigations in the last two
decades have shown that viscosity induced by turbulence mostly originates in magnetorotational and
gravitational instabilities, possibly convective instabilities as well. Former estimates on their hydrody-
namic origin has been falsified, as many studies have shown that Keplerian differential rotation of a
gas in the absence of magnetic fields and self-gravity is stable linearly and nonlinearly. Although the
origin of turbulent viscosity is not clarified, the typical size of the largest eddies λt and the turnover
velocity vr can be characterized. λt can not exceed the disk’s thickness, otherwise turbulence would not
be isotropic and would not transport locally, so λt < H. Moreover, it is unlikely that turbulences in
disks are supersonic, otherwise strong shocks would appear and damp turbulences to subsonic values,
so vt < cs. Using these two predictions, (Shakura and Sunyaev 1973) suggested a prametrization for
turbulent viscosity:

ν = αcsH. (2.17)

Here α refers to a constant, usually less than unity and contains in itself all the uncertainties regarding
the mechanism and properties of turbulences in disks. In only one parameter two of the most important
mechanisms of angular momentum transport, the magnetic field and turbulence, are characterized. This
formula is known as the α-prescription or α-parametrization of turbulent viscosity.
The value of α can be specified: if turbulent mechanisms are present α < 1. For α > 1 turbulence must
be supersonic and would lead to a rapid heating of the plasma and therefore to α ≤ 1. It is likely that
for magnetic transport α < 1, further for typical initial conditions it is likely that α� 1, as assumed in
many cases. α is a function of R and in a wide range the structure of the disk is not essentially changed
(Shakura and Sunyaev 1973).

10−15
(
Ṁ

ṀE

)2

< α < 1 (2.18)

The left side of the equation links the α-prescription with the ratio of matter inflow into the disk.
The structure and spectrum of the disk depend on the matter inflow Ṁ and therefore as well the α-
viscosity.

2.2.1 Evolution of the Disk’s Viscosity

Constant Viscosity

Assuming the simplest case of spatial uniformity, ν is constant. Then 2.13 can be rewritten:

∂

∂t
(r1/2Σ) = 3ν

r

(
r1/2 ∂

∂r

)2
(r1/2Σ). (2.19)

By substituting s = 2r1/2 and ds/dr = r−1/2 one gets:

∂

∂t
(r1/2Σ) = 12ν

s2
∂2

∂s2 (r1/2Σ). (2.20)

Separating variables using r1/2Σ = T (t)S(s) we get:

9



2 Accretion Disks

T ′(t)
T (t) = 12ν

s2
S′′(s)
S(s) = const. (2.21)

T and S are exponential and Bessel functions.7 Finding Green’s function, taking as the initial matter
distribution a ring of mass m at r = r0, we find a solution for the surface density Σ(r, t). Using standard
models and again dimensionless variables, r̃ = r/r0 and t̃ = 12νt/r2, one gets 2.22 with the modified
Bessel function I1/4(z):

Σ(r̃, t̃) = m

πr2
0
t̃−1r̃−1/4 exp

(
−1 + x2

t̃

)
I1/4(2x/t̃). (2.22)

Using 2.14 and knowing Σ (still with ν = const) the radial velocity can be defined and therefore the mass
inflow into the center:

vr = −3ν ∂
∂r

ln(r1/2Σ) = −3ν
r0

∂

∂r̃
ln(r̃1/2Σ) = (2.23)

−3ν
r0

∂

∂r̃

(
1
4 ln r̃ − 1 + r̃2

t̃
+ ln I1/4

(2r̃
t̃

))
.

As the modified Bessel function I1/4(z) shows an asymptotic behavior, I1/4(z) ∝ z−1/2ez at z � 1 and
I1/4(z) ∝ z1/4 at z � 1, one can distinguish two cases for the radial velocity

vr ∼
3ν
r0

( 1
4r̃ + 2r̃

t̃
− 2
t̃

)
> 0, at 2r̃ � t̃, (2.24)

vr ∝ −
3ν
r0

( 1
2r̃ −

2r̃
t̃

)
< 0, at 2r̃ � t̃. (2.25)

Because of that the outer parts of the matter distribution move outwards, taking with them the angular
momentum of the matter in the inner parts that moves inward towards the central mass. It is also
important that the radius at which vr changes its sign also moves outwards. Parts which are initially
located at r̃ � t̃ are changing to r̃ � t̃ after sufficient time. So parts who are at radii r > r0 firstly move
to larger radii, but then begin to lose angular momentum to parts still larger and are forced drifting
inwards. After a long time (t̃ � 1) almost all mass is accreted by the central object and almost all
of the angular momentum is located at very large radii, where only a small fraction of the initial mass
resides.

Radially Varying Viscosity

Considering now a more complex viscosity, ν is given as a function of r:

ν = ν0

(
r

r0

)γ
≡ c0rγ . (2.26)

Substituting again, here with h = r1/2 and g = νΣr1/2, 2.13 can be written as:8

7 They are the canonical solutions of Bessel’s differential equation. 8 Here h and g are only free parameters used for the
subsitution and h does not refer to the half thickness of the disk.
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2.2 Angular Momentum Transport/ Viscosity

∂2g

∂h2 = 4h2(1−γ)

3c0
∂g

∂t
. (2.27)

Further we get

∂2g

∂h2 + 4sh2(1−γ)

3c0
g = 0 (2.28)

or

d2g1
dx2 + 1

x

dg1
dx

+
( 4s

3c0
− 1

4x2

)
g1

(γ − 2)2 = 0, (2.29)

when using for the time variation g ∝ e−st and setting x = h2−γ and g1 = x1/2(γ−2)g. For getting a more
precisely understanding of the time-dependent solution of Bessel’s differential equation, we first look at
a special solution from the initial distribution of g:

g(h, 0) = Ch · exp(−ah2(2−γ)) = Cx1/(2−γ) exp(−ax2). (2.30)

C and a are some positive constants. As g should vanish at large distances, we assume γ < 2 and find
an analytic solution:

g(x, t) = CT
− (2γ−5)

2(γ−2)x1/(2−γ) exp(−ax2/T ) (2.31)

or

g(h, t) = CT
− 2γ−5

2(γ−2)h · exp(−ah2(2−γ)/T )

where T = 1 + 3act(γ − 2)2 is a dimensionless time. Substituting the partial differential of 2.14 by an
absolute differential with a coefficient, we get a new solution for the radial velocity:

vr = − 3
2Σh2

dg

dh
=
∣∣∣∣Σ = g

hν
= g

ch2γ+1

∣∣∣∣ = −3ch2(γ−a)

2g
dg

dh
(2.32)

= −3ch2(γ−1)

2

(
1− 2(2− γ)ah2(2−γ)

T

)

Taking a look at this equation we see that the radial velocity is directed outwards for h > (T/2a(2 −
γ)1/2(2−γ) and vice versa. This point moves out, with increasing T and overtakes more and more matter
and we find the same result as in subsection Constant Viscosity. Almost all of the matter follows an
inward drift towards the center and a little fraction of matter carries the bulk of angular momentum. So
the conclusions of these investigations are that the total amount of angular momentum within a fixed
radius r decreases with time, as it flows outwards. The total mass of the disk decreases as T−1/2(2−γ).
This decrease of the total mass of the disk is understood as the mass flux into the origin, therefore
the real matter distribution is a growing central point mass surrounded by a density distribution which
grows in size, but decreases in mass. Hence, considering material that starts inside the point of radial
velocity reversal will move inward, whereas matter starting outside will begin moving outwards to be
overtaken. Once overtaken it will start moving inwards and ends likewise at r = 0. For this considered
case the special angular momentum h is given by h = Ωkr

2 ∝ r1/2 and hence tends to infinity at large
radii.

11



2 Accretion Disks

2.2.2 Sources of Viscosity

The discussion in this subsection, including Magnetic Viscosity and Radiation-Supported Disks and
Viscosity refers to the work of H.C. Spruit 1996a.
Following 2.2 many physicists argue that the high Reynolds number occurring in accretion disks is not
a sufficient reason for the presence of hydrodynamic turbulences in the flow. It is mentioned that the
gas moving on quite stable Keplerian orbits would also affect the turbulence, as this rotation would have
a stabilizing effect on turbulences. Further arguments are that such hydrodynamic turbulences would
produce an α which is not dependent on the disk’s nature, and therefore α would have the same value
in all disks. This case is unlikely as some models show that α increases with temperature. As in many
cases the only possibility for getting some insight in the nature of the turbulences is the use of 3-D
numerical simulation. Yet these simulations have not shown the estimated hydrodynamic turbulences.
Since the attempt to find a fitting solution has not been fruitfully yet, physicists endeavor finding some
other plausible mechanisms explaining high Reynolds numbers and the source of viscosity. Some of the
proposed mechanisms include convection due to a vertical entropy gradient or waves of various kinds.
Such waves would not act locally but globally, as they would effectively transport angular momentum
outwards by traveling inwards and dissipating there. One solution of this waves would be spiral shocks,
which would produce in hot disks an effective α of 0.01, but are not very likely in cool disks. Another
suggested mechanism is based on magnetically accelerated winds, originating from the disk’s surface. In
fact, such disks could explain the angular momentum loss to make accretion possible if viscosity, due to
hydrodynamic turbulences, is not present. Moreover, magnetically accelerated winds would be a good
explanation for many outflows and jets, observed in protostellar objects and AGNs (Active Galactic
Nuclei). Another possibility are selfgravitating instabilities of the disk. It is assumed that these cause
internal friction in sufficiently cool or massive disks.

Magnetic Viscosity

As mentioned above magnetic forces can be very effective in transporting angular momentum outwards.
Numerical solutions have shown that in sufficiently ionized disks the shear flow produces some kind of a
small scale fast dynamo process (which is indeed a kind of magnetic turbulence) in the disk. In this small
scale magnetic field the azimuthal component dominates and the angular momentum transport happens
due to magnetic stresses, whereas the fluid motion due to the magnetic forces has little influence on the
mechanism. These considerations and numerical solutions have also shown that the development of a
small initial field through magnetic shear instability is possible in a perfectly conductive plasma, and
therefore that strong accretion flows must be magnetic.

Radiation-Supported Disks and Viscosity

This subsection refers to a special type of accretion explained in more detail in Radiation Supported-
Radiatively Inefficient Accretion. The radiation pressure must be taken into account and added to the
gas pressure, therefore the total pressure is higher than normal. If the viscosity scales with ν = αc2

s/Ω,
it turns out that the disk is locally unstable. An increase in temperature would cause an increase of
the radiation pressure, which in turn increases the viscous dissipation and again the temperature. This
runaway has opened the question whether the radiation pressure should be included in the viscosity in
the calculation of the speed of sound or not. However, it has been shown that in case of stresses due to
magnetic turbulences the speed of sound most likely scales with the gas pressure alone. As the possibility
for magnetic stresses is likely, it is reasonable to scale the effective viscosity in radiation supported disks
with the gas pressure ν ∼ αPg/(ρΩ).

12



2.3 Temperature - Emitted Radiation

2.3 Temperature - Emitted Radiation

The surface temperature of the disk, which determines how much energy it loses by radiation,
is governed primarily by the energy dissipation rate in the disk, which in turn is given by the
accretion rate.1

In other words, the dissipated energy goes into heat, that is emitted as radiation from the disk’s surface.
Firstly, the emitted spectrum must be determined locally at each point in the disk and afterwards one can
find the disk’s entire radiation spectrum by integration. Assuming the disk to be optically thick, which
means that every point radiates like a black-body with T (r), the corresponding temperature distribution
simplifies. This distribution is found by equating the dissipation rate Q(r) per unit area to the energy flux
for a blackbody. Starting from the first law of thermodynamics and integrating over z we get (following
the discussion of H.C. Spruit 1996a)

ρT
dS

dt
= − divF +Q(r), (2.33)

2σSBT 4
s (r) =

∞∫
−∞

Q(r) dz. (2.34)

Defining as ρ the density, S the entropy per unit mass, F the heat flux, Q(r) the dissipation rate, i.e. the
energy flux, radiated from the surface of the disk, σSB = arc/4 Stefan-Boltzmann’s constant, with ar the
radiation density constant, and as Ts(r) the surface temperature. So the divergence turns into a surface
term and the factor 2 represents the 2 radiating surfaces of the disk, which are assumed to radiate like
blackbodies.9

Q(r) = σSBT
4
s (r) = 3GMṀ

8πr3

[
1−

(
r∗
r

)1/2
]

(2.35)

∣∣∣∣∣∣with r � r∗ & T∗ =
(

3GMṀ

8πσSBr3
∗

)1/4
∣∣∣∣∣∣→ Ts(r) = T∗

(
r∗
r

)−3/4
(2.36)

Using r∗ and T∗, the stellar radius and the characteristic blackbody temperature of the star. Here we can
already see that the surface temperature is not dependent on the very uncertain viscosity ν, but only on
the product MṀ . It should be clarified that 2.36 only represents the surface temperature of the disk, an
approximation for the internal temperature will be made in the following and depends on mechanisms
transporting energy to the surface. This transport determines in turn the disk’s thickness. Therefore,
the vertical structure of the disk must be calculated.

After calculating the surface temperature Ts(r), the emitted spectrum by each element of area of the disk
can be quantified. In the following equations, which are based on the work of G. Mamatsashvili 2011,
ϑ refers to the frequency. Please keep in mind, we are neglecting here the atmosphere of the disk. (i.e.
the part of the disk material at optical depth τ ≤ 1) Assuming an observer at a distance d whose line of
sight forms an angle ψ with the disk plane, the flux at frequency ϑ can be derived. (Here ϑ is used for
the frequency as ν is already used for the turbulent viscosity.) Using again the blackbody assumption
leads to 2.39.
1 Spruit 1996a, p. 23. 9 Making these calculations, it has been assumed that the disk extends all way down to the surface
r = r∗ of the central star.

13



2 Accretion Disks

Iϑ = Bϑ[Ts(r)] =
∣∣∣∣∣Bϑ = 2hϑ3

c2
1

e
hϑ

kTs(r)−1

∣∣∣∣∣ = 2hϑ3

c2(ehϑ/kT (r)−1)
(2.37)

Sϑ = 2π cos(ψ)
d2

rout∫
r∗

Iϑr dr (2.38)

Sϑ = 4πh cos(ψ)ϑ3

c2d2

rout∫
r∗

r dr

ehϑ/kTs(r)−1 (2.39)

Iϑ is the emitted spectrum by each element of area, Bϑ the Planck-Function, noted in 2.37, rout is the
outer radius of the disk, r∗ the stellar radius, h the Planck constant, k Boltzmann’s constant, c the speed
of light, Sϑ the flux at frequency ϑ. In the figure below the integrated spectrum of a steady accretion
disk is illustrated.

Figure 2.1: Integrated spectrum of a steady
disk: A local blackbody spectrum
is radiated at each point. It is
a shematic illustration with arbi-
trary units. Frequencies are shown
for the disks outermost tempera-
ture Tout and the characteristic in-
ner temperature T∗. (Mamatsashvili
2011, p. 10)

This formula is independent of the viscosity ν, which is a consequence of the steady and blackbody as-
sumption. 2.39 is at least a crude representation of the observed spectrum for some systems.

The following considerations are based on the work of H.C. Spruit 1996a.
Now we will make an approximation for the temperature in the disk. In the plane or more generally in
stellar interiors, energy transport happens due to radiation processes rather than to convective ones at
high temperatures. Assuming local thermodynamic equilibrium the temperature structure of a radiative
atmosphere in the Eddington approximation10 can be written as

d

dτ
σT 4 = 3

4F

∣∣∣∣∣∣τ =
∞∫
z

κρ dz

∣∣∣∣∣∣→ σT 4(τ = 2/3) = F (2.40)

τ represents the optical depth at geometrical depth z, F the energy flux through the atmosphere. We
have made a second assumption, that there is no incident flux from outside the atmosphere. If the
assumption of ν being constant with height still holds true and the heat is generated near the midplane,
F is then approximately constant with height as well and equal to σT 4

s (r). One than finds σSBT 4 =
3/4(τ + (2/3))F . We get further with κ constant with z that τ = κΣ/2 and using 2.35 the temperature
at the midplane:
10 The Eddington approximation is a special case of the two stream approximation for radiative transfer, in which the
radiation propagates only in two discrete directions. It is used to obtain spectral radiance in a „plane-parallel“medium. In
such a „plane-parallel“medium the properties only vary in the perpendicular direction. The two components (directions) of
the radiation field are one component outward and a component inward.
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2.4 Radiative Efficiency of Accretion Disks

T 4 = 27
64σ

−1Ω2νΣ2κ. (2.41)

An equation for the disk’s thickness can also be found by using the equation of state as well as 2.45:

H

r
=
(R
µ

)2/5 ( 3
64π2σ

)1/10 (κ
α

)1/10
(GM)−7/20r1/20(fṀ)1/5 (2.42)

with
∣∣∣∣∣r6 = r

106cm , Ṁ16 = Ṁ

1016g/s and f = 1−
(
ri
r

)1/2
∣∣∣∣∣

= 510−3α−1/10r
1/20
6

(
M

Ṁ

)−7/20
(fṀ16)1/5.

One can see from this formula that it is very immune to changes of α, κ and r. Moreover, it should be
kept in mind that 2.42 is derived under the assumption that energy dissipation takes place in the disk
and not near the object’s surface. If this would be the case, the internal temperature would be closer to
the surface temperature of the central object.

2.4 Radiative Efficiency of Accretion Disks

The time scale for a disk to radiate away the energy released from the accreted gravitational potential
energy is the accretion time scale:

τacc ≈
1

αΩk

(
r

H

)2
. (2.43)

As mentioned in the following section, in thin disks with H/r � 1 the accretion time scale is much
longer as the thermal time scale τtherm. Following these considerations there is sufficient time for local
balance to exist between the viscous dissipation and radiative cooling, and the disk is rather cool. 11

Such radiatively inefficient disks are called „quasi-spherical“ and are named after the condition that
those disks tend to be rather thick H/r ∼ O(1). Caution must be taken using this designation, as a
spherical model would not be appropriate describing these disks. The „quasi-spherical“ flow has angular
momentum and the inward movement of matter is governed by the rate at which angular momentum
transport happens. The accretion time scale in such flows τacc ∼ 1/(αΩ) is longer than the accretion
time scale in spherical disks, 1/Ω. Further distinctions and specifications are made in the next sections.
Finally it is also important that the radiative efficiency depends on the surface of the central object,i.e.
whether it has a solid surface, which is the case considering neutron stars, planets or main sequence stars,
or not (black holes). (Spruit 1996a)

11 This holds true for the standard disk. Which does not mean that there are not accretion flows with the same order of
accretion timescale that are radiatively inefficient.
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2 Accretion Disks

2.5 Different Types of Disks

2.5.1 Geometrically Thin Disks

Steady Thin Disks

The discussion in this subsection is based on the work of G. Mamatsashvili 2011. Referring to the fact
that changes in the radial structure of disks take place on long time scales τvisc = r2/ν, as described in 2.2,
and that in many systems external conditions change on longer time scales than τvisc, a stable disk can
be described as a steady disk, i.e. ∂/∂t = 0. Using this limitation for 2.11, we get:

rΣvr = const. (2.44)

The mass flux towards the central mass is constant and equal to the accretion rate Ṁ , see 2.46. The
surface density distribution can be rewritten as

νΣ = 1
3πṀ

[
1− β

(
ri
r

)1/2
]
, (2.45)

Ṁ = 2πrΣ(−vr). (2.46)

Here ri represents the inner radius of the disk and β is a free parameter. Using 2.16 we get

Q(r) = 3GMṀ

8πr3

[
1−

(
ri
r

)1/2
]
. (2.47)

This equation of dissipated energy of a steady disk does not have an explicit dependence on ν, as we were
able to use conservation laws to eliminate viscosity. It relies on the assumption that ν can adjust itself
to give the required Ṁ . Other disk properties (Σ, vr etc.) do of course rely on ν.

Using 2.47 an equation for the disk’s luminosity can be derived:

L(r1, r2) = 2
r2∫
r1

Q(r)2πr dr (2.48)

L(r1, r2) = 3GMṀ

2

[
1
r1

(
1− 2

3

(
r∗
r1

)1/2
)
− 1
r2

(
1− 2

3

(
r∗
r2

)1/2
)]

(2.49)

= |r1 = r∗, r2 →∞|Ldisc = GMṀ

2r∗
= 1

2Lacc (2.50)

Again r∗ refers to the stellar radius. In conclusion, the total disk luminosity is half the luminosity
gained through the accretion process. The remaining luminosity is emitted in the boundary layer of the
disk.
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2.5 Different Types of Disks

Radiation Pressure Dominated Disks

The following considerations refer to the work of H.C. Spruit 1996a.
X-ray binaries (XRB) are a class of binary stars, where matter of one component, the so called donor, is
falling onto the second object, mostly a very compact object, like a neutron star, a black hole or a white
dwarf, called the accretor. These systems are luminous in X-rays, originating from the gravitational
potential energy of the infalling matter. In the inner regions of disks around such XRB’s it is possible
for the radiation pressure to exceed the gas pressure. This, in turn, will lead to a different expression for
the disk thickness. So the pressure (Ptot) must be written as a sum of both, the radiation pressure Pr
and the gas pressure Pg:

Ptot = Pr + Pg = 1
3aT

4 + Pg (2.51)

Using 2.41 in combination with 2.47, for Pr � Pg, τ � 1, Σ = 2Hρ0 and f = 1 − (ri/r)1/2 we get an
approximation for the disk’s thickness:

cH = 3
8πκfṀ

∣∣∣∣with H

r
= c

Ωr

∣∣∣∣ → H

r
≈ 3

8π
κ

cr
fṀ = 3

2f
Ṁ

ṀE
. (2.52)

Here r is the distance from the star and ṀE the Eddington accretion rate at this radius. We can derive
from this formula that disks are not geometrically thin anymore near the star, if Ṁ is near the Eddington
accretion rate ṀE.

There are three local timescales in thin disks, two of them were already introduced. The dynamical
timescale τd, which is the orbital time scale, and the radial drift time scale, which was defined as the
viscous time scale τvisc, see 2.15.

τd = Ω−1 =

√
r3

GM
(2.53)

τvisc = r

−vr
= 2

3
r2f

ν
(2.54)

Using 2.45 and 2.46, we get vr = −3ν/2rf , and further with ν = αc2
s/Ω and c = HΩ the viscous time

scale is given as.

τvisc = 2
3
f

αΩ

(
r

H

)2
(2.55)

But we can also define a third time scale with respect to the disk temperature, the thermal time scale
τtherm. This time scale is found by equating the heating time scale τh with the cooling time scale τc. Et
is the enthalpy of the disk per unit of surface area 12 and Wvisc = (9/4)Ω2νΣ the heating rate by viscous
dissipation.

τh = Et
Wvisc

and τc = Et
2σSBT 4

s
→ τtherm = 1

Wvisc

∞∫
−∞

γP

γ − 1 dz (2.56)

τtherm ≈
1
αΩ (2.57)

12 For an ideal gas of constant ratio of specific heats γ.
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2 Accretion Disks

For getting this approximation, numerical factors of order unity have been left out. One can see that 2.57
is of a factor 1/α longer than the dynamical time scale and independent of most of the disk properties,
which is in fact a result of the used α-parametrization. In most of the observed systems scientists have
found that α < 1 and therefore the three time scales can be ordered like this:

τvisc � τtherm > τd (2.58)

2.5.2 Beyond Thin Disks

Since in many astrophysical systems a large range of different length scales occur, they must be considered,
as well as the different time scales. Finding an appropriate model that fits the observational data is
mostly dependent on detailed numerical simulations in 2 or 3 dimensions. The thin disk equations are
some good initial equations, with a lot of approximations, for finding models which are beyond these thin
disks.

Radiation Supported-Radiatively Inefficient Accretion

The presented equations are based on the work of H.C. Spruit 1996a.
This type of accretion refers to a radiatively inefficient accretion, in which the radiation pressure domi-
nates the flow. The gravitational energy release Wgrav ≈ GM/(2r) is therefore converted into enthalpy
of the gas and the radiation field. It is assumed that a fraction of the gravitational potential energy of
∼ 0.5 stays in the flow as kinetic energy. As before, an ideal gas with constant ratio of specific heats γ
and the radiation pressure, as defined in 2.51, are assumed.

Wgrav = 1
2
GM

r
= 1
ρ

[
γ

γ − 1Pg + 4Pr
]
. (2.59)

The virial temperature can be written as Tvir = GM/(Rr) and assuming γ = 5/3 13, equation 2.59 can
be rewritten:

T

Tvir
=
[
5 + 8Pr

Pg

]−1

. (2.60)

It is easy to see that for pressure dominated accretion Pr � Pg the temperature is much less than the virial
temperature. Assuming further hydrostatic equilibrium, the disk’s thickness is given by

H ≈ [(Pg + Pr)]/ρ]1/2 /Ω (2.61)

or following 2.4 by H/r = (T/Tvir)1/2 and therefore H/r ∼ O(1). Consequently, in the limit of Pr � Pg,
which means T < Tvir, the accretion flow is geometrically thick.

Trying to make statements with regard to the luminosity and the energy flux, one can start from 2.59,
which yields, with Pr � Pg, to

GM

2r = 4
3
aT 4

ρ
. (2.62)

13 Which means fully ionized monoatomic gas.
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Following some approximations and equation 2.62, one gets the energy flux as an expression of the
Eddington flux, FE = LE/(4πr2):

F = 4
3
d
dτ σT

4 ≈ 4
3
σT 4

τ
, (2.63)

with

∣∣∣∣∣∣τ =
∞∫
z

κρdz→ τ = κΣ/2 and Σ ≈ 2Hρ and σ = ac

4

∣∣∣∣∣∣
F = 1

8
GM

rH

c

κ
(2.64)

FE = c

κ

GM

r2 → F = FE
r

8H (2.65)

Taking into account that H/r ≈ 1, one finds that the luminosity of a radiation pressure dominated,
radiatively inefficient accretion flow is of the order of the Eddington luminosity. A dimensionless value
for the accretion rate can be derived. The accretion rate is of the order of Ṁ ∼ 3πνΣ, where Σ =

∫
ρdz

is the surface mass density, and ṀE = RLE/(GMη) = 4πRc/(ηκ) represents the Eddington accretion
rate onto the central object of size R.

ṁ = Ṁ

ṀE
≈ νρκ

c
. (2.66)

The Eddington accretion rate differs due to the efficiency η, since the conversion of gravitational energy
into radiation varies with the central object. (For instance a realistic value for the accretion onto a
black hole is η = 0.1 or onto neutron stars η ≈ 0.4, depending on the radius of the star.) A further
assumptions that the viscosity scales with the gas pressure ν = αPg/ρΩk is made and with 2H/r ∼ O(1)
a mathematical solution for the disk’s temperature can be found:

T 5 ≈ (GM)3/2

r5/2
ṁc

ακaR
. (2.67)

The temperature is low compared with the virial temperature in such flows and it should be mentioned
that in the case of a dependence of the viscosity on the total pressure Ptot = Pr + Pg, it would be even
lower. In order to fulfill the radiation pressure and advection dominated aspect, the flow has to be
optically thick.
As mentioned, different timescales have to be taken into account. In the following the cooling as well as
the accretion time scale are noted:

τc = E

F

∣∣∣with E ≈ aT 4H and 2.63
∣∣∣ = 3τ H

c
. (2.68)

E represents the energy density, vertically integrated at a distance r.

τacc = 2πr2Σ
Ṁ

(2.69)

τc
τacc
≈ κ

πrc
Ṁ = 4

η
ṁ
R

r
, (2.70)
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2 Accretion Disks

using τ = κΣ/2 and a factor of (3/4)H/r ∼ O(1) has been neglected. Consequently, accretion has to be
of the order of the Eddington limit or above for such flows to be both advection and radiation dominated.
This postulate can also be expressed in terms of a critical radius, the trapping radius rt/R ≈ 4ṁ. Inside
this radius the disk is advection dominated, outside this radius the radiation field can not be strong
enough to maintain a disk with H/r ∼ 1. (Asmus 2008) Therefore the shape above the critical radius
tends to be thin, which does not exclude the radiation pressure dominated condition, but the case of
an advection dominated flow. These accretion flows, which accrete above the Eddington limit are called
„radiation supported accretion tori“.

Advection Dominated Accretion Flows (ADAF)

Advection dominated accretion disks are disks in which gravitational energy is not completely locally
released through radiation processes. The advective energy flux is taken into account in the energy bud-
get, i.e. these disks represent radiatively inefficient flows and occur when the optical depth is either very
small (Optical Thin Case) or very large (Optical Thick Case). A significant part of the energy is accreted
with the matter by the central object. Moreover, these flows are susceptible to produce outflows and it
is suggested that advection dominated accretion may provide an explanation for the slow spin rates of
some accreting stars. As the gas rotates slower than the Keplerian velocity, the central star cease to spin
up long before the break-up. These flows are named just after there definition, Advection Dominated
Accretion Flows (ADAF). Two different scenarios are discussed:
1) The density of the gas, building up the accretion disk, is so thick that the photons on their way outside
are, due to the frequent scattering, not fast enough and therefore trapped inside the disk, where they
will move inward with the matter and fall onto the central object. (This kind of accretion flows are most
likely to be present around black holes.) In this case it is expected that the radiation pressure at the
inner part of the disk causes an expansion of the disk in vertical direction.
2) The second scenario illustrates the exact converse situation, where the density of the gas is extremely
low. Considering this situation, it is no problem for the photons to escape the disk, but the interaction
cross section is too low for efficient cooling, which means that the gas is going to heat up to very high
temperatures, comparable with the solar corona. (Asmus 2008)
The mathematics of both scenarios predict very high radial velocities in the inner part of the disk. There-
fore, a critical point, the sonic point, at which the matter flux goes into the supersonic state, is of special
interest, see also 2.1.2. In a mathematical view the sonic point refers to the critical point rcrit where the
denominator of the equation of motion vanishes. Following the work of Asmus 2008.

dvr
dr = 1

D

[
rvr(Ω2 − Ω2

k)− γ − 1
γ + 1

1
ρ

(q+ + q−)− 2
γ + 1c

2
svr

( 1
Ωk

dΩk
dr −

1
r

)]
= N1

D
. (2.71)

Here γ is the ratio of the specific isobaric and isochore heat, cs the speed of sound, vr the radial velocity,
Ω the angular velocity, ρ the density and q+/q− the viscous dissipation rate and radiative loss rate.
This is the so-called singularity condition (SB from the German word „Singularitätsbedingung“). As
the physical quantities have to be determined and finite, another condition must be taken into account,
the regularity condition (REB from „Regularitätsbedingung“), that says that the nominator (N1) at the
critical point must vanish as well. (Asmus 2008)

The further discussion is based on the work of Spruit 1996a. Taking a look at the underlying mathematics,
one finds that the density of the gas ρ, its radial velocity vr, the angular velocity Ω and the speed of
sound cs satisfy four differential equations, the continuity equation, the radial and azimuthal components
of the momentum equation and the energy equation:

2πrΣvr = Ṁ = const., (2.72)
rΣvr∂r(Ωr2) = ∂r(νΣr3∂rΩ), (2.73)
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vr∂rvr − (Ω2 − Ω2
k)r = −1

ρ
∂rp, (2.74)

ΣvrT∂rS = q+ − q−, (2.75)

using p as the total pressure in 2.74. In equation 2.75 the left hand side represents the advected entropy,
T is the temperature and S the entropy. q+ and q− represent, as in 2.1.2, the height-integrated viscous
dissipation rate and the radiative loss rate:

q+ =
∫
Qvdz , q− =

∫
divFrdz. (2.76)

Considering the case of a thin disk, equations 2.72 and 2.73 stay unchanged, whereas 2.74 simplifies to
Ω2 = Ω2

k and 2.75 to q+ = q−. (Spruit 1996a) The difference between the energy input per unit area due
to viscous dissipation and the energy loss through radiative cooling, which is the net energy advection
rate, can be written differently (Narayan and Yi 1994):

qadv = q+ − q− = 2αρc2
sR

2H

Ωk

(
dΩ
dR

)2
− q− ≡ f 2αρc2

sR
2H

Ωk

(
dΩ
dR

)2
. (2.77)

Here f measures the degree to which the flow is advection-dominated. Therefore, f = 1 represents the
extreme limit where no radiative cooling is present and f = 0 the case of very efficient cooling. When
radiative loss is neglected, i.e. q− = 0, the characteristic properties are seen most clearly. If α = const,
q− = 0, and an ideal gas with constant ratio of specific heat γ is assumed, the entropy is given by (Spruit
1996a):

S = cvln
(
p

ργ

)
. (2.78)

cv refers to the specific isochore heat. Based on the considerations above equations 2.72 - 2.75 have no
explicit length scale and a special, self-similar solution, in which all quantities are powers of r, exists.
These quantities are summarized in the following:

Ω ∼ r−3/2, ρ ∼ r−3/2, (2.79)

H ∼ r, T ∼ r−1. (2.80)

The following self-similar solutions hold true for the limit α� 1:

vr ≈ −αΩkr

(
9γ − 1

5− γ

)
, (2.81)

Ω ≈ Ωk

(
25− 3γ

5− γ

)1/2
, (2.82)

c2
s ≈ Ω2

kr
2γ − 1
5− γ , (2.83)

H

r
≈
(
γ − 1
5− γ

)1/2
. (2.84)

The precise form of these expressions depends on the way vertical integration is done. In 2.81 one can see
that vr ∼ α, i.e. the radial velocity is in principal determined by the efficiency of the viscosity moving
angular momentum outwards. The radial speed tends to be much larger in advection dominated flows,
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2 Accretion Disks

since ν ∼ αc2
s/Ωk, than in thin disks. Taking a look at 2.82, one finds that in the case of γ → 5/3 Ω goes

to zero and the solution is the Bondi spherical accretion solution14 for this γ. In 2.83 the speed of sound
is comparable to the angular speed Ωk, which means that the temperature of the accreted gas is almost
virial. Which is plausible, as the gas has no way to cool. Moreover, when cs ∼ Ωk, H is comparable to R
and the flow is quasi-spherical. (Spruit 1996a) The comparison with numerical solutions shows that the
self-similar solution is valid in an intermediate regime ri � r � r0, and only exists if 1 < γ ≤ 5/3. For
γ close to 1 the disk temperature and thickness vanish. For γ → 5/3 the rotation rate vanishes, since
in the case of spherical accretion no solution for γ > 5/3 exists. Steady advection dominated accretion
can not have angular momentum in this case. As for a fully ionized gas γ = 5/3 the question arises how
an adiabatic flow will behave in this case. Ogilvie 1999 described the asymptotic behavior of a viscously
spreading disk analogous to the asymptotically accretion of mass to the central object, while all the
angular momentum travels outward to infinity. For γ = 5/3 the rotation rate at a fixed r tends to zero.
The size of the slowly rotating region expands as r ∼ t2/3 and the angular momentum is carried away
from the inner regions almost completely. (Spruit 1996a) It is most likely that astrophysical systems
have both, advection-dominated and standard cooling zones at different radii. The gas in ADAF’s is
capable of spontaneously escaping to infinity, which may generate an explanation for outflows, such as
jets.(Narayan and Yi 1994)

It should be mentioned that there are other important flows occurring in astrophysical systems, such
as the optically thin radiatively inefficient flows (ISAFs) which are mentioned in the following chapter,
since they are related to accretion onto black holes. (Spruit 1996a) In figure 2.2 different branches
for advection dominated and thin disks in dependence on the accretion rate and the optical depth of
the flow are shown for different α. The Ion Supported Accretion Flows (ISAF) are discussed later in
4.3.3.

Figure 2.2: Branches of advection dominated
flows and thin disks dependent on
the accretion rate ṁ = Ṁ/ṀE and
the optical depth of the flow τ for
different values of α.
Optically thin branches: ISAF and
SLE (Shapiro-Lightman-Eardly).
Optically thick branches: Slim disk
(radiation dominated disk) and SS
(Shakura and Sunyaev standard
disk).
Advection-dominated: ISAF and
the Slim disk.
Geometrically thin: SLE and SS. 15

(Spruit 1996a, p. 37)

14 Bondi-Hoyle Accretion: We are considering the case of a star with massM accreting spherically symmetrical from a large
gas cloud, which is an approximation of the real situation of an isolated star in the interstellar medium. The magnetic field
strength, the bulk motion and the angular momentum of the interstellar gas can be neglected with respect to the star. This
case was first considered by Hoyle and Lyttleton (1939) and later by Bondi and Hoyle (1944). The case when the star is at
rest, i.e. the accretion of the gas is in relative motion with respect to the star, was first studied by Bondi (1952) and this
case of accretion is therefore named after him. (Juhan Frank and Raine 2002) 15 In both cases, in an ADAF (Advection
Dominated Accretion Flow) as well as in an ISAF (Ion Supported Accretion Flow) the radiation process is sufficiently weak.
The differences are that ISAFs form a two-temperature plasma and an advection dominated accretion flow is possible for a
very large or a very small optical depth. In Figure 2.2 the same value of α, for both types of flows, is assumed, labeled with
„ADAF“.
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2.6 Non-Gravitational Instabilities of Disks

2.6 Non-Gravitational Instabilities of Disks

The following discussion is based on the work of Spruit 1996a. In many disks something like outbursts,
transients or an episodic behavior of the accretion can be observed. This irregularities occur due to
some instabilities in the disk. Many models have been predicted explaining such phenomena. The most
developed models are those, that are based on a temperature dependence of the viscous stress for insta-
bilities. For comparison with the previous sections, the α-parameter will be a function of H/r. If this is a
sufficiently increasing function, α is large in hot states and low in cool states, which will cause a runaway
effect: starting at the stationary state at the mean accretion rate and considering a temperature increase,
α goes up. Consequently, the viscous stress increases, which, in turn, increases the mass flux Ṁ . An
increase in mass flux once again increases disks temperature and this runaway will result in a hot state.
Following this considerations we conclude, that if the mass flux is larger than average, the disk empties
partly, which reduces the surface density and the central temperature. Therefore, a cooling front occurs
which brings the disk to a cool state, with an accretion rate below the mean. This mechanism shows a
switch back and forth between a hot and cool state of disks. It also predicts outbursts that reasonably
well describe the observational data of soft transients.
Another reasonable possibility is the dynamical instability of the outer edge of a disk. This causes an
oscillation that grows into a strong excentric perturbation. This has been confirmed with 2D numer-
ical simulations. This instability will cause shock waves, spreading mass over most of the Roche lobe
and simultaneously increasing the mass transfer onto the central object. This mechanism requires two-
dimensional studies and does not depend on the viscosity.
Concluding, instabilities can occur due to many effects. Cooling rates can cause thermal instabilities. Or
the instabilities may result from the dependence of viscosity on some disk properties.

2.6.1 Jet Formation in Disks

Jets, that are strongly collimated outflows, are seen in nature associated with Herbig-Haro objects, dying
stars, micro quasars, quasars and radio galaxies. (Lynden-Bell 2002) Jets with relativistic flow speeds are
especially known from stellar as well as from galactic black holes. (The case of accretion onto these will
be discussed in chapter Accretion onto Black Holes.) Outflows with more modest velocities are observed
in protostars, accreting neutron star (Cir X-1) and accreting white dwarfs (R Aqr). As their appearance
emerge in many cases with the presence of an accretion disk, a connection between disks and jets is very
likely. However, not all systems with accretion disks form jets, not all the time respectively. This leads
to the question which mechanisms can produce such jets. (Spruit 1996a) The models for explaining the
jet formation can be divided into three classes:

1) Hydrodynamic models, that can explain collimation by vortices around black holes or by self-similar
thick disks.

2) Wind models with jets collimated by the local magnetic field of the rotating object.

3) Models that include a large-scale, pre-existing magnetic field.

The fact that all jets are associated with electromagnetic phenomena, accompanied with the acceleration
of some particles to very high (relativistic) speeds support the concept that jets themselves are an electro-
magnetic phenomenon. (Lynden-Bell 2002) De facto the magnetic model, in which outflows are produced
by magnetic fields of a rotating object, has become the standard for explaining the development of jets.
Synchrotron radiation allows an indirect detection and the Zeeman effect in spectral lines of young stellar
objects and protoplanetary nebulae allows a direct detection of the magnetic fields of the flows. Most of
the magnetic interaction is suggested to take place in the inner regions of the flow. Unfortunately, the
vast majority of the detection does not give any information on this region. In the following, I will give
a short overview of the magneto-centrifugal acceleration model, based on the work of H.C. Spruit 2010,
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that incorporates three distinct regions. This section only gives a brief insight in this standard model for
jet formation and does not contain all suggested mechanisms and models in this field of science as this
would be beyond the scope of this work. For more details see Lynden-Bell 2002, Spruit 1996b, Kato and
S. Mineshige 2004 and Spruit 2010.
The three distinct regions, that play different roles in the formation of the jet, are (Figure 2.3) the

1) Launching region
The kinetic energy of rotation dominates over the magnetic energy in the accretion disk. The
field lines are ’anchored’ in the flow and co-rotate with it. There is a transition from the high
β-interior16 to the magnetically dominated atmosphere of the disk. In this transition region the
amount of matter flowing into the jet is determined. The mass flow rate being dependent on
the surface temperature is mostly treated as an additional parameter, as the calculations are not
detailed enough to model the physical conditions near the surface of the disk.

2) Acceleration region
Considering a cool disk, the atmosphere of the flow has low density and gas pressure. In the region
extending above and below the disk the magnetic pressure dominates over the gas pressure and
the field must be approximately force free [(∇ × B) × B] = 0. The magnetic field forces the flow
of gas into a co-rotation with respect to the disk. This flow experiences a centrifugal force which
accelerates it along the field lines, depending on the inclination of the field lines. The centrifugal
process does not work for field lines parallel to the rotation axis of the disk. The flow velocity
increases almost linearly with distance from the rotation axis.

3) Collimation region
In the Alfvén Region the flow speed equals the Alfvén speed and has reached a significant fraction
of its terminal value. As the flow accelerates in Region 2) the field strength decreases with distance
from the disk. The magnetic field lines start limping behind which in turn causes a ’wound up’ into
a spiral. Beyond the Alfvén radius the flow continues to expand away from the axis, so the rotation
rate of the flow gradually vanishes by the tendency to conserve angular momentum. If nothing else
were happening, the field would be almost purely azimuthal as is shown in Figure 2.4. However,
this state is not suggested to survive long for much beyond the Alfvén radius. The high degree
of collimation, which is observed in many jets from different objects must be due to an additional
effect beyond the Alfvén radius. 17

Therefore, the gravitational energy is transferred into kinetic energy of rotation and afterwards into
kinetic energy of the outflow via the magnetic field, powering the jet. These jets that are powered by
the rotation of the object are, in the case of a black hole, suggested to consist of electron-positron pair
plasma and in the case of a rotating disk of a normal electron-ion plasma. As those are not exclusive, it
is quiet likely that the jet of a black hole is partly fed with mass from the disk, rather than with electron-
positron pair plasma. Unfortunately, the transition between disk and outflow is the least understood in
the theory of accelerated jets. There remain still open questions in explaining the whole phenomena,
such as the nature and origin of strong and preferably highly ordered magnetic fields. In Figure 2.5
an image taken with the Hubble space telescope is presented. It shows a jet of a young star. (Spruit
2010)

16 The plasma β represents the ratio of the plasma pressure to the magnetic pressure. When β > 1, then the gas pressure
dominates over the magnetic pressure. 17 Collimation is used in the same sense as in optics, it measures the degree to
which the field lines in the jet are parallel.
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Figure 2.3: Different regions of the
magneto-centrifugal accelera-
tion model: The central object
is located at the left side of
the sketch. In the atmosphere
up to the Alfvén structure
the magnetic field dominates
over the gas pressure. In this
region the centrifugal accel-
eration takes place. (Spruit
2010, p. 2)

Figure 2.4: Field lines beyond the Alfvén
radius: The field lines are
lamping behind the rotation of
their footpoints and begin to
spiral up. The Alfvén surface
itself is more complicated than
this shematic illustration.
(Spruit 2010, p. 3)

Figure 2.5: DG Tau B: An infrared NIC-
MOS image and a visual Wide
Field and Planetary Camera 2
(WFPC2) image, both taken
with the Hubble space tele-
scope. The thick black bar is
a 500 AU dust lane, that in-
dicates the presence of a disk
surrounding the star. WFPC2
highlights the emerging jet
and the central object, the
bright red spot. It is lo-
cated at the corner of the V-
shaped nebula. (D. Padgett
(IPAC/Caltech), W. Brand-
ner (IPAC), K. Stapelfeldt
(JPL),Chris Burrows (STScI))
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3.1 The Boundary Layer Model

The first model of accretion disks has been proposed by Lynden-Bell and Pringle (Lynden-Bell and Pringle
1974). With regard to their paper, the dissipation of the converted gravitational energy leads to emission
from a viscous Keplerian disk. This shining occurs first due to the radiation for a specific temperature,
varying with the distance from the central mass, and second due to a boundary layer. Consequently,
this model is called the „Boundary Layer model“. (Alecian 2013) The boundary layer adresses the region
of the flow which connects the accretion disk with the accreting central star. Considering a disk where
the angular velocity Ω remains very close to the Keplerian one ΩK, close to the boundary layer of radial
extent b the angular velocity of the accretion material drops very rapidly from a near Keplerian value to
the surface angular velocity of the star at that radius. Ω has therefore the form of the function shown
in Figure 3.1. (Juhan Frank and Raine 2002) In this region up to half of the accretion luminosity may
be released, which, in turn, leads to high temperatures. Here the largest flow velocities occur, which
may be responsible for generating shocks and instabilities. A transition of the accretion material from
centrifugal support, that dominates in the disk, to a pressure support, which dominates in the star, takes
place. The boundary layer affects the structure of the disk as a whole. For gaining some insight into
the complex radiative transfer, by which luminosity reaches the surface, radial and vertical fluxes need
to be considered. In this narrow boundary layer turbulent viscosity plays a key role with respect to the
dynamical and energetic evolution. (Narayan and Popham 1994)

Figure 3.1: Distribution of the angular ve-
locity Ω near the inner region
of an accretion disk, with a de-
crease at the boundary layer
at r∗ + b to the surface an-
gular velocity of the star Ω∗.
The boundary layer refers to
the region r∗ . R . r∗ + b
(Juhan Frank and Raine 2002,
p. 153). R∗ means the stellar
radius r∗, therefore R∗ = r∗.

The boundary layer size is found to be:

b ∼
r2

+
GM

c2
s ∼

H2

r∗
(3.1)
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This justifies the assumption that b � r∗, for b ∼ H2/r∗ � H � r∗. (Juhan Frank and Raine 2002) A
schematic picture of the boundary layer model is shown in Figure 3.1. The problem is reduced to that
of a two-dimensional fluid, which is assumed to be polytropic. The simplified hydrodynamical equations
describing such an accretion disk are given below.
In steady state the mass accretion rate is (see Steady Thin Disks)

Ṁ = −2πrvrΣ = const. (3.2)

The steady state radial equation is given as

vr
dvr
dr =

(
Ω2 − Ω2

K

)
r − 1

Σ
dP
dr . (3.3)

The flux of the angular momentum, where r∗ is the equatorial radius of the star and ν the kinematic
shear viscosity parameter, is

J̇ = ṀΩr2 + 2πr3νΣdΩ
dr ≡ jṀΩK(r∗)r2

∗. (3.4)

ṀΩr2 describes the advection of angular momentum by the accreting material, and the second term
represents the angular momentum flow associated with the viscous shear stress. For the identity a
dimensionless parameter j has been introduced expressing J̇ in terms of the characteristic flux of the
angular momentum. In the classical theory of accretion disks it is assumed that j = 1. This means that
the central star accretes angular momentum per unit mass equal to the specific angular momentum of a
Keplerian orbit at the equatorial stellar radius. Furthermore, a description of ν is of great importance as
it effects the nature of the flow in the boundary layer. Using the α-prescription would lead to supersonic
radial infall, if α is larger than H/r∗, and may violate causality. For more detailed information please
see Narayan and Popham 1994. They suggested that in the boundary layer region the eddy scale of the
turbulent viscosity may be limited rather by the radial pressure scale height, Hp ≡ P/|dP/dr|. Therefore,
a modified prescription for ν has been proposed:

ν = αcs

(
1
H2 + 1

H2
p

)−1/2(
1− v2

r
v2
t

)2

. (3.5)

Viscosity is produced by the transport of (angular) momentum by particles, which means that in reality
shear stress can only propagate as fast as the particle velocities. With this prescription, in which vt
represents the maximum speed of the viscous particles, ν vanishes as the radial velocity approaches this
critical propagation speed. This holds only for steady state flows. Boundary layer solutions described by
this ν show that vr never exceeds vt. Between the star and the disk viscous contact is always maintained
and there is no causality paradox. However, this parametrization is unlikely to be valid in detail under
less restrictive conditions. (Narayan and Popham 1994) Straightforward, the net luminosity Ltot of the
accretion disk Ldisk and the boundary layer LBL is

Ltot = Ldisk + LBL = GṀM∗
r∗

[
1− j Ω∗

ΩK(r∗)
+ 1

2
Ω2
∗

Ω2
K(r∗)

]
. (3.6)

In the slow rotating regime we have j ' 1 and the luminosities can be written like

Ldisk = GṀM∗
2r∗

, LBL = GṀM∗
2r∗

[
1− Ω∗

ΩK(r∗)

]2
. (3.7)
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3.6 and 3.7 were determined under the assumption that the total binding energy, released in the accretion,
is bigger than the entropy carried into the star by the accreted material. The boundary layer will be
optically thick and radiate roughly as a blackbody of area ∼ 2πr∗H×2, if the accretion rate, and therefore
the density in this region, is high enough. Moreover, we know the luminosity emitted by this area, 3.7.
Therefore a characteristic boundary layer blackbody temperature is given by

4πr∗HσSBT 4
BL ∼

GMṀ

2r∗
→ TBL ∼

(
r∗
H

)1/4
T∗ . (3.8)

A comparison with the characteristic blackbody temperature of the star T∗, see 2.36, yields to the right
side of the expression. (Juhan Frank and Raine 2002)

Figure 3.2: Shematic illustration of an
optically thick boundary
layer. Radiation emitted by
the boundary layer emerges
through a region of radial
extent ∼ H.
(Here H represents the half
thickness of the disk.) (Juhan
Frank and Raine 2002, p. 153)

3.2 The Flaring Disk

Since the observationally found spectral indices are higher than 4/3 there must be an additional source
to the viscous accretion or to the light reprocessing. The suggested model is the one of a flaring disk.
Regarding to this model the disk flares slightly with increasing radial distance.
The balance between the gravitational force of the central star (or astrophysical object) and the gas
pressure gradient is known as the hydrostatic equilibrium. This pressure of the gas, at a radius r from the
center and at distance z perpendicular to the midplane of the disk, is determined as

dP
P

= Ω2
K

c2
s

z dz. (3.9)

ΩK refers here again to the Keplerian angular velocity and cs to the speed of sound. As mentioned in
2.3 and 2.4 the scale height of the disk can be defined by

H

r
=
(
c2
sr

GM

)1/2

. (3.10)
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One can derive from this equation that, if the internal temperature of the disk (T ∝ c2
s) falls off more

slowly than r−1, the disk inflates with increasing distance. Due to the increasing thickness of the disk,
the disk’s surface is concave, which is illustrated in Figure 3.3.

Figure 3.3: Illustration of a flaring disk
Left sketch: A schematic illustration of the flared disk of HD 97048 is shown. C and D are
two points at the surface of the disk with same distances from the star, located in O. i defines
the inclination between the line of sight and the disk axis. The disk is seen from below. For
an observer the center of the disk is expected to be in O′, due to the geometrical effect. Right
sketch: The corresponding IR observation of HD 97048. As proposed in the left panel, the
photo center, that is indicated with the white arrow, does not coincide with the geometrical
center. (Alecian 2013, p. 190)

This flaring structure is supported by the gas and weakened by the dust, existing in the disk, as dust
absorbs and reemitts the radiation and thus cools the disc. In the case of a vertically isothermal disk the
surface temperature is equal to the interior temperature and so the scale height is proportional to r1/8.
Considering this value of the scale height the model of a flared disk seems to be plausible. In the case of
an optically thick disk the flared disk will intercept more radiation than in the case of a completely flat
disk. The descriptions in this paragraph refer to the work of Kenyon and Hartmann 1987, mentioned in
Alecian 2013.

3.3 The Two-Layer Model

It is argued, that the cooling by the dust is overestimated by Kenyon and Hartmann 1987 due to the dust
settling 18 within the disk. The more advanced two layer model refers to a steady, viscous, geometrically
thin, optically thick flared accretion disk. The disk’s dust and gas structure are shown in Figure 3.4. The
disk structure is proposed as a combination of an optically thick viscous disk, in the mid-layer, and an
optically thin (at IR wavelength) non-viscous atmosphere in the radial equilibrium, the two outer layers.
According to this model the internal energy of the disk has two sources, the irradiation from the cen-
tral star and the accretion.(Alecian 2013) In the mid-layer the dust and gas are in thermal equilibrium
at the same temperature Tg = Td = Tmid. (Kraus 2003) The disk cools through thermal emission of
the dust grains at infrared wavelengths, which leads to the observable infrared dust continuum radiation.
(C.P. Dullemond and D’Alessio 2006) The atmosphere absorbs and/or scatters the stellar flux of the star.
Consequently, the heating from the viscous interior as well as the stellar radiation absorbed determine
the temperature of the atmosphere. (Alecian 2013) Therefore the temperature of the disk is determined
18 Dust grains grow and the larger particles tend to settle to the mid-plane.
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by a balance between cooling and heating. (C.P. Dullemond and D’Alessio 2006)
It has been found that the irradiated disk dominates the flux at wavelengths bigger than 1µm. The
spectral signature of some elements is strongly dependent on the accretion rate and stellar effective tem-
perature.19 As the accretion rate affects the viscous energy damped into the atmosphere and the stellar
effective temperature the amount of radiative heating, it is proposed that observations can give an indi-
cation of the accretion rate of the central object. Consequently, such accretion features can be visualized
in an emission spectrum the lower the accretion rate and the higher the stellar temperature, and in an
absorption spectrum the lower the stellar temperature and the higher the accretion rate. (Alecian 2013)
Moreover, if the temperature structure is known the spectral energy distribution (SED) can be com-
puted. The observable emission comes from three different wavelength regimes, illustrated in Figure
3.5:

a) A wavelength range depending on the minimum and maximum temperature of the dust inside the
disk. This is the „energetic domain“of the SED as the main portion of energy is emitted here. In
this domain the geometry of the disk is best reflected.

b) At longer wavelengths the SED turns over in a „Rayleigh-Jeans domain“. Here the slope depends
on dust grain properties and the optical depth. The sub mm and mm fluxes reflect the disks mass.

c) A shorter wavelength range, which refers to the „Wien domain“of the disk’s emissions. Here the
stellar radiation contributes also to the SED and starts to dominate at near-infrared or optical
wavelengths. (C.P. Dullemond and D’Alessio 2006)

Figure 3.4: Schematic illustration of the gas and dust structure of a flaring protoplanetary disk.
(C.P. Dullemond and D’Alessio 2006)

19 The electronic, vibrational and rotational transitions of molecular and atomic elements is assumed to be the main source
of opacity in the near- and mid-IR.
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3 Disk Models

Figure 3.5: SED of a flared protoplanetary
disk. The near-infrared and
mid-infrared emission comes
from small radii, the far-
infrared emission comes from
the outer regions and the
(sub)millimeter flux from the
midplane of the outer disk.
Due to the inner rim there is
a near-infrared bump. The
infrared dust features origi-
nate in the warm suface layer
and the underlying continuum
is emitted by deeper (cooler)
disk regions. (C.P. Dulle-
mond and D’Alessio 2006,
p. 4)

3.4 The Shakura-Sunyaev Disk

The discussion in this section is based on the book of Juhan Frank and Raine 2002.
The Shakura-Sunyaev disk describes, as mostly mentioned in the literature, the standard or classical
model of a steady α accretion disks. It delineates geometrically thin H � r, optically thick accretion
disks. The disk’s rotation velocity is equal to the Keplerian one (Ω = ΩK). Further it is proposed that
all the gained energy is radiated away. There is no advected energy, which simplifies the energy balance
to q−thick + q+

vis = 0. Additionally, the radial velocity is much lower than the rotation velocity (vr � Ω).
Angular momentum is transported via some kind of turbulence and the solutions are based on the α
viscosity prescription.

In the following the characteristic equations specifying the properties of this model are noted, based on
the work of Asmus 2008. For the radial velocity one finds:

vr = J̇vr,std

Ṁr2ΩK
+ ν

ΩK

dΩK
dr . (3.11)

Here J̇ = Ṁr2Ω − T is the angular momentum flux onto the central object per unit of time, with
T = 4πrHρνr2 dΩ/dr referring to the torque. To avoid misunderstandings, below T is again used, as
usual, for the temperature. (Asmus 2008) With the above mentioned definitions and with 2.4 (speed of
sound) and 2.17 (viscosity) one finds:

Ωstd = ΩK, (3.12)

cs,std = RT
µ

+ aT 4

3ρ , (3.13)

q−thick = q+
visc, (3.14)

ν =
αc2

s,std
ΩK

. (3.15)
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3.4 The Shakura-Sunyaev Disk

The equations for Σ, H, ρ etc. are expressed in terms of R10 = R/(1010cm), m = M/M� and Ṁ16 =
Ṁ/(1016 g s−1), with f = [1− (R∗/R)1/2]1/4 and using M as the central object’s mass, Ṁ the accretion
rate and R the disk’s radius, to get an idea of the typical sizes of the disk quantities. These are based
on the book of Juhan Frank and Raine 2002.

Σ = 5.2α−4/5Ṁ
7/10
16 m1/4R

−3/4
10 f14/5 g cm−2

H = 1.7 · 108α−1/10Ṁ
3/20
16 m−3/8R

9/8
10 f

3/5 cm

ρ = 3.1 · 10−8α−7/10Ṁ
11/20
16 m5/8R

−15/8
10 f11/5 g cm−3

Tc = 1.4 · 104α−1/5Ṁ
3/10
16 m1/4R

−3/4
10 f6/5 K (3.16)

τ = 190α−4/5Ṁ
1/5
16 f4/5

ν = 1.8 · 1014α4/5Ṁ
3/10
16 m−1/4R

3/4
10 f

6/5 cm2 s−1

vr = 2.7 · 104α4/5Ṁ
3/10
16 m−1/4R

−1/4
10 f−14/5 cm s−1

All mentioned quantities are not very sensitive to the actual value of α, since it does not enter any
expression with a high power. This means, however, that the typical size of α cannot be discovered by
direct comparison of a steady state disk theory with observations. Moreover, one sees that the radial
drift velocity vr is highly subsonic, whereas the Kepler velocity vk is very supersonic. As mentioned above
we see from equation 3.16 that the disk’s opacity τ is high and therefore the disk is optically thick for
any reasonable accretion rate. Last but not least the temperature at the midplane Tc and the surface
temperature of the disk Ts(r) differ by a factor of 3.7, which suggests the disk to be roughly uniform in the
vertical direction. The disk can extend to very large radii of the order of the Roche lobe of the accreting
star, as long as the above noted relations remain valid. Unless α is very small, the disk’s mass is small
compared to that of the accreting star. In general α can be a function of Ṁ , M , R and z, see Angular
Momentum Transport/ Viscosity. The z-dependence can be ignored, if we interpret the α appearing in
3.16 as a vertically averaged α, because the disk equations treat the vertical structure as uniform (for
example Tc(R, z) ' Tc(R)). The equations in 3.16 can be obtained without knowing the dependence of
α on M , Ṁ and R. This, in turn, means that the above given solutions for Σ, H, ρ etc. are scarcely a
solution at all in a strict mathematical sense. Since we do not know the dependence of α on M , Ṁ and
R, the dependence of all the other disk quantities is unknown. Therefore, it is only possible to say how
sensitive these equations are to our ignorance. It is important to say that, however, one gets consistent
results for the disk quantities for α . 1. But it should be kept in mind that the equations given in 3.16
cannot predict how disk properties change if M , Ṁ and R are varied. Moreover, there is a tendency for
the importance of radiation pressure to gain relative to that of the gas pressure at smaller radii, which
continues and intensifies in the region where electron scattering dominates the opacity. (Juhan Frank
and Raine 2002) In the work of Shakura and Sunyaev 1973 the pressure gradient in radial direction is
neglected and has no influence on the matter. Moreover, there is no transition to the supersonic region
and therefore no critical point rt can be found. This model simplifies many conditions but is more or
less inconvenient describing accretion disks around black holes as the transition to the supersonic region
is an important property of the inner region of the latter. (Asmus 2008)
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4 Accretion onto Black Holes

Accretion flows are different for objects with solid surfaces, such as forming stars, forming planets, white
dwarfs, neutron stars etc., and for those without, like black holes. It is important to distinguish between
galactic, which means super massive black holes, and stellar black holes, which appear as single objects or
in binary systems. Accretion onto black holes is of important interest. Supermassive black holes (SMBH)
with masses ∼ 109M� are suggested to be the central objects in almost all massive galaxies, including
our Milky way20. Those who are strongly accreting are called Active Galactic Nuclei (AGN). Although
there is not much interaction with the SMBH in the Galactic Center the observational data support the
theory of a weak accretion disk or some kind of matter orbiting the center. In the last section recent
observational data of Saggitarius A* will be presented and discussed.
Research in the field of stellar black holes is important, to get deeper insight in the working mechanisms,
of both types of black holes. The equations of the structure and the proposed mechanism of angular
momentum transport introduced above for protoplanetary disks, still hold true for black holes but have
to be slightly modified. Accretion onto black holes differs mainly because of the high accretion rate of
the system due to the big mass of the object as well as on some details in the structure. For example
in the case of accretion onto a compact object with a solid surface it is assumed that the disk (almost)
reaches the stellar surface, which is most unlikely in the case of a black hole. The previously discussed
mechanism of energy release, chapter 1 - 3, is the most effective one in accretion disks around black holes.
Unfortunately, the central object cannot be directly observed and is veiled by the dust in the line of
sight. Observing the surrounding accretion disk can give conclusions on the black hole’s mass, some
properties of it and the conditions in its environment. Further, it is very likely that most of the radiation
is generated in the innermost region of the accretion disk, the inner rim of the disk. The location of this
inner rim, as well as the specific role of accretion disks around black holes, their properties and their
differences with respect to accretion disks around objects like forming stars and forming planets, neutron
stars and white dwarfs, will be summarized in this chapter. The evolution of such a disk will be discussed
for a stellar black hole in a binary system. The formation process of a disk around an SMBH will not
be described in this thesis as much longer time and much higher mass scales have to be considered. The
definition of the inner rim, the stable orbits around a black hole as well as the different types of accretion
are certainly valid for both the stellar and galactic black holes.

For an elementary insight in black holes the work of Hawking 2001 and Thorne 1994 as well as for a
compact introduction and overall view the work of Müller 2010 are suggested. Understanding this chapter
requires basic knowledge on the physics underlying black holes.

4.1 Definition of the Inner Rim

Following classical considerations, for a test particle stable orbits around the central mass exist. The
region at which stable orbits become no longer possible is called the marginal stable orbit region and is
commonly described by the innermost stable circular orbit (ISCO) around the black hole. The question
whether a particle falls onto the black hole or goes into a circular orbit depends mainly on the specific
20 The supermassive black hole in the center of our Galaxy is quiescent and therefore per definition no AGN.
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angular momentum, l, in the equation of the effective potential.

V 2
eff(r) =

(
1− 2GMBH

rc2

)(
1 + l2

c2r2

)
(4.1)

Using the speed of light c, r the distance from the black hole, MBH the black hole’s mass and G the uni-
versal gravitational constant. The stable orbits for test particles with different specific angular momenta
are shown in Figure 4.1.

Figure 4.1: Effective potentials for test particles orbiting
around a black hole with different specific an-
gular momenta are shown in the Schwarzschild
metric, a non rotating black hole. The mini-
mal angular momentum is given with l = 3.464
and corresponds to the marginal stable orbit of
the black hole. The thick horizontal lines rep-
resent the minimal energy that must be reached
by the test particles to tunnel through the po-
tential barrier in the case of microscopic black
holes. (Asmus 2008, p. 5)

Veff has a maximum at l ≥ 2
√

3GMBH/c
2 and there is no extremum if l < 2

√
3GMBH/c

2. Consequently
and as effects of the strong relativistic field, particles with l > 0 and l < 2

√
3GMBH/c

2 fall into the
gravitating mass. Particles with low (not just zero) angular momentum are captured by the hole. For a
specific angular momentum l = 2

√
3GMBH/c

2 the minimum corresponds to the innermost stable circular
orbit. This ISCO, in turn is commonly associated with the inner rim of the accretion disk. As in nature
accretion disks are not a composite of single test particles, but rather can be explained with a viscous
flow, in which particles always lose energy, the definition of the inner rim must be modified. Due to this
we will follow the description that the region in which the flow is decoupled from the viscous disk and
falls in very short timescales onto the black hole is specified as the inner rim of the accretion disk. In this
inner region of the accretion disk the self-gravitation of the gas does not play any role and the gravitation
field is dominated by the mass of the Black hole. Therefore, this case is called Non-Self-Gravitating
(NSG). (Asmus 2008)
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4.2 Development of Accretion Disks Around Black Holes in Binary Systems

Stellar black holes are most likely to be found in binary systems. It is also quite likely that they are
hidden among known optical objects, X-ray sources and the harder X-ray sources. (X-rays with photon
energies above 5− 10keV are called hard X-rays.)
For explaining the development of an accretion disk around a black hole we consider the case of a binary
system. In such a binary system we have a compact primary mass M1 and a main sequence companion
of mass M2. Depending on the type of star, the matter outflow from the star’s surface, which is referred
to as the donor, varies from 2 · 10−14, in the case of the Sun, up to 10−5M�/year for the O-stars of the
main sequence. In binary systems another additional strong matter outflow has to be beard in mind.
This matter outflow is connected with the Roche limiting surface. If M1 and M2 orbit around each other
with a separation a with orbital frequency

Ω2 = G(M1 +M2)/a3, (4.2)

the matter, suggested to be in a co-rotating frame and therefore stationary, experiences an effective
potential. The Roche potential

φR(r) = −GM1
r1
− GM2

r2
− 1

2Ω2r2, (4.3)

where r1 = |r − r1| and r2 = |r − r2| represent the distances of a point r to stars 1, 2. Taking a closer
look, one finds that the equipotential surfaces are unaffected by the other star near the central masses,
at higher φ they are distorted and at a critical value the two parts of the surface touch. This two parts
associated with the critical Roche potential φ1 are called the Roche Lobe. (Spruit 1996a) If the Roche
Lobe is filled, probably at the late stages of a star’s life, when its radius starts to increase, there is strong
matter outflow, mostly through the inner Lagrangian point. (See Figure4.2)

Figure 4.2: Roche-Lobe of a binary system
Upper Panel: The companion fills
up its Roche Lobe and the out-
flow is mostly through the inner La-
grangian point.
Lower Panel: The outflow of the nor-
mal star, with a size much smaller
than the Roche Lobe, is powered by
a stellar wind. Gravitational cap-
ture of the matter by the black hole
is probably caused by the kinetic en-
ergy loss of the matter in the shock
wave. (Shakura and Sunyaev 1973,
p. 338)

The force acting on the matter is not just given by equation 4.3. The gas cannot fall in radially on
M1 (the accretor), because the gas’ orbit is influenced by the Coriolis force as soon as it moves and
does not co-rotate anymore. A fraction of this matter outflow from one component is interacting with
the gravitational field of the second component, the black hole. As discussed above, the matter has
considerable angular momentum which prevents direct accretion. At some distance from the black hole
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the centrifugal force and the gravitational force are comparable and the matter starts to rotate in circular
orbits. To approach the black hole mechanisms of angular momentum transport are necessary. Again the
most probable mechanism is the formation of a disk around the black hole. During this accretion process,
gravitational energy, as mentioned in former sections, is released. This energy in turn goes partly into
kinetic energy of the disk and partly into the thermal energy of the disk. The latter is emitted by the
disk. (Shakura and Sunyaev 1973)

4.2.1 Spectrum of the Disk

The following discussion is based on the work of Shakura and Sunyaev 1973. The observed spectrum
of the radiation and the total energy release is mainly dependent on the mass flux Ṁ inwards. More-
over, the local radiation spectrum, which is formed in the upper layers of the disk, is dependent on the
distance from the black hole, the density as well as on the matter and temperature distribution along
the z-coordinate perpendicular to the disk’s plane. The radiation can originate close to the radius where
the forces of radiation pressure and gravitation are comparable. This radius in turn is dependent on
the α-parameter. The smaller α the greater the effective radius of the radiating envelope and the lower
the effective temperature of the radiation. As done above the α-parameter is assumed to be constant
throughout the disk. As we will see later, the chosen value of α only plays a role considering the super-
critical regime (page 42).
The luminosity of the black hole can be calculated using a slightly different equation than in the Intro-
duction. L = ηeffṀc2, where ηeff represents the efficiency of gravitational energy release. In the case
of the Schwarzschild metric (non-rotating black holes) ηeff ' 0.06 and in the case of the Kerr metric
(rotating black holes) ηeff can be up to 40%. Again we can assume the Eddington limit for accretion and
luminosity, but there is no particular reason assuming an accretion equal to the critical value. In fact
the optical luminosity of the black hole may be much higher. This luminosity arises from reemission of
hard radiation of the hot central regions by the outer layers. For a better understanding one must bear
in mind that the thickness of the disk increases with distance. If we follow the theory of disk accretion,
one finds that the disk starts to thicken around r > 150(αm)2/21ṁ16/21, which causes the real form of the
disk, a saucer. As mentioned, the outer regions catch a significant part of the X-ray radiation of the inner
regions. Due to the optical thickness of the disk, the surface absorbs and reemitts a certain part of the
radiation, which leads to photoionization of the heavy elements. The radiation of softer photons causes
a heating of the matter. This heating, accompanied by an outflow of the hot gas, increases the disk’s
thickness as well as the absorbed fraction of the hard radiation of the central regions. This reprocessed
energy is visible in the spectrum as recombination radiation and resonance lines in the optical range.
The luminosity as a function of the radius is shown in Figure 4.3.

Figure 4.3: At a given radius R and with ∆R ∼
R the function Q(R)R2 (Q(R) is the
energy flux, radiated from the disk’s
surface) is proportional to the lu-
minosity of the ring with a width
∆R. R0 = 3Rg represents the in-
ner boundary of the disk, with Rg
the gravitational or Schwarzschild
radius. The numbers shown in the
figure are the contributions of the
corresponding regions to the inte-
gral luminosity. As we can see,
most of the radiation is emitted near
the inner rim of the accretion disk.
(Shakura and Sunyaev 1973, p. 342)
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There is the possibility of some unusual optical appearances or variabilities of the luminosity of the
disk. In the following the observable phenomena are discussed. The outer parts absorb the hard X-ray
radiation and reemit the absorbed energy in the ultraviolet and optical wavelength range. This ultraviolet
luminosity, in turn, can lead to the formation of a Strömgren sphere.21 If the accretion increases, the
luminosity will grow linearly and cause a raise of the effective temperature of the radiation, Figures 4.4
and 4.5.

Figure 4.4: Luminosity of the disk around a col-
lapsar (i.e. a collapsed stellar mass
object) as a function of the matter
flux entering its external boundary.
(Shakura and Sunyaev 1973, p. 340)

Figure 4.5: Dependence of the effective temperature of
the radiation of the disk on the matter flux
in it for different values of α. (Shakura and
Sunyaev 1973, p. 340)

Another scenario would be the evaporation of the outer layers of the disk by the heating up due to
the hard radiation. This would cause a decrease in matter flux into the black hole and influences its
luminosity, as fluctuations of the disk’s brightness are connected with the variability of the infalling
matter flux. An unusual optical appearance may occur if the X-ray radiation of the black hole hits the
surface of the stellar companion. Moreover, there might be a periodic variability of the luminosity due
to the companion’s movement around the black hole, as the distance of the two objects varies during the
orbit. Eclipses of the radiation from the central object by the disk are expected if the plane of the disk
does not coincide with the plane of the rotation of the system. A strong anisotropic behavior of matter
outflow can be observed, when hot plasma is ejected with high velocity in a narrow cone. This hot,
outflowing matter becomes opaque in the radio range far from the binary system. Also the appearance
of non-thermal radiation mechanisms connected with the existence of magnetic fields and beams of fast
outflowing particles are discussed. Finally, the most characteristic property of black holes in close binaries
is the spectrum of the X-ray radiation. (Shakura and Sunyaev 1973)

4.3 Different Types of Accretion onto Black Holes

4.3.1 Subcritical Accretion

This subsection is based on the work of Shakura and Sunyaev 1973.
In the case of subcritical inflow of matter through the Roche lobe most of the matter is accreted. The
21 The ultraviolet radiation is able to ionize the neutral hydrogen. This ionization is followed by recombination processes
and a reemission of the energy as series of photons of less energy. This would form out a typical sphere, which is also formed
by hot stars. However, those formed by hot stars are smaller for a similar optical luminosity. Therefore this sphere would
distinguish a black hole from normal optical stars.

39



4 Accretion onto Black Holes

formation of the disk and the underlying mechanism of angular momentum transport are comparable
with the ones introduced in Accretion Disks. In a disk around a black hole general relativity has to be
taken into account at R < 3Rg. We defined R0 = 3Rg as the inner boundary of the disk (Figure 4.3).
In the region where R < R0 the matter falls without any externally observable effect. There would be
an energy release per unit mass of infalling matter of 0.06c2, see ηeff ' 0, 06 in 4.2.1, which leads to a
total resulting luminosity of L0 = 0.06c2Ṁ . At this particular accretion rate almost all of the angular
momentum is transported outwards and only a small fraction falls together with the matter into the
black hole. In the case of a non-rotating black hole, the energy flux from a surface unit increases when
approaching the collapsar and reaches its maximum at R = 1.36R0 (Figure 4.3). Considering the case of
a rotating black hole, the released gravitational energy is transferred mechanically from the relativistic
region 1/2Rg < R < 3Rg into a non-relativistic one R > 3Rg and dissipates there. The disk, formed
through an subcritical accretion, is considered to be composed of different parts.22 These are shown for
a better understanding in Figure 4.6.

a) Pr > Pg and σT > σff
In this region the radiation pressure dominates and the electron scattering on free electrons plays
the major role in the interaction of matter and radiation and dominates the opacity. This part
is located in the region of the maximal energy flux at R = 1.36R0. In this region the disk has
a constant thickness along the radius. The height depends on the value of accretion rate. The
maximal ratio z0/R = ṁ is reached at r = R/3Rg = 2.25, with z0 = cs/vφR the half thickness. The
temperature of the plasma inside the disk can be defined as T = 2.3 ·107(αm)−1/4r−3/4K. A „true“
optical depth of τ∗ = 8.4 · 10−5α−17/16m−

/16ṁ−2 · r−93/32(1− r−1/2)−2 is determined. The disk is
thus opaque (τ∗ > 1) if r > 25α34/93ṁ64/93m2/93(1− r−1/2)64/93, which justifies the assumption of
local thermodynamical equilibrium. This local thermodynamical equilibrium exists inside the disk
up to R ≈ 10R0. There exists a limitation of energy losses through radiation of the plasma due
to the low production rate of photons by free-free processes. However, the energy loss is increased
by comptonization of the low frequency radiation, which causes as well a decrease in the plasma
temperature.

b) Pg � Pr and σT > σff
In the adjacent part of the disk the pressure is dominated by the gas pressure. The main contribution
to the opacity is again the electron scattering. The values for the temperature as well as for the
optical depth are given here for completeness: T = 3.1 · 108α−1/5ṁ2/5m−1/5r−9/10(1− r1/2)2/5 and
τ∗ = 102α−4/5ṁ9/10m1/5r3/20(1 − r−1/2)9/10. One can find a boundary radius between region a)
and b):

rab

(1− r−1/2
ab )16/21

= 150(αm)2/21ṁ16/21 (4.4)

which in turn tells us that region a) only exists if ṁ & 1/170(αm)−1/8.

c) Pr � Pg and σff > σT
The last part is the outermost region. Here again the gas pressure dominates, but the opacity is
determined by the free-free absorption. One finds T = 8.6 ·107α−1/5ṁ3/10m−1/5r−3/4(1−r−1/2)3/10

and τ ∝ σff = 3.4 · 102α−4/5ṁ1/5m1/5(1 − r−1/2)1/5. If α decreases, the surface density increases
rapidly, which reduces the radial velocity of motion. In turn, the disk’s thickness grows only as
α−1/10. In this regime the disk is always opaque.

Again a boundary radius between the regions b) and c) can be determined as

rbc = 6.3 · 103ṁ2/3(1− r−1/2
bc )2/3 , (4.5)

22 In some equations of the explanation of the distinguished parts, dimensionless parameters are used: m = M/M�,
ṁ = Ṁ/Ṁcrit, r = R/3Rg. σT represents the opacity due to Thompson scattering, the photon scattering on free electrons,
and σff the opacity due to the free-free absorption.
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which is valid in the case vr � Ω and only if r − 1 > 10−6α8/7ṁ3/7.

Finally, it has to be mentioned that disk accretion is feasible at sufficiently weak turbulence and a weak
magnetic field. Determining the structure of the disk along the z-coordinate, one finds that the pressure
gradient balances the component of the gravitational attraction perpendicular to the disk plane. There-
fore, hydrostatic equilibrium exists in the direction perpendicular to the disk plane. The disk’s structure
is characterized by the temperature of the mid-plane that depends only on R.

Figure 4.6: Illustration of the different regions of a disk with subcritical accretion. (Shakura and Sunyaev
1973, p. 347)

The local spectrum of the thermal radiation is likely to be one of the spectra of the three above dis-
tinguished parts. A Planck distribution in the outer parts of the disk, a Wien distribution in the inner
region and in the intermediate region a spectrum of radiation that has passed through the medium with
electron scattering. In the inner part the spectrum is strongly affected by the processes of comptoniza-
tion. The spectra of a) the outer disk, b) and c) the intermediate region and d) the inner disk are
shown in Figure 4.7. The surface temperature of matter as a function of radius is presented in Figure
4.8.

Figure 4.7: Typical distributions of radiation
formed in the disk: a) the black
body spectrum, b) the radiation
spectrum of an isothermic, homoge-
neous medium, c) the radiation spec-
trum of an isothermal, exponential
atmosphere (the main contribution
to the opacity in b) and c) comes
from electron scattering) and d) the
spectrum formed as a result of comp-
tonization
(Shakura and Sunyaev 1973, p. 339)
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Figure 4.8: Distribution of the surface temper-
ature along the radius of the disk
for different Ṁ and α.(Shakura and
Sunyaev 1973, p. 349)

4.3.2 Super Eddington Accretion

This subsection is based on the work of Shakura and Sunyaev 1973. Assuming the case of supercritical
accretion, the region around the black hole, its environment, respectively, may become observable. In
this supercritical regime, where Ṁ � 3 · 10−8M�/year, the luminosity is stabilized at the critical limit
of L ≈ 1038M/M� erg/s. An outflow of matter due to the radiation pressure is formed. The major
part of the matter flows out with high velocities. The density of the outflowing matter depends on the
efficiency α of mechanism of angular momentum transport and is a function of Ṁ/Ṁcrit. This density
determines the electromagnetic spectrum of the outflow. Analyzing the spectrum one finds that most of
the energy is radiated in the ultraviolet and optical range of the spectrum. Moreover, it is conspicuous
that in the upper layers of the outflowing matter broad emission lines are formed. The outflow begins
close to the radius where the radiation pressure and gravitation pressure are comparable. Just a small
fraction, the critical flux of matter, falls under the gravitational radius and is accreted. The accreted
matter and the one ejected is opaque for the emitted radiation and therefore influences the spectrum. At
the supercritical state the black hole may appear as a bright, hot, luminous star with a large outflow of
mass. The velocities of the mass outflow are around v ∼ α · 105(Ṁcrit/Ṁ)1/2 km/s. The central black
hole is surrounded by a cooler disk and the matter, as a consequence of accretion, enters the collapsar.
Consequently, the structure and the radiation spectrum depends significantly on the inward and outward
mass flux. The critical regime corresponds again with the Eddington accretion rate and luminosity as
calculated in the Introduction. (Shakura and Sunyaev 1973) In other words and using again the definition
of the trapping radius, one could say that rt moves out (Spruit 1996a).

In the following we will discuss the case of supercritical accretion in more detail and quantify the former
estimations with some equations. These equations and the discussion is based on the work of Shakura
and Sunyaev 1973.
Considering the critical Eddington luminosity, the radiation pressure on the electrons is comparable
with the gravitational attraction of protons and nuclei. Consequently, the flux of matter can not exceed
Ṁcrit = LE/ηc

2. One characteristic of disk accretion is the narrow region of matter infall. The movement
of the matter is in fact a slowly twisting spiral in the plane perpendicular to the direction of the angular
momentum of the matter flowing into the disk. The energy release in the disk, during processes of angular
momentum transport, is proportional to R−3[1− (Ro/R)1/2]. In the outer regions a qualitative difference
between the subcritical and the supercritical accretion can not be found. The energy release here is less
than the critical luminosity and the radiation pressure does not prevent infall of the matter along the
disk.
Some modifications of the description of the supercritical accretion are suggested, like a periodic sequence
of supercritical fluxes of matter and a destruction of the whole disk by powerful flares of radiation.
Moreover, a stationary state with the luminosity close to the critical value and with an outflow of most
of the matter beyond the system seems to be likely. In this case the energy release as well as the force of
radiation pressure grow rapidly when getting closer to the black hole. If ṁ = Ṁ/Ṁcrit > 1, the thickness
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of the disk becomes of the order of the distance to the black hole near the radius of spherization23
Rsp ≈ 9/4 · 106mṁ[cm]. In this scenario the infall of matter would lead to an immediate outflow of
a fraction of it from the region R < Rsp. The difference of the forces of gravitational attraction and
radiation pressure causes an acceleration of the outflowing matter. The velocity of the outflow can be
determined as vout '

√
2vφ

√
(L− LE)/LE, which is close to the radial velocity of the matter in the central

plane of the disk vr = αvφ(Rs). A decrease of vout increases the luminosity and in turn the velocity of
the outflowing matter. On the other hand, if vout exceeds vr, the luminosity and the matter inflow to the
region R < Rsp decrease, which decreases in turn vout. The lines of matter flow are illustrated in Figure
4.9 and the matter outflow in spirals is shown in Figure 4.10. The closer the matter comes to the black
hole, the greater is the outflowing velocity. As angular momentum is conserved, it is not possible for
matter to enter the region with a radius less than the radius of the outflow. Due to this a small cone of
hot matter with high velocity and hard X-ray radiation at an opening angle θ relative to the axis of the
disk rotation is ejected from the region R ∼ 9/4R0 ∼ 7Rg. With an increase of θ a decrease of the velocity
of the outflowing matter is related. The emitted spectrum is dependent on the parameter α, the rate of
matter inflow to the disk and the absorption and reemission of the hard radiation. Considering ṁ � 1
and α(rsp) � 1 the matter may be opaque far from the object. Consequently, the collapsar appears for
ṁ > 3 · 103(α/m)2/3 as a bright optical and ultraviolet object with high mass loss and possible X-ray
radiation.

Figure 4.9: Lines of matter flow in the case of
supercritical accretion: For R < Rsp
spherization takes place, which ini-
tiates matter outflow from the col-
lapsar (Shakura and Sunyaev 1973,
p. 347).

23 The spherization radius Rsp is a critical radius inside which quasi-spherical outflows emerges, Rsp = (Ṁc2/LE)R∗ .
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Figure 4.10: Outflow of the matter from the
black hole in a spiral (Shakura and
Sunyaev 1973, p. 347).

4.3.3 Ion Supported Accretion Flows

An accretion flow is defined as an ion supported accretion flow (ISAF) in the case that the thermal
equilibrium between ions and electrons breaks down and a two temperature plasma forms. This kind of
flows occur when the gas is optically thin and radiation processes are inefficient. Considering this case,
the gas heats up near the virial temperature. At the last stable orbit of a black hole this would yield to a
temperature of ∼ 1012K, or 100MeV. In this considerations the viscous dissipation energy is distributed
equally to all the carriers of mass by the radiation. Due to the bigger mass of the ions they hold most
of the energy, whereas only ∼ 1/2000 resides in the electrons. The high mass of ions prevent them from
the rapid acceleration needed for the emission of electromagnetic waves and so their radiation is weak.
The energy is transferred through Coulomb interactions to the electrons. This is a slow process, because
of the low density and the decrease of their interaction with the electrons with increasing temperature.
Based on the basic definition of a plasma the electric forces for the transfer act only as long as the ion is
within the electron’s Debye sphere. Consequently, the flow is characterized by a two-temperature state,
with ions near the virial temperature and a much lower temperature, 50− 200keV, for the electrons that
are responsible for the radiation. So we have a fast energy transfer from the gravitational field to the ions,
a slow transfer from the ions to the electrons and once again a fast emission from the electrons. Therefore
such a flow is radiatively inefficient as the carriers of the accretion energy, the ions, will be swallowed by
the central mass before the transfer of the energy can take place. Most of the energy will be accreted
with the infalling matter. The efficiency of radiation is suggested to be η � 0.1 for a cool disk. Thus the
physics of the flow as well as the observed spectrum is mostly determined by the ion-electron interaction.
Many uncertainties with regard to ISAF’s remain still open as this theory is mainly dependent on some
properties of the disk, such as the strength of the magnetic field, that are not clarified yet. Ion-supported
accretion flows require low densities, that occur either because of low accretion rates or high values of
α. The fact that the time for the energy transfer of ions is longer than the accretion time, yields to a
maximum accretion rate ṁ ≤ α2. Inserting the probable value of α = 0.05, the accretion rate would be
a few 10−3M� per year. For systems with higher accretion rates, a bigger value of α would be necessary
to develop ISAFs. (Spruit 1996a)
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4.4 Observation on Saggitarius A*

The following discussion is based on the paper of M. Zamaninasab 2010.
The nearest SMBH is the center of our Galaxy, Saggitarius A*, with a luminosity of 10−9 − 10−10LEdd.
It is one of the most extreme sub-Eddington sources available for observations. Near-infrared (NIR) and
X-ray flares have been detected with high spatial and spectral resolution observations. These outbursts
last usually for about 100 min and appear four to five times a day. Images of Saggitarius A* are shown
in Figure 4.11. Due to the small time scale of the variations of the NIR and X-ray flares, the region
of emission is suggested not to be bigger than 10 Schwarzschild radii of the SMBH. Furthermore, the
high polarization of the NIR flares favours as responsible radiation mechanism synchrotron-self-compton
(SSC) or inverse Compton emission. The short periods of increased radiation seem to be correlated to
quasi-periodic oscillations (QPOs). This quasi-periodicity, in turn, has been suggested to be related to
the orbital time scale of the matter in the inner regions of the disk. Furthermore, the existence of a corre-
lation between the modulations of the observed flux density light curves and the changes in polarimetric
measurements is tried to be probed and explained.
Different models for explaining the outbursts have been taken into account. The favoured and in the
paper discussed model is the so-called Emission Model, in which the main flare is caused by a local
perturbation close to the marginal stable orbit of the black hole. Perturbations can originate in mag-
netic reconnections, stochastic acceleration of electrons due to magneto hydrodynamical (MHD) waves,
magneto-rotational instabilities (MRI) etc. A schematic view of the geometry of the model is given in
Figure 4.12. Due to the spreading of these instabilities, a temporary bright torus around the black hole
is produced. The mentioned variability is are mainly generated, in this model, through relativistic flux
modulations caused by an azimuthal asymmetry in the torus. Since all these processes happen close to
the black hole and therefore in a very strong gravitational regime, relativistic effects have to be taken
into account. For the modeling of the data a special ray-tracing code has been used that is able to
calculate all the effects of general relativity, such as light bending, gravitational lensing, redshift and
Doppler boosting etc. In the work of M. Zamaninasab 2010 various images have been simulated that an
observer for different inclinations with respect to the accretion disk would measure. (For more detailed
information and all modeled light curves and images see M. Zamaninasab 2010).
The question arises how a spot can survive long enough to be responsible for the flux modulations four
to five times a day. One possible answer might be that the sub-mm seed photons are up-scattered to
the NIR and X-ray frequencies due to a SSC mechanism. The mechanism for stabilizing such a spot
remain unknown. However, the existence of persistent vortices in accretion disks might be a possibility.
The pattern recognition analysis showed that strong lensing patterns are detectable in the observed NIR
light curves. This in turn, is a further indicator for a (clumpy) accretion disk around Sgr A*. Additional
simulations have shown that an orbiting spot is able to produce the same cross correlation pattern as
observed, but the orbital frequency will be mainly a quasi-periodic signal. Moreover, a spotted accretion
disk has been modeled, where spots are born, evolve and fade away with time, distributed in a narrow
belt, 1−2 · rISCO24, of the accretion disk. It has been found that the kind of observed correlation between
the flux and the polarization data can not be produced by random processes, which emphasizes again
the existence of orbiting matter around the black hole.
Conclusively, it can be said that a general relativistic simulation of turbulences in the inner parts of the
accretion disk fits the observed behavior of Sgr A*. Alternative models could produce the same observed
phenomena, for instance shocks in relativistic jets could produce correlated total and polarized fluxes.
Under certain circumstances a relativistic flux would be able to produce the same correlation and the
observed patterns. The changes in the observed polarization angle simultaneous to the flux magnification
and changes in the degree of the NIR polarization support the idea of a geometrical shape dominated
by compact azimuthal asymmetries. Moreover, a toroidal magnetic field structure seems to fit best data
deduced from observations.
24 rISCO refers to the radius of the marginal stable orbit, also called the ISCO as introduced in former sections.
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To sum up, many of the measured data support the theory of accretion disks, some kind of matter sur-
rounding the black hole in the middle of our Galaxy, respectively. The correlation between changes in the
polarimetric data and total flux densities, which indicate strong gravity effects, provides evidence that the
variations may originate from the inner parts of the accretion disk. For explaining the behavior of Sgr A*
many models are suggested. Some of them are not able to give answers for important questions, whereas
the hot spot model seems to give reasonable results and fits the observations very well. Understanding
the underlying processes would be a big achievement in the field of research of accretion disks and their
evolution. As there remain many phenomena uncertain, this subject of physics will provide work for
further decades.

Figure 4.11: Observations of Saggitarius A*: Images observed in the NIR L’-band (3.8 µm) on 3 June
2008 between 05:29:00 and 09:42:00 (UT time). The images a-f show Sgr A* 0, 50, 91, 135,
155 and 212 min after the start of observations. In its flaring state the flux changes up to
100% in time intervals of the order of only tens of minutes. (M. Zamaninasab 2010, p. 2)

Figure 4.12: Geometry of the Emission Model
for Saggitarius A*: The accretion
disk lies on the ŷ - r̂ plane, where
n̂ represents the unit normal vec-
tor of the disk. The magnetic field
lines are B, their direction is de-
fined by the two angles η and ψ.
The direction of the momentum of
the emitted photon κ is as well de-
termined by two angles, δc and φc.
The inclination of the line of sight
of an observer is i. (M. Zamani-
nasab 2010, p. 11)
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Physical Quantities

Physical Quantities

φ point like potential
∆E kinetic energy
G gravitational constant
M central objects mass
MBH mass black hole
r radius, distance from the center
e dissipated energy/internal energy
γ ration of the specific heat
P pressure
Ptot total pressure
Pr radiation pressure
Pg gas pressure
∇P pressure gradiant
R universal gas constant
T temperature of the gas
Tvir virial temperature
Tc central temperature
Tg gas temperature
Td dust temperature
TBL boundary layer temperature
µ mean atomic weight per particle
ρ density
cs speed of sound
τd dynamical or free fall time scale
τvisc viscous/secular time scale
τacc accreting time scale
τtherm thermal time scale
τc cooling time scale
τh heating time scale
τ optical depth
vk Keplerian orbital velocity
vr radial or „drift“velocity
vout velocity of outflow
vesc escape speed
Ωk Keplerian angular velocity
Ω angular velocity
Ṁ accretion rate
ṀE Eddington accretion rate
F radiative flux
FE Eddington flux
LE Eddington luminosity
LLB boundary layer luminosity
c speed of light
M� mass of the sun
L� luminosity of the sun
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(r, φ, z) cylindrical polar coordinates
r̂ unit vector in the spherical radial direction
gz residual acceleration towards the midplane
ρ0(r) density at the midplane
l specific angular momentum
T torque
H(r) scale height, disks thickness
rt trapping radius
ηeff efficiency of gravitational energy release
z z direction perpendicular to the disk’s plane
δ aspect ratio of the disk
v velocity
Σ surface density
ν turbulent viscosity
Ω′ derivation of the angular velocity of disk rotation with respect to r
Q(r) energy dissipation rate
Re Reynoldsnumber
n number density of molecules
σ cross-section
λt size of the turbulent eddies
vt turnover velocity
α α-parameter
q−thick radiative emission rate, optical thick case
q−brak thermal braking radiation
q+ viscous dissipation rate
q− radiative loss rate
qadv net energy advection rate per unit volume
λ mean free path or wavelength
r̃, t̃ dimensionless parameters
σSB Stefan-Boltzmann’s constant
σff opacity determined by free-free absorption
σT opacity determined by electron scattering
f(r) heat factor
S entropy per unit mass
F energy/heat flux
Ts(r) surface temperature
r∗ stellar radius
T∗ temperature of the inner disk, stellar temperature
ϑ frequency
φ angle of inclination
Iθ emitted spectrum
Bθ Planck function
Sϑ flux at frequency ϑ
rout outer radius
k Boltzmann’s constant
ri inner radius of the disk
β parameter
Et enthalpy of disk per unit of suface area
Wvisc heating rate
Wgrav gravitational energy release
ṁ dimensionless value
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Physical Quantities

E energy density
κ scattering/absorbing surface area or opacity
h half thickness, special angular momentum, Planck’s constant
a radiation density constant in σSB, separation
Veff effective potential
φR(r) Roche potential
J̇ angular momentum flux
Rg gravitational radius, Schwarzschild radius
Rsp radius of spherization
i inclination angle
θ angle relative to the disks axis
rcrit critical point

50



Bibliography

Alecian, E. (2013). “An Introduction to Accretion Disks”. In: Lecture Notes in Physics 857, pp. 183–205.
doi: 10.1007/978-3-642-30648-_7.

Asmus, Daniel (2008). “Der Innere Rand von Akkretionsscheiben um Schwarze Löcher”. MA thesis.
Christian-Albrechts-Universität zu Kiel.

C.P. Dullemond D. Hollenbach, I. Kamp and P. D’Alessio (2006). “Models of the structure and Evolution
of protoplanetary Disks”. In: Astro-ph/0602619v1.

Hawking, Stephen (2001). Das Universum in der Nussschale. Ed. by Hoffmann und Campe. Hoffmann
und Campe.

Juhan Frank, Andrew Kind and Derek Raine (2002). Accretion Power in Astrophysics. Ed. by Cambridge
University Press. Third Edition. The Press Syndicate of the University of Cambridge.

Kato, Y. and K. Shibata S. Mineshige (2004). “Magnetohydrodynamic Accretion Flows: Formation of
Magnetic Tower Jet and Sunsequent Quasi-Steady State”. In: The Astrophysical Journal 605, pp. 307–
320.

Kenyon, S. J. and L. Hartmann (1987). “Spectral Energy Distribution of T Tauri Stars: Disk Flaring and
Limits on Accretion”. In: The Astrophysical Journal 323, pp. 714–733.

Kraus, Michaela (2003). “SEDs of flared dust disks: radiation transfer model versus two-layer model”.
In: Astro-ph/0305532.

Lynden-Bell, D. (2002). “Why do disks form Jets?” In: ASP Conference Series 249. Institute of Astron-
omy, Cambridge; UK.

Lynden-Bell, D. and J.E. Pringle (1974). “The Evolution of viscous discs and the origin of the nebular
variables”. In: Monthly Notices of the Royal Astronomical Society 168, pp. 603–637.

M. Zamaninasab, A. Eckart et. al. (2010). “Near infrared flares of Sagittarius A*”. In: Astronomy and
Astrophysics 510 A3. doi: 10.1051/0004-6361/200912473.

Mamatsashvili, George (2011). “Angular Momentum transport in accretion discs”. MA thesis. Institute
for Astronomy, University of Edinburgh.

Müller, Dr. Andreas (2010). Schwarze Löcher. Ed. by Springer. Spektrum Akademischer Verlag.
Narayan, Ramesh and Robert Popham (1994). “Theory of Accretion Disks - 2”. In: ed. by Kluwer Aca-
demic Publishers. Vol. 417. NATO ASI Series 1389-2185. Springer Netherlands. Chap. Accretion Disk
Boundary Layers, pp. 293–307. doi: 10.1007/978-94-011-0858-4_30.

Narayan, Ramesh and Insu Yi (1994). “Advection-Dominated Accretion: A self-similar solution”. In: The
Astrophysical Journal 428, pp. L13–L16.

Ogilvie, G. I. (1999). “The non-linear fluid dynamics of a warped accretion disc”. In: Monthly Notices of
the Royal Astronomical Society 304, pp. 557–578. doi: 10.1046/j.1365-8711.1999.02340.x.

Shakura, N.I. and R.A. Sunyaev (1973). “Black Holes in Binary Systems. Observational Appearance”.
In: Astronomy and Astrophysics 24, pp. 337–355.

Spruit, H.C. (1996a). Accretion Disks. Tech. rep. Max-Planck- Institut für Astrophysik.
– (1996b). “Magnetohydrodynamic Jets and Winds from Accretion Disks”. Max-Planck-Institut für As-
trophysik.

– (2010). “Theory of magnetically powered jets”. In: Lecture Notes in Physics794, pp. 233–263.
Thorne, Kip S. (1994). Black Holes and Time Warps. W. W. Norton & Company, Inc.

51

http://dx.doi.org/10.1007/978-3-642-30648-_7
http://dx.doi.org/10.1051/0004-6361/200912473
http://dx.doi.org/10.1007/978-94-011-0858-4_30
http://dx.doi.org/10.1046/j.1365-8711.1999.02340.x

	Abstract
	Introduction
	Definition of Accretion
	Fundamental Equations

	Accretion Disks
	Structure/Thickness
	Geometrical Thickness
	Optical Thickness
	Optical Thick Case
	Optical Thin Case


	Angular Momentum Transport/ Viscosity
	Evolution of the Disk's Viscosity
	Constant Viscosity
	Radially Varying Viscosity

	Sources of Viscosity
	Magnetic Viscosity
	Radiation-Supported Disks and Viscosity


	Temperature - Emitted Radiation
	Radiative Efficiency of Accretion Disks
	Different Types of Disks
	Geometrically Thin Disks
	Steady Thin Disks
	Radiation Pressure Dominated Disks

	Beyond Thin Disks
	Radiation Supported-Radiatively Inefficient Accretion
	Advection Dominated Accretion Flows (ADAF)


	Non-Gravitational Instabilities of Disks
	Jet Formation in Disks


	Disk Models
	The Boundary Layer Model
	The Flaring Disk
	The Two-Layer Model
	The Shakura-Sunyaev Disk

	Accretion onto Black Holes
	Definition of the Inner Rim
	Development of Accretion Disks Around Black Holes in Binary Systems
	Spectrum of the Disk

	Different Types of Accretion onto Black Holes
	Subcritical Accretion
	Super Eddington Accretion
	Ion Supported Accretion Flows

	Observation on Saggitarius A*

	Physical Quantities

